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ABSTRACT

In this work a Fault Detection System was developaged on the self-organizing maps methodologys Thi
method was applied to the IEA-R1 research readttPBN using a database generated by a theoreticdel

of the reactor. The IEA-R1 research reactor is al pygpe reactor of 5 MW, cooled and moderated Igitli
water, and uses graphite and beryllium as reflecibe theoretical model was developed using thelddat
GUIDE toolbox. The equations are based in the IEIARRSs and energy inventory balance and physicaels
as operational aspects are taken into considerdtioorder to test the model ability for fault detien, faults
were artificially produced. As the value of the nmanxm calibration error for special thermocouplez 3.5° C,

it had been inserted faults in the sensor signdlstive purpose to produce the database consideted work.
The results show a high percentage of correctifilzation, encouraging the use of the techniquethias type of
industrial application.

1. INTRODUCTION

The studies in Fault Detection have been encourbgeduse of the increasing demand on
quality, reliability and safety in industrial prases. This interest is justified due to
complexity of some industrial processes, as chdmpaver plants, and so on. In these
processes, the interruption of the production dusotme unexpected change can bring risk to
the operator's security besides provoking econdmsges, increasing the costs to repair some
damaged equipment. Because of these two pointsedbeomic losses and the operator's
security, it becomes necessary to implement Faete@ion Systems [4] [5] [12] [16]. The
Atrtificial Intelligence (Al) techniques have beencsessfully applied in the development of
this kind of system because fault detection israflex reasoning activity.

There are different procedures in Fault Detectigst&ns, including heuristic knowledge and
mathematical models to the Al methods. The detectian be performed using different
elements based on analytical methods, expert sgstartificial neural networks (ANN) and
fuzzy logic [1] [14] [19].



The use of analytical methods applied in fault c&de is not always possible because it
requires depth knowledge of a process model. Fdésens can occur due to the estimation
errors of the process parameter because of theasprsystem model [11] [17] [18].

When heuristic expert system is applied, it is seagy to use human knowledge and
experience. This method is much easier and mor&luse comparison with analytical
method, but it is difficult for automatic realizaii.

On the other hand, the use of ANN is rather eaglet@lop and to perform [6]. ANN can be
applied when there is a database containing theepsomeasurements, which later can be
used in the training of ANN. The advantage of thisthod is the possibility to obtain on-line
information about the kind and the size of a fawmithout developing very complicated
mathematical models [6] [16] [18].

The purpose of this work is to develop a Fault Diebe System based on the self-organizing
maps methodology which was applied to thermocoufalel detection. The fault detection
model was implemented through many computatiomaukitions in offline form using a
database generated by a theoretical reactor mépeljere faults were artificially inserted in
the sensor signals database.

2. |IPEN RESEARCH REACTOR IEA-R1 THEORETICAL MODEL

The Ipen nuclear research reactor IEA-R1 is a pgme reactor using water for the cooling
and moderation functions and graphite and beryllagrreflector. Its first criticality was in
September 1% 1957. Since then, its nominal operation power2isMW. In 1997 a
modernization process was performed to increaseptveer to 5 MW, in a full cycle
operation time of 120 hours, in order to improgeradioisotope production capacity. Figure
1 shows a flowchart diagram of the Ipen nucleagassh reactor IEA-R1.

A Ipen research reactor theoretical model was builorder to generate data in different
reactor operation conditions, allowing flexibiliip situations where it is not possible to
obtain data experimentally because of restrictidne to the nature of a nuclear reactor
operation. Using the model, data was generated unader normal and faulty conditions. The
IEA-R1 theoretical model performs the followingkas

» Generation of data in different reactor operationditions

» Setting the input variable values in an easy astifay using a graphic interface
» Setting the noise level for the input variables

» Selecting a faulty variable from a list

* Visualization of the results in a dynamical way
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Figure 1. Flowchart diagram of the I pen nuclear research reactor IEA-R1

The model represents the basic relationships antbagdifferent process variables. The
system process equations are based on the IEA-R% ara energy inventory balance [2]
and [9], and the physical and operational parametauch as pipe length and diameter,
relationships among the flow rate, temperatures @anessure drop are taken into
consideration.

The Ipen research reactor model was built usindvthéab GUIDE toolbox [3]. The GUIDE
(Graphical User Interface Development Environmém)box is a set of functions designed
to develop interfaces in an easy and fast way. €ameadd plots, sliders, frames, editable
texts and push buttons that are related to othelabl&unctions.

The interface layout was built to look like the ¢ process flowchart. Figure 2 shows the
program interface. The reactor core is represemeersed in the water pool. The
temperatures T1, T2 and T3 are the temperaturesedhe core near the pool surface, at mid
high and close to the core, respectively. The rmucpwer is an input data and a nuclear
power of 100% corresponds to the maximum operatawer of 5 MW.

The reactor coolant system is represented in ttexfate. The primary loop water flows
through the reactor fuel elements and leaves tloéthoough a nozzle under the core. Then,
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the water passes through the decay tank: T4 whkithe reactor core outlet temperature and
T6 is the outlet temperature. B101-A is the primimgyp pump. The heat exchanger is also
represented. T7 is the heat exchanger outlet textyser (primary loop side). FE 01 is the
primary loop flowmeter. The primary water loop flewut of the heat exchanger and then
returns to the pool. The secondary loop is paytisdpresented by the secondary side of the
heat exchanger.
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Figure 2. Program interface developed to compute the I[EA-R1 nuclear reactor model
variables.

The pump in the secondary side and the cooling t®waee not represented. T8 is the inlet
temperature of the heat exchanger secondary side,T8 is its outlet temperature. The
secondary loop flow is measured by the FE 02 flostem The units of temperature and flow
are the same used in the reactor data acquisistiera that is Celsius degrees and gallons
per minute.

The user can define the time interval by defining total number of points and the time step
where the variables are to be calculated by theeinfmil a given operational condition. In
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this case the program calculates for one pointtesbes the values and restarts the
computation for the next point.

The user defines the desired variable values ®teémperatures, flow rate or nuclear power
directly in the interface editable dialog box. Afentering the variable values, the noise level,
the fault condition and the number of data poiptgssing the buttonalculateinitiates the
program, which calculates the thermal power acogrdo the mass and energy inventory
balance equations.

The fault data was generated by adding random sdatughe signal in normal operation. The
amplitude of these values was varied to allow aystof the sensitivity of the neural model
proposed. As the value of the maximum calibratizordor special thermocouples is + 0.5°C
[13], it had been inserted values ranging from 0 @b, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0,
respectively, above to the original signal.

3. SELF-ORGANIZING NEURAL NETWORKS

An artificial neural network model can be definedaalarge number of simple interconnected
processing units used to establish an input/outplationship. The self-organizing system
considered here belongs to a special class ofcatiineural networks (ANN) known as
feature maps.

A Self Organizing Map (SOM) consists of neuronsamiged on a regular low-dimensional

grid (usually one or bi-dimensional). Figure 3 sBaschematic diagram of a bi-dimensional
grid, frequently used as a discrete map. Each meurdhe grid is fully connected to the

neurons at the input layer.
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Figure 3. Bi-dimensional grid of neurons|[§]

From the point of view of the information and hawsi visualized, the self-organizing nature
of the mapping implies that the statistical and lim@ar metric relations among the n-
dimensional input data are converted into simplenugric relations between variables
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located at the nodes of a bi-dimensional net [1®]other words, a self-organizing map
projects the information contained in the primaagadspace on to a bi-dimensional network,
without altering significantly the topological rétans. It may be regarded as a tool capable of
creating abstractions. These two attributes - Viga@on and abstraction of data - are of great
importance in complex information-analysis appimas$, such as the problem of fault
detection of sensors in nuclear reactors. Theseank$s are characterized by competitive
learning, a process in which the output "neuroms"nodes of the map, compete among
themselves to become activated while a data-paitepresented to the inputs. Eventually,
just one output neuron, or one in each local griaggpmes the "winner" of the competition
and remains active.

The neurons are selectively composed accordingeartany input patterns or input pattern
classes in the context of a competitive learningcess. The winner neuron location is
arranged according to the other neurons in a sogmf way inside the coordinate system. It
creates a grid for different characteristics ofitiput patterns.

Let m be the input vector dimension. Lgbe any input vector selected from the input space,
represented as:

P=[P, Bers Bl (1)

The weight vector of which neuron has the same dgio@ as the input vector. Let the
weight vector of the neurgrdenoted by:

w T, =12, (2)

W, =[w,, w /

1 Wi o
wherel is the total number of neurons. In order to fihd best competition of input and
weight vectors, we compare the internal prodMEp forj =1,2,..1 . Then, the one with the
best result is selected. Furthermore, this neumesfthe location where the topologic
neighborhood of excited neurons is centered.

The best competition criterion, based on the irtiepnoduct maximization is mathematically
equivalent of Euclidean distance (betwg@esndw;) minimization.

The neurori(p) identifies the closest neuron from input vegipandi(p) can be determined
applying the condition:

i(p) =argmin|jp w| , j=1,2,..., (3)

This procedure is the essence of the competitioogss of neurons. The specific neuron
which satisfy this condition is the so called winmeuron for the input vectqr. We can
verify this in Eq. (3).

A continuous input space of activation patternsnegpped on an output discrete space by a
competition process of neurons. Depending on tipdicgtion, the neural network output can
be the winner neuron index (i.e., its grid position the weight vector near the input vector
or both [8]
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A topographical map is formed in the SOM from theut patterns, in which the spatial
locations (coordinates) of the neurons in the geftect intrinsic statistical features within the
input patters - hence the name self-organizing ni@p<£ach input pattern presented to the
network is equivalent to a certain region of inppaice. The position and nature of that region
usually vary from one input pattern to the next.idurons in the SOM should be exposed to
a sufficiently large number of different patternseinsure that the self-organizing process has
the chance of evolve correctly and develop a comagkature map. The layer of nodes in a
SOM is arranged initially in physical positions,danformity with the topology adopted for
the map: a hexagonal bi-dimensional grid was usedis work.

One of the main neural network features is the iggization ability, i.e, successfully classify
the patterns not presented before. Self-organiziags generalize, placing in the same class,
similar patterns to the ones previously classifstdraining procedure. It means that, signal
identification by a representative data set isasitde proposal, since the data set has been
correctly classified by the net. This work focusesanalyzing how this feature can be used
in the task of detecting faults in sensors.

4. RESULTS

In this work tests were performed with the sigrfaten the temperature sensor T4 which is
the reactor core outlet temperature (Fig. 4). lohei@st 10 examples were presented to the
neural model, 5 being the original signal and 5 féndt ones. Each sample consisted of a
portion of 100 points of the temperature signal, Boa same test, the neural network
received one portion of the original signal and shene portion of the signal with faults. It
was performed by adding random values to the algiignal whose amplitude was varied in
order to produce a study on the sensitivity of iin@del. The range was varied from O to 5.
Let the constant (C) represents the range of theloa values that in this study was
considered as 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 andréspectively. Thus, for example, considering
one sample, which had a minimum value equal to 3€2and a maximum equal to 40.4 ° C,
began to show a value of minimum and maximum teatpeg of 39.2 ° C and 40.88 ° C,
respectively, using the constant 0.5. In the cdd¢keoconstant 5.0, the same portion has now
a range of 39.2 ° C to 45.32 ° C. The Fig. 4 shivesoriginal and the fault sample cited
above.

The signals produced with constant 0.5 corresporibld values of fluctuation inherent in the
process of thermo-hydraulic data found in the wmadperation. The other cases, i.e.,
constants 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0, areidersl faults.

Considering the problem of classification into twlasses, ie, normal operation and the
presence of sensor failure, the network architeciwas designed with two neurons. To
develop the computer program was used the Matlalbdg with the parameters already
described in the previous section. The other patensi@vere not changed. Several tests of
neural network training have been performed andtadwed similar results to table 1. This
table shows the percentages of accuracy of theaheuodel including the test of
generalization, where different signals from onseduin training procedure were presented
to the model.

INAC 2011, Belo Horizonte, MG, Brazil.



- - - original signal —e—C=05 - -A&-C=5.0

455 -
45 -
445 -
44 -
II
435 -
)

I
w

425 't
42 "
415 | ¥
41 -
405 -
40 -
395 -

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Temperature (°C)

numbers of points

Figure 4: Examplesof original and fault signals.

Through analysis of Table 1, it is possible to geegreat sensitivity of the neural model to
detect faults with amplitudes above 1 ° C. For eplamresults obtained with constants 0.5
and 1.0 show a small accuracy percentage durinmgriggand generalization processes. This
fact suggests that for the neural model, very prbhathese signals are related with
fluctuations. For the others cases (1.5 to 5),rteeral models were able to represent the

different simulated faults with a very significgmtrcentage of correct classification, both in
training and generalizations processes.

Table 1: Neural model accuracy percentage

05| 10| 15| 2.0 3.0 4.0 5.(
training 60%| 60% | 80% | 90% | 100%| 100%| 100%
generalization 50% | 80% | 90% | 90% | 90% | 100% 100%

5. CONCLUSION AND FUTURE WORK

A neural model based on self-organizing map toadgilts in temperature sensors found in
nuclear reactors has been proposed in this papernmiin idea was to investigate the ability
of the model to detect faults that may be consitiefer example, a not calibrated sensor.
Data from a theoretical model of the IEA-R1 reskasactor of IPEN were used for the tests.

The computational tests performed with varioustfaldvels showed a great percentage of
model accuracy with respect to the classificatibdaia with and without faults. The results
therefore demonstrate the feasibility of using tmedel in nuclear industrial application.
Future work should include extensive testing whledretical data and experimental data,
including data from other sensors in the reactor.
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