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ABSTRACT 
 
In this work a Fault Detection System was developed based on the self-organizing maps methodology. This 
method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model 
of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light 
water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab 
GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well 
as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults 
were artificially produced. As the value of the maximum calibration error for special thermocouples is ± 0.5 º C, 
it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. 
The results show a high percentage of correct classification, encouraging the use of the technique for this type of 
industrial application.   
  

1. INTRODUCTION 
 
The studies in Fault Detection have been encouraged because of the increasing demand on 
quality, reliability and safety in industrial processes.  This interest is justified due to 
complexity of some industrial processes, as chemical, power plants, and so on. In these 
processes, the interruption of the production due to some unexpected change can bring risk to 
the operator's security besides provoking economic losses, increasing the costs to repair some 
damaged equipment. Because of these two points, the economic losses and the operator's 
security, it becomes necessary to implement Fault Detection Systems [4] [5] [12] [16]. The 
Artificial Intelligence (AI) techniques have been successfully applied in the development of 
this kind of system because fault detection is a complex reasoning activity. 
 
There are different procedures in Fault Detection Systems, including heuristic knowledge and 
mathematical models to the AI methods. The detection can be performed using different 
elements based on analytical methods, expert systems, artificial neural networks (ANN) and 
fuzzy logic [1] [14] [19].  
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The use of analytical methods applied in fault detection is not always possible because it 
requires depth knowledge of a process model. False alarms can occur due to the estimation 
errors of the process parameter because of the imprecise system model [11] [17] [18].  
 
When heuristic expert system is applied, it is necessary to use human knowledge and 
experience. This method is much easier and more useful in comparison with analytical 
method, but it is difficult for automatic realization. 
 
On the other hand, the use of ANN is rather easy to develop and to perform [6]. ANN can be 
applied when there is a database containing the process measurements, which later can be 
used in the training of ANN. The advantage of this method is the possibility to obtain on-line 
information about the kind and the size of a fault without developing very complicated 
mathematical models [6] [16] [18]. 
 
The purpose of this work is to develop a Fault Detection System based on the self-organizing 
maps methodology which was applied to thermocouples fault detection. The fault detection 
model was implemented through many computational simulations in offline form using a 
database generated by a theoretical reactor model [7] where faults were artificially inserted in 
the sensor signals database.   
 

2. IPEN RESEARCH REACTOR IEA-R1 THEORETICAL MODEL 
 
The Ipen nuclear research reactor IEA-R1 is a pool type reactor using water for the cooling 
and moderation functions and graphite and beryllium as reflector. Its first criticality was in 
September 16th, 1957. Since then, its nominal operation power is 2 MW. In 1997 a 
modernization process was performed to increase the power to 5 MW, in a full cycle 
operation time of 120 hours, in order to improve its radioisotope production capacity. Figure 
1 shows a flowchart diagram of the Ipen nuclear research reactor IEA-R1. 
 
A Ipen research reactor theoretical model was built in order to generate data in different 
reactor operation conditions, allowing flexibility in situations where it is not possible to 
obtain data experimentally because of restrictions due to the nature of a nuclear reactor 
operation. Using the model, data was generated both under normal and faulty conditions. The 
IEA-R1 theoretical model performs the following tasks: 
 

• Generation of data in different reactor operation conditions 
• Setting the input variable values in an easy and fast way using a graphic interface 
• Setting the noise level for the input variables  
• Selecting a faulty variable from a list 
• Visualization of the results in a dynamical way  
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Figure 1. Flowchart diagram of the Ipen nuclear research reactor IEA-R1  
 
 
 

The model represents the basic relationships among the different process variables. The 
system process equations are based on the IEA-R1 mass and energy inventory balance [2] 
and [9], and the physical and operational parameters, such as pipe length and diameter, 
relationships among the flow rate, temperatures and pressure drop are taken into 
consideration. 
  
The Ipen research reactor model was built using the Matlab GUIDE toolbox [3]. The GUIDE 
(Graphical User Interface Development Environment) toolbox is a set of functions designed 
to develop interfaces in an easy and fast way. One can add plots, sliders, frames, editable 
texts and push buttons that are related to other Matlab functions.  
 
The interface layout was built to look like the reactor process flowchart. Figure 2 shows the 
program interface. The reactor core is represented immersed in the water pool. The 
temperatures T1, T2 and T3 are the temperatures above the core near the pool surface, at mid 
high and close to the core, respectively. The nuclear power is an input data and a nuclear 
power of 100% corresponds to the maximum operation power of 5 MW. 
 
The reactor coolant system is represented in the interface. The primary loop water flows 
through the reactor fuel elements and leaves the pool through a nozzle under the core. Then, 
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the water passes through the decay tank: T4 which is the reactor core outlet temperature and 
T6 is the outlet temperature. B101-A is the primary loop pump. The heat exchanger is also 
represented. T7 is the heat exchanger outlet temperature (primary loop side). FE 01 is the 
primary loop flowmeter. The primary water loop flows out of the heat exchanger and then 
returns to the pool. The secondary loop is partially represented by the secondary side of the 
heat exchanger. 
 
 
 

 
 

Figure 2. Program interface developed to compute the IEA-R1 nuclear reactor model 
variables. 
 
 
 
The pump in the secondary side and the cooling towers are not represented. T8 is the inlet 
temperature of the heat exchanger secondary side, and T9 is its outlet temperature. The 
secondary loop flow is measured by the FE 02 flow meter. The units of temperature and flow 
are the same used in the reactor data acquisition system that is Celsius degrees and gallons 
per minute. 
 
The user can define the time interval by defining the total number of points and the time step 
where the variables are to be calculated by the model for a given operational condition. In 
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this case the program calculates for one point, refreshes the values and restarts the 
computation for the next point. 
 
The user defines the desired variable values for the temperatures, flow rate or nuclear power 
directly in the interface editable dialog box. After entering the variable values, the noise level, 
the fault condition and the number of data points, pressing the button calculate initiates the 
program, which calculates the thermal power according to the mass and energy inventory 
balance equations.  
 
The fault data was generated by adding random values to the signal in normal operation. The 
amplitude of these values was varied to allow a study of the sensitivity of the neural model 
proposed. As the value of the maximum calibration error for special thermocouples is ± 0.5°C 
[13], it had been inserted values ranging from 0 to  0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0, 
respectively,  above to the original signal.  
 

3. SELF-ORGANIZING NEURAL NETWORKS  
 
An artificial neural network model can be defined as a large number of simple interconnected 
processing units used to establish an input/output relationship. The self-organizing system 
considered here belongs to a special class of artificial neural networks (ANN) known as 
feature maps.  
 
A Self Organizing Map (SOM) consists of neurons organized on a regular low-dimensional 
grid (usually one or bi-dimensional). Figure 3 shows a schematic diagram of a bi-dimensional 
grid, frequently used as a discrete map. Each neuron in the grid is fully connected to the 
neurons at the input layer.  
 
 
 

 
 

Figure 3. Bi-dimensional grid of neurons [8] 
 
 
 
From the point of view of the information and how it is visualized, the self-organizing nature 
of the mapping implies that the statistical and nonlinear metric relations among the n-
dimensional input data are converted into simple geometric relations between variables 
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located at the nodes of a bi-dimensional net [10]. In other words, a self-organizing map 
projects the information contained in the primary data space on to a bi-dimensional network, 
without altering significantly the topological relations. It may be regarded as a tool capable of 
creating abstractions. These two attributes - visualization and abstraction of data - are of great 
importance in complex information-analysis applications, such as the problem of fault 
detection of sensors in nuclear reactors. These networks are characterized by competitive 
learning, a process in which the output "neurons", or nodes of the map, compete among 
themselves to become activated while a data-pattern is presented to the inputs. Eventually, 
just one output neuron, or one in each local group, becomes the "winner" of the competition 
and remains active.  
 
The neurons are selectively composed according to the many input patterns or input pattern 
classes in the context of a competitive learning process. The winner neuron location is 
arranged according to the other neurons in a significant way inside the coordinate system. It 
creates a grid for different characteristics of the input patterns. 
 
Let m be the input vector dimension. Let p be any input vector selected from the input space, 
represented as: 
 

T[ , ,..., ]= 1 2 mp p p p                                                                   (1) 

 
The weight vector of which neuron has the same dimension as the input vector. Let the 
weight vector of the neuron j denoted by:  
 

T[ , ,..., ] , 1, 2,...,= =j1 j2 jmw w w j ljW                                                   (2) 

 
where l is the total number of neurons. In order to find the best competition of input and 
weight vectors, we compare the internal product wT

jp for j = 1,2,...,l . Then, the one with the 
best result is selected. Furthermore, this neuron fixes the location where the topologic 
neighborhood of excited neurons is centered. 
 
The best competition criterion, based on the internal product maximization is mathematically 
equivalent of Euclidean distance (between p and wj) minimization. 
 
The neuron i(p) identifies the closest neuron from input vector p, and i(p) can be determined 
applying the condition:   
 

j jargmin - ,= =i(p) j 1,2,...,lp w                                          (3) 

 
This procedure is the essence of the competition process of neurons. The specific neuron i 
which satisfy this condition is the so called winner neuron for the input vector p. We can 
verify this in Eq. (3). 
 
A continuous input space of activation patterns is mapped on an output discrete space by a 
competition process of neurons. Depending on the application, the neural network output can 
be the winner neuron index (i.e., its grid position) or the weight vector near the input vector 
or both [8] 
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A topographical map is formed in the SOM from the input patterns, in which the spatial 
locations (coordinates) of the neurons in the grid reflect intrinsic statistical features within the 
input patters - hence the name self-organizing maps [8]. Each input pattern presented to the 
network is equivalent to a certain region of input space. The position and nature of that region 
usually vary from one input pattern to the next. All neurons in the SOM should be exposed to 
a sufficiently large number of different patterns to ensure that the self-organizing process has 
the chance of evolve correctly and develop a complete feature map. The layer of nodes in a 
SOM is arranged initially in physical positions, in conformity with the topology adopted for 
the map: a hexagonal bi-dimensional grid was used in this work. 
 
One of the main neural network features is the generalization ability, i.e, successfully classify 
the patterns not presented before. Self-organizing maps generalize, placing in the same class, 
similar patterns to the ones previously classified at training procedure. It means that, signal 
identification by a representative data set is a feasible proposal, since the data set has been 
correctly classified by the net. This work focuses on analyzing how this feature can be used 
in the task of detecting faults in sensors. 

 

 
4. RESULTS  

 
In this work tests were performed with the signals from the temperature sensor T4 which is 
the reactor core outlet temperature (Fig. 4). In each test 10 examples were presented to the 
neural model, 5 being the original signal and 5 the fault ones. Each sample consisted of a 
portion of 100 points of the temperature signal. So, in a same test, the neural network 
received one portion of the original signal and the same portion of the signal with faults. It 
was performed by adding random values to the original signal whose amplitude was varied in 
order to produce a study on the sensitivity of the model. The range was varied from 0 to 5. 
Let the constant (C) represents the range of the random values that in this study was 
considered as 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0, respectively. Thus, for example, considering 
one sample, which had a minimum value equal to 39.2 ° C and a maximum equal to 40.4 ° C, 
began to show a value of minimum and maximum temperature of 39.2 ° C and 40.88 ° C, 
respectively, using the constant 0.5. In the case of the constant 5.0, the same portion has now 
a range of 39.2 ° C to 45.32 ° C. The Fig. 4 shows the original and the fault sample cited 
above. 
 
The signals produced with constant 0.5 correspond to the values of fluctuation inherent in the 
process of thermo-hydraulic data found in the reactor operation. The other cases, i.e., 
constants 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0, are considered faults. 
 
Considering the problem of classification into two classes, ie, normal operation and the 
presence of sensor failure, the network architecture was designed with two neurons. To 
develop the computer program was used the Matlab toolbox with the parameters already 
described in the previous section. The other parameters were not changed. Several tests of 
neural network training have been performed and all showed similar results to table 1. This 
table shows the percentages of accuracy of the neural model including the test of 
generalization, where different signals from ones used in training procedure were presented 
to the model. 
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Figure 4: Examples of original and fault signals. 
 
 
 
Through analysis of Table 1, it is possible to see the great sensitivity of the neural model to 
detect faults with amplitudes above 1 ° C. For example, results obtained with constants 0.5 
and 1.0 show a small accuracy percentage during training and generalization processes. This 
fact suggests that for the neural model, very probably, these signals are related with 
fluctuations. For the others cases (1.5 to 5), the neural models were able to represent the 
different simulated faults with a very significant percentage of correct classification, both in 
training and generalizations processes.  
 
 
 

Table 1: Neural model accuracy percentage 
 

 0.5 1.0 1.5 2.0 3.0 4.0 5.0 
training 60% 60% 80% 90% 100% 100% 100% 

generalization 50% 80% 90% 90% 90% 100% 100% 
 
 
 

5. CONCLUSION AND FUTURE WORK 
 

A neural model based on self-organizing map to detect faults in temperature sensors found in 
nuclear reactors has been proposed in this paper. The main idea was to investigate the ability 
of the model to detect faults that may be considered, for example, a not calibrated sensor. 
Data from a theoretical model of the IEA-R1 research reactor of IPEN were used for the tests. 
 
The computational tests performed with various faults levels showed a great percentage of 
model accuracy with respect to the classification of data with and without faults. The results 
therefore demonstrate the feasibility of using this model in nuclear industrial application. 
Future work should include extensive testing with theoretical data and experimental data, 
including data from other sensors in the reactor. 
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