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a b s t r a c t

The I�ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci–
120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and
saturation current were estimated using this new approach. The saturation current was compared with
the results of the conventional method based on Boag–Wilson formula. It was verified that differences
larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that
this new approach is recommended for a more accurate estimate of the saturation current when it is not
possible to measure currents satisfying the condition I=Isat40:95. From the calibration curve the average
value of pairs of carriers created per unit volume was estimated to be equal to η¼ 8:1� 10�3 cm�3 s�1

Bq�1 and from that value it was estimated that � 17 pairs were created on average per second for each
decay of the source.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The description of the saturation characteristics of ionization
chambers operating in current mode is a very old problem in
physics which dates back to 1899, when J.J. Thomson set up the
general differential equation for the transport of ions between
parallel plates [1]. Many authors (Mie [2], Seeliger [3], Boag and
Wilson [4]), including Thomson [1], proposed approximate solu-
tions to this problem, but it was only many years later, in 1975,
that a general solution was found by Rosen and George [5] with
the only additional approximation of neglecting space charges.
This was the first solution that linked the current induced by the
motion of charges, I, with the voltage applied to the ionization
chamber, ΔV , and provided an expression to the spacial distribu-
tion of charges. Nonetheless, the relation between current and
applied voltage was found as an implicit formula of both variables
(i.e. FðI;ΔVÞ ¼ 0), which makes the procedure of data fitting by the
least squares method infeasible. Recently, Chabod [6] found a way
to write ΔV explicitly as a function of I (i.e. ΔV ¼ f ðIÞ). With this
last achievement it is now possible to fit the experimental
current–voltage curve of an ionization chamber using the exact

solution to the Thomson problem as long as some theoretical
assumptions are met. Furthermore, as far as the authors are
concerned, there is still no published experimental work that
applies this new approach in the analysis of current–voltage
curves.

In this work, the experimental current–voltage (I–ΔV) curves
of a well type ionization chamber irradiated with very intense 192Ir
sources with activities ranging from few curies to approximately
one hundred curie were fitted using the analytical formula
proposed by Chabod. This formula can be translated into a fitting
function with only two parameters, which can be related with all
the relevant physical variables of the problem: the saturation
current Isat , the recombination coefficient k, the rate of electron–
ion pair formation per unit volume N, the electron and ion
mobilities μe and μa, respectively, and the electrodes separation
distance d. As previously stressed by Chabod, this fitting procedure
paves the way for many interesting applications, such as the
measurement of the recombination coefficient k, the determina-
tion of the fraction of charges that escape recombination, the
estimate of the ionization chamber efficiency and the extrapola-
tion of the saturation current value using parts of saturation
curves.

A typical problem in the dosimetry of very intense radioactive
sources is the determination of the saturation current required in
calibration procedures of ionization chambers used as dose and
activity meters. In these cases, very high applied voltages are
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needed to achieve the saturation plateau. In practice, such high
voltages can produce sparks and hence should be avoided. In this
case, the saturation current must be extrapolated from the
recombination region of the I–ΔV curve. Old theories addressed
this problem, but they were valid only when I=Isat495%. In many
cases, the measured I–ΔV curve does not satisfy this condition and
only a valid fit of the recombination region would give a good
estimate of the saturation current. As an example of application, it
will be shown how a calibration procedure that uses the tradi-
tional extrapolation approach (e.g. Boag–Wilson formula [4]) to
determine the saturation current differs from a calibration proce-
dure that uses the exact solution. Using this method, it can be
shown that the upper limit of the activity range of ionization
chambers may be extended to higher values.

1.1. The Thomson problem

The Thomson problem is basically the set of differential
equations that describe macroscopically the transport of positive
and negative charge carriers through a gaseous medium subject to
a static electric field. It is assumed that: (i) the diffusion contribu-
tion to the charge velocities is negligible in comparison with the
electric field contribution; (ii) there is no charge multiplication by
electron impact ionization or any other ionization process; (iii)
there is only two types of charge carriers: one of them is negative
and is always an electron (ne designates the electron density); the
other one is positive and is always a singly ionized atom (na
designates the positive ion density); (iv) the charge recombination
occurs by a mechanism whose rate may be written as knane;
(v) the pair creation is caused only by the ionizing radiation and its
rate of formation per unit volume, N, is considered to be constant
all over the active volume of the detector chamber; (vi) the charge
velocities are proportional to the magnitude of the field, the
proportionality constants being the mobilities μe and μa. Consider-
ing that the problem has planar symmetry (cf. Fig. 1) and that all
the above-mentioned hypotheses are valid, plus the proper
boundary conditions, the physical variables ne, na and E can be
coupled through the continuity equations of the positive and
negative carriers and the Poisson equation

�μe
∂
∂z

neEð Þ ¼N�knena

μa
∂
∂z

naEð Þ ¼N�knena

∂
∂z

E¼ e
ε0

ðna�neÞ

neðdÞ ¼ 0; nað0Þ ¼ 0;
R d
0 EðzÞ dz¼ΔV

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where e is the elementary charge and ε0 is the vacuum permittiv-
ity. Although the above set of differential equations is apparently
simple, an analytical solution to it has not been found yet.

Fortunately, the space charge effect may be neglected in many
practical situations (i.e. the component of the field generated by
the charged electrodes prevails over the field generated by the free
carriers), and the set of equations may be simplified to

�μeE
∂
∂z

ne ¼N�knena

μaE
∂
∂z

na ¼N�knena

neðdÞ ¼ 0; nað0Þ ¼ 0; E¼ ΔV
d :

8>>>>><
>>>>>:

ð2Þ

This equation may be solved analytically to give the spacial
distribution of negative and positive charges, as shown by Rosen
and George [5]. The spacial distribution of electrons, for instance,
is given by the following formula, which will be useful later when
computing the space charge effects [6]

neðxÞ ¼
kI�K tan ðK=2eSνeνaÞðxþCÞ� �

2eSkνe
ð3Þ

where S is the electrode surface area, ve ¼ μeE and va ¼ μaE are the
electron and positive ion drift velocities, respectively, and C is an
integration constant which may be evaluated using the boundary
condition neðdÞ ¼ 0 and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kNe2S2νeνa�k2I2

q
: ð4Þ

As it was shown by Chabod [6], the following law links the voltage
ΔV to the current I:

ΔV ¼
ΔV0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�η2ΞðηÞ2

qr
ΞðηÞ when ηZβ;

ΔV0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�η2ΞðηÞ2

qr
ΞðηÞ when ηrβ:

8>>>>>>>><
>>>>>>>>:

ð5Þ

where β¼ 2=π and

η¼ I
Isat

ΔV0 ¼
d2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
kN
μeμa

s
8>>>><
>>>>:

ð6Þ

and the function Ξ : ½0;1�-½0;π� is given by

Ξ
sin ðxÞ

x

� �
¼ x: ð7Þ

No additional assumption is made as (5) may be derived only by
simplification and rearrangement of the expression of the electron
spacial distribution [6]. As it will be shown later, expression (5)
may be set as the model function in the least squares procedure. In
general, only two variables must be assigned as adjustable para-
meters: Isat and ΔV0.

The main goal of this work is to show that Eq. (5) can provide a
good description of a real current–voltage curve as long as some
assumptions are met. It will be shown in the next section that the
experimental conditions are to a good degree of accuracy consis-
tent with the theoretical hypotheses. By no coincidence the
experimental data can be quite accurately fitted using (5); from
the adjusted parameters valuable information may be extracted
which, as mentioned before, relates with physical quantities and
may be useful in many applications.
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Fig. 1. Schematic view of a parallel plate ionization chamber.
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2. Materials and methods

2.1. Experimental setup

The experimental setup and results were presented in the
previous paper [7]. Here only a brief description is given and the
mentioned paper should be consulted for further details. The
ionization chamber (Fig. 2) consisted of 15 inner collecting
electrodes (radius¼6 cm), 15 mm apart, with its active volume of
2070 cm3

filled with pure argon under a pressure of 1 bar. The
detector was connected to a Keithley model 617 Programmable
Electrometer, fully computer-controlled by means of specially
designed software. A high DC voltage power supply (Stanford,
PS300) was applied to the chamber. The detector was irradiated
with sealed 192Ir sources whose activities ranged from 27 GBq
(0.75 Ci) up to 4.1 TBq (110 Ci). These sources were formed by
adding up to 20 192Ir pellets with activities from 296 GBq (8 Ci) up
to 0.63 TBq (17 Ci) each, supplied by NORDION Inc. The correction
factors for self-absorption of photons within the pellets and
sample holders were evaluated by Monte Carlo simulation, as
described in Ref. [7], and then applied to compute the effective
activity seen by the chamber.

2.2. Assumption analysis: diffusion, space-charges, transport
parameters and recombination regime

2.2.1. Diffusion losses
One important assumption of the Thompson problem is that

losses of charges due to diffusion to the walls are negligible. The
validity of this assumption depends on the particular physical
configuration of the chamber and other parameters, such as
electric field and gas temperature.

Rosen and George made an estimate of the diffusion losses on
their hypothetical experimental configuration [5]. They assumed
that diffusion and the charge mobilities could be related by means
of the Einstein relation no matter was the nature of the charge
carriers. This is generally true in the case of heavy ions, but very
often Einstein relation completely fails to describe the transport of
electrons even at low and intermediate values of reduced electric
field (defined as the electric field E divided by the gas density n,
Ered ¼ E=n). In this case, the electron diffusion coefficient and
mobility should be extracted from measured data or calculated
by means of a Boltzmann solver or Monte Carlo algorithm.

The average lifetime τD of particle against diffusion and the
mean transit time τv due to the electric drift are given by the
following expressions:

τD ¼ r2

2Di
ð8Þ

τv ¼
d2

μiΔV
ð9Þ

where r is the electrode radius, i¼ e; a is the index indicating
whether the quantities refer to electrons or positive ions, Di is the
diffusion coefficient and μi is the mobility. Table 1 shows the main
physical parameters used to evaluate τD and τv and their ratios.
Since argon was used as the filling gas, the positive ion mobilities
were considered to be only due to the drift of Arþ ions and were
extracted from the table of values calculated by Dalgarno [8]. Since
only low reduced electric fields are being considered, no important
equilibrium deviation should be present and the diffusion coeffi-
cient may be estimated using Einstein relation. In the electron case,
both electron mobility and radial diffusion were calculated using a
Boltzmann solver based in the standard two term expansion of the
electron energy distribution function in Legendre polynomials [9].

The results are presented in Table 1, showing that diffusion
losses are negligible in the case of positive ions as well as in the
case of electrons. The ratio τv=τD is higher in the electron case,
though not high enough to overcome the drift time. Even in the
case of very low electric field, when ΔV is set to 10 V, the electron
diffusion average time is only 1% of the transit time and it may
only contribute as a second order effect.

It should also be mentioned that the previous analysis is valid if
the assumption of no space-charges effect is also taken into
account. If it was not the case, the ambipolar diffusion coefficient

Fig. 2. Longitudinal section of the cylindrical ionization chamber with parallel
electrodes.

Table 1
Electron (e�) and positive ion (Arþ) diffusion, drift velocities, diffusion and drift average times and their ratios.

ΔV (V) Ered (Td) De (m2/s) ve (m/s) τD (s) τv (s) Ratio

Electron (e�) component
10 2.7�10�3 0.16 1.1�103 1.0�10�3 1.3�10�5 1.4�10�2

100 2.7�10�2 0.75 2.1 �103 2.1�10�3 7.1�10�6 3.4�10�3

1000 2.7�10�1 0.37 3.7�103 4.2�10�3 4.0�10�6 9.7�10�4

Positive ion (Arþ) component
10 2.7�10�3 4.4�10�6 0.18 353 0.48 1.4�10�3

100 2.7�10�2 4.4�10�6 1.8 353 4.8 1.4�10�4

1000 2.7�10�1 4.4�10�6 18 353 48 1.4�10�5
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should be considered instead. In the next subsection, the effect of
space-charges will be discussed.

2.2.2. Space-charges
Another important assumption that should be verified is the

absence of such high densities of space-charges that would
eventually distort the applied field. The criterion for negligible
contribution of space-charges to the electric field is that their
densities should be small compared to the surface-charge on the
electrodes. As shown by Von Engen [10], space-charges have to be
considered only if their density exceeds 1014 m�3. Physically, it
may happen if the electric field is too weak and/or the rate of pair
creation is too high, making it difficult for the field to efficiently
collect the charge carriers and allowing for charge build-up.

The charge density may be estimated by means of the exact
solutions of the Thomson problem. For a given set of physical
parameters, the maximum density may be estimated. As consis-
tency with the assumption of no distortion by space-charges is
required, then the calculated density is expected to be lower than
the above-mentioned limit. In order to estimate the maximum
space-charge density, it is enough to consider only the density of
positive carriers, which are expected to be much higher due to
their lower mobility. At the cathode vicinities the density is
expected to be maximum. It is also enough to consider a max-
imum N value, consistent with the most intense activity source
used in the experiment. This N value was chosen so that the
resulting current at 1000 V was consistent with the measured one,
considering a recombination rate given by the Debye equation
k¼ eμe=ϵ0ϵrel, where ϵ0 is the electric permittivity in vacuum and
ϵrel is the relative permittivity of the medium (we shall discuss
later why this expression was adopted) and all the other para-
meters in the same way as in the previous calculations. Fig. 3
shows the expected density profile of the positive ions at different
applied voltages. In this case, if the applied voltage is lower than
200 V space-charges may distort the applied field. For this reason,
the voltage interval where the model function may be legitimately
adjusted to the experimental data must be carefully chosen. For
instance, experimental results at lower values of ΔV may be
influenced by space-charges. In this case, the corresponding data
points should not be considered in the fitting procedure.

2.2.3. Transport parameters
The assumption that the transport parameters (μa;μe and k) are

constant is very seldom given its deserved attention. It is actually a
very restrictive constraint. If the field is uniform, the solution to
the Thomson problem without space charges still holds, but the

ΔV0 would also depend on ΔV , which makes the problem of
fitting the experimental I–ΔV curve much more difficult.

Rigorously, the variation of these parameters as a function of the
electric field must be studied in order to verify to which extent they
can be considered constant. The applied voltage ranges from 10 V to
1000 V, which corresponds to a reduced electric field interval of
0.027 Td –2.7 Td (p¼1 bar, T¼300 K ). In this range, the mobility of
the ion Arþ may be considered constant [11], but the electronmobility
may vary from values of the order of μe � n¼ 1026 mV�1 s�1 at
lower fields to values near μe � n¼ 1024 mV�1 s�1 at higher fields
[12]. The situation gets worse in the case of the recombination
coefficient, since, as far as we are concerned, no measured value of
this parameter in this range of reduced electric field has ever been
published. Shinsaka et al. [13] measured the recombination constant
in a much lower interval of reduced electric field. They found that this
parameter increases as a function of the reduced electric field until it
reaches a maximumvalue near 1 mTd–k¼ 1:3� 10�5 cm3 s�1 [13] –
and then decreases. In spite of that fact, the experimental data may be
fitted quite satisfactorily using constant parameters, as will be shown
later. This suggests that the ratio μe=k is constant. According to the
Debye model [14] this ratio is constant and equal to ϵ0ϵrel=e.
Rigorously, this model is known to be valid only in solid argon [13].
In gaseous argon, measurements show that the real recombination
coefficients may be two orders of magnitude lower than the value
predicted using the Debye expression [13]. Nonetheless, as it will be
shown later, the measured I�ΔV curves are consistent with such
large recombination coefficients and it does behave as if μe=k was a
constant value. This may be explained if recombination occurs mainly
on clusters of ionized atoms, as will be discussed in the next section.

2.2.4. Recombination regime
The so-called initial recombination occurs when the charge

carriers recombine within the clusters or columns (which are
overlapped clusters) formed in the path of the ionizing radiation.
Within the cluster, the electric field and the mean electric energy
may greatly differ from the volume averaged values. This type of
recombination can be considered in a more general version of the
Thomson formulation as proposed by Chabod [15,16] in which a
spacial and time varying Nðr; tÞ is considered. In the case treated
here, where the gas is submitted to very high activities, the cluster
distribution may be considered uniform.

The following criterion may be used to decide whether or not N
may be considered uniform. The cluster or column may be
described by a characteristic length b, which depends mainly on
the nature of the medium and, to a lesser extent, on the nature and
energy of the ionizing radiation [17]. This length can be estimated
using the classical recombination theory, which yields the value of
b¼ 6� 10�3 cm�3 [17]. If this value is comparable to the mean
distance between ions in the ionization chamber the assumption
of the Thomson problem will be satisfied. The positive charge
density in the chamber, considering the activity range and typical
applied voltages of the experiments, can be estimated to be higher
than ninf ¼ 106 cm�3. In the inferior limit, the mean distance
between the ions is equal to d¼ 10�2 cm, which is comparable
to the cluster size. If the density is higher, this value will be even
lower. This shows that, in the experimental conditions of this
work, the assumption of constant N is valid. Recombination within
the clusters of new born ionized particles is much more efficient
than volume recombination – such as the recombination of ions in
a plasma afterglow – and that justifies the use of the Debye
equation to estimate the recombination coefficient.

2.3. Fitting procedure

In order to fit the theoretical curve to the experimental data a
model function based on Eq. (5) with ΔV0 and Isat as the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

10
13

14

n a 
(m

-3
)

z (cm)

1000 V

200 V

10 V
10

N = 3.5 · 10   16 m  s-3 -1

Fig. 3. Density profile of the positive carriers Arþ for three different applied
voltages and N ¼ 4� 1015 m�3 s�1. The horizontal dashed line indicates the
threshold value above which space charges may distort the applied field.
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adjustable parameters was defined and adjusted by means of a
weighted least squares method. The model function is not linear in
the parameters (see (5)) and the least squares algorithm known as
Gauss–Levenberg–Marquardt was used to search for the best
estimates of the parameters and their variances [18]. The the-
ory determines how ΔV0 relates with other physical constants
(Eq. (6)), but one of them, the average rate of pair creation per unit
volume, N, can not be known a priori without additional experi-
ments, though it is expected to be proportional to the source
activity. A code in MATLABs was written in order to implement
this algorithm and evaluate the model function, which can not be
expressed in terms of elementary functions commonly defined in
almost all computer languages.

The current measurements exhibited random fluctuations,
whose variance was estimated evaluating the standard deviation
based on a statistically significant sample (type A evaluation of
uncertainty). These uncertainties were taken into account in the
least squares procedure. Since the current is the dependent
variable, an iterative procedure was used to project its uncertainty
in the axis of the independent variable. Experimental data also
have errors of type B, from manufacturers specifications, but as
they are believed to influence equally all the measured values,
their estimated contribution was added to the uncertainty of the
Isat value.

3. Results and discussion

Figs. 4–6 show the measured I–ΔV curve for radioactive
sources of different activities, spanning a large interval from
2.3 Ci to 120 Ci. In the condition of very large activity (Fig. 6),
data points with voltages lower than 200 V were excluded due to
the possibility of space charge effects at lower fields. The fitted
curves are also shown in the figures, from which it can be seen
that the experimental data is very well described by the proposed
model. The goodness of the fit was attested after verification that
the root of the reduced chi-squared yielded expected values.
Nevertheless, the residual plot showed that points are not ran-
domly scattered. This may be attributed to the effects which were
not taken into account, such as space charges and the transport
parameters dependence on the field, which however seems to
contribute as second order deviations.

Apart from the least-squares fitting based on the exact solution
of the Thomson problem, experimental data was also fitted using

the Boag–Wilson formula [4], which is the first order approxima-
tion to the exact solution [19] and yields a estimate of the
saturation current that will be referred as Ið0Þsat . In this case, some
care must be taken, since the fitting is expected to yield reliable
values if only points satisfying the condition I=Isat495% are taken
into account. The saturation current was estimated by both
methods and their comparison showed that the relative deviation,
defined as ðIsat� Ið0ÞsatÞ=Isat , was higher than 1% only if activities were
higher than 55 Ci. Even in the case of the most intense radioactive
source studied, with an activity of 120 Ci, the deviation was
only 2%.

50 100 150 200 250
0

200

400

600

800

1000

current (nA)

vo
lta

ge
 (V

)

Fig. 4. Measured I–ΔV characteristic curve with a radioactive source of 2.26 Ci. The
full points correspond to the experimental data and the curves represent the fitted
functions using the exact solution (full line) or the first order approximation (dash-
dotted line). In the last case, only points satisfying the condition I=Isat495% were
included in the fitting procedure. The vertical lines indicate the position of the Isat
parameter estimated using the model based on the exact solution (full line) or the
model based on the first order approximation (dash-dotted line). In the first case,
the resulting saturation current was Isat ¼ 236:7 nA and, in the second case,
Isat ¼ 236:0 nA, yielding a relative deviation, defined as ðIsat� Ið0Þsat Þ=Isat , of 0.3%.
Uncertainties are not shown, since typical values are inferior to the width of the
points used to represent experimental data.

1 2 3 4 5 6

200

400

600

800

1000

0

current (µA)

vo
lta

ge
 (V

)

Fig. 5. Measured I–ΔV characteristic curve with a radioactive source of 55 Ci. The
resulting saturation current was Isat ¼ 5:45 μA, in the case of the estimate based on
the exact solution, and Isat ¼ 5:40 μA in the other case, yielding a relative deviation
of 1%. The legend is the same as in Fig. 4.
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Fig. 6. Measured I–ΔV characteristic curve with a radioactive source of 120 Ci. The
resulting saturation current was Isat ¼ 12:11 μA, in the case of the estimate based on
the exact solution, and Isat ¼ 11:88 μA in the other case, yielding a relative deviation
of 2%. The legend is the same as in Fig. 4.
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Fig. 7. ΔV0 as a function of activity (full points) and curve (full line) that gives the
best fit of the data using the model function ΔV0 ¼ a�

ffiffiffi
A

p
, where A is the activity.
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The other estimated parameter, ΔV0, may be plotted against
the sources activities in order to test the model (Fig. 7). Consider-
ing that the N value is proportional to the activity, this plot should
be consistent with a square root dependence of ΔV0 with activity,
as predicted by the model (Eq. (6)). In other words, this plot should
be consistently described by a model function ΔV0 ¼ a�

ffiffiffi
A

p
,

where A is the activity. As mentioned in Section 2.2.3, the ratio
of the parameters k and μe is supposed to be constant, but
information on the behaviour of the mobility as a function of the
applied field can be useful. Using a Boltzmann code described in
the previous works which is demonstrated to give results in good
agreement with swarm data [9,12], the electron mobility was
computed and plotted as a function of the reduced electron field
(Fig. 8). It can be seen from the graph that the electron mobility
falls sharply in the low field region (10–100 V) but then it starts to
fall much more slowly at higher fields. If the recombination
constant is supposed to be proportional to the mobility, than it
should also exhibit this behaviour.

If the ratio k=μe is supposed to be constant, than it can be
estimated using the fitting parameters ΔV0 and Isat. From Eq. (6)
and the expression relating N and Isat, N¼ Isat=eVeff , the k=μe ratio
may be expressed as

k
μe

¼ 2

d4
μaΔV2

0
eVeff

Isat
ð10Þ

where Veff is the effective detecting volume. Fig. 9 shows the
estimated k=μe ratios as a function of the activity. A horizontal line
corresponding to the value predicted by Debye's theory is also
shown. The experimental estimates were larger than the theore-
tical one, though values have the same order of magnitude. Values
within 20 Ci and 55 Ci are approximately constant and equal to
5�10�8 V m. At higher values of activity, that ratio decreases to
� 4:4� 10�8 V m. This may be interpreted as a dependence of the
k=μe ratio with activity, but the possibility of bias on the para-
meters estimates cannot be excluded, since fewer points were
taken into account in the fitting procedure at higher activities. The
observation of a higher k=μe ratio than the predicted one may be
interpreted as a consequence of the peculiar nature of recombina-
tion within clusters, where new-born carriers are more susceptible
to recombine due to its proximity to partners with opposite
charge.

Another important test of linearity of the chamber is the plot of
the Isat parameter as a function of activity, which is shown in
Fig. 10. Good linearity is observed over the entire interval of
activity, showing that this chamber may be used in dosimetry of
radioactive sources as high as 120 Ci. It also shows that the
deviations from linearity observed in Fig. 7 are probably due to
biased estimates of the parameter ΔV0 or to a real dependence of
the k=μe ratio with activity. As previously mentioned, the devia-
tion between both methods of saturation current estimation is
very small and their difference will be higher than 1% only at very
high values of activity (A455 Ci). If better accuracy is needed for a
particular application, the use of the model function based on the
exact solution is recommended at high values of activity. If no
current under the condition I40:95 � Isat can be measured, than
some care should be taken before using Boag–Wilson formula and
the expression based on the exact solution should be preferred.

The average value of pairs created per unit volume and unit of
activity, ξ, may be estimated from the slope α of the straight line
shown in Fig. 10 through the expression

ξ¼ α
eVeff

: ð11Þ

The resulting value is ξ¼ 3:0� 108 cm�3 s�1 Ci�1. In terms of
units of decays per second (Bq), the result is ξ¼ 8:1�
10�2 cm�3 s�1 Bq�1. If this value is multiplied by the chamber
active volume, one may obtain an estimate of the number of pairs
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Fig. 8. Electron mobility in argon (μe) as a function of the reduced electron field
E/N. The region that corresponds to the interval of applied voltage of 200–1000 V is
highlighted.
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Fig. 9. k=μe ratio as a function of activity. The horizontal dashed line corresponds to
the value from Debye's theory, k=μe � e=ϵ0. Relative uncertainties were estimated to
be �0.3% and are smaller than the point size.
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Fig. 10. Saturation current as a function of source activity. The empty square points
in blue represent the estimates computed by the least square method based on the
exact solution of the Thomson problem and the full curve in blue is the straight line
that best fits these points. The full circle points represent the estimates computed
by the least squares based on the first order approximation to the exact solution
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color in this figure caption, the reader is referred to the web version of this paper.)

M.A. Ridenti et al. / Nuclear Instruments and Methods in Physics Research A 795 (2015) 32–38 37



of charged carriers created per one ionizing event, ξ � V � 17 pairs
per second.

4. Conclusion

In this work the exact solution to the Thomson problem was
applied for the first time in the analysis of experimental I�ΔV of
an ionization chamber. A thorough analysis of the experimental
and physical conditions was carried out in order to verify if the
assumptions of the model were met. All the measured I�ΔV were
successfully fitted using the exact solution and two fitting para-
meters were estimated. One of these parameters was the satura-
tion current, which gives the maximum theoretical current, i.e the
current that would be measured if no recombination took place. It
was verified that this method offers an accurate estimate of the
saturation current and that it should be used in the cases where
the procedure based on Boag–Wilson formula is not valid, e.g.
when it is not possible to measure electric current values that
satisfy the relation I40:95 � Isat . On the other hand, it was also
verified that if the latter condition is satisfied, than both estimates
give equivalent results.

The second parameter, ΔV0, which gives a measure of the
voltage needed to obtain current values close to the saturation
current, was also studied. This parameter depends on the carriers
mobility, the recombination coefficient and the rate of pairs
created by the ionizing radiation per unit volume. It could be
verified that this parameter may be described as a function of the
square root of the activity, as predicted by the theory. Further-
more, the ratio of the recombination coefficient to the electron
mobility was found to be consistently described as a constant
function of the electron field, as in the Debye equation, but with a
higher proportionality constant. Debye's model of recombination
is known to fail in gaseous argon, yielding overestimated values;
nevertheless, it explained why it was always possible to obtain a
good fit within large intervals of electric field when the electron
mobility is known to vary substantially over that interval. This
result was interpreted considering that the dominant recombina-
tion phenomena occurs in the clusters of ions created by the
ionizing radiation.

The saturation current was experimentally shown to be pro-
portional to the activity. From the calibration curve the average
value of pairs created per unit volume and unit of activity, ξ, was
estimated, yielding the value ξ¼ 8:1� 10�3 cm�3 s�1 Bq�1. For
the particular chamber and activity source used during the
experiments, it was estimated that � 17 pairs of carriers were
created on average per second for each decay of the source.

Finally, we note that such a model may found applications
beyond the particular problem treated here. Any physical problem
involving recombination of pair of charges carriers with opposite

signs may be modelled as a Thomson problem. Therefore, the
same technique developed to describe the I�ΔV curve of an
ionization chamber may be eventually applied to liquid and solid-
state detecting devices.
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