

SÍNTESE DE PÓS BIOCERÂMICOS DOS SISTEMAS CaO-MgO-SiO₂ E SiO₂-ZrO₂ POR SOL-GEL E COPRECIPITAÇÃO

SYNTHESIS OF BIOCERAMIC POWDERS OF CaO-MgO-SiO₂ AND SiO₂-ZrO₂ SYSTEMS BY SOL-GEL AND CO-PRECIPITATION

Vanessa G. Rodrigues^{1*}, Gabriel T. Eretides¹, Andrea C. D. Rodas^{1,2}, Sonia R. H. Mello Castanho¹ e Chieko Yamagata¹

1 - Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, SP, Brasil.
2 - Universidade Federal do ABC (UFABC), Santo André, SP, Brasil.
vgr.vanessa2015@gmail.com

RESUMO

Neste trabalho, foram sintetizados pós biocerâmicos dos sistemas CaO-MgO-SiO₂ e SiO₂-ZrO₂ pela combinação das técnicas sol-gel e coprecipitação. Solução Na₂SiO₃, um efluente de alta pureza gerado no processo de fusão alcalina da zirconita, foi empregada como fonte de SiO₂, e soluções clorídricas de Mg e Cl foram utilizadas como precursoras de CaO e MgO. O pó sintetizado de composição molar 43,30% CaO, 10,72% MgO e 45,98% SiO₂ apresentou as fases cristalinas wollastonita e diopsita após tratamento térmico a 550 °C por 4h. Cerâmica obtida desta mesma amostra sinterizada a 1200 °C por 2h apresentou bioatividade a partir de 7 dias de imersão em Simulated Body Fluid (SBF) e teste de citotoxicidade mostrou que a amostra não é citotóxica. Para a síntese de pó cerâmico do sistema SiO₂-ZrO₂ foram utilizadas soluções Na₂SiO₃ e ZrOCl₂ provenientes do processo da fusão alcalina da zirconita como fontes de SiO₂ e ZrO₂. O pó sintetizado de composição molar (SiO₂:ZrO₂) (62:38) foi calcinado a 900°C por 3h e a fase tetragonal foi obtida. Cerâmica obtida após sinterização a 1500 °C por 2h foi submetida a teste de bioatividade e citotoxicidade. O produto não apresentou citotoxicidade e até 21 dias de imersão em SBF não apresentou bioatividade.

Palavras-chave: Biomateriais, SiO2-ZrO2, CaO-MgO-SiO2, sol-gel, coprecipitação

ABSTRACT

In this work, bioceramic powders of CaO-MgO-SiO₂ and SiO₂-ZrO₂ systems were synthetized combining sol-gel and co-precipitation methods. Na₂SiO₃, a high purity waste solution obtained from alkali fusion of zircon sand was used as SiO₂ raw material. Hydrochloric solutions of calcium and magnesium were used as CaO and MgO precursors. The synthetized power of molar composition 43,30% CaO, 10,72% MgO and 45,98% SiO₂ presented wollastonite and diopside crystal phases after thermal treatment at 550 °C for 4h. Ceramic obtained from the sample, sintered at 1200 °C for 2h, showed bioactivity after 7 days soaking in Simulated Body Fluid (SBF) and cytotoxicity test revealed that the material is not cytotoxic. For the synthesis of SiO₂-ZrO₂ powder, Na₂SiO₃ e ZrOCl₂ solutions obtained from alkali fusion of zircon sand were used SiO₂ e ZrO₂ raw materials. The synthetized powder of molar composition (SiO₂:ZrO₂) (62:38) calcined at 900 °C for 3h resulted tetragonal phase.

Tests of bioactivity and cytotoxicity were performed after sintering at 1500 °C for 2h. After 21 days in soaking SBF the product did not presented bioactivity. The product is not cytotoxic.

Keywords: Biomaterials, SiO₂-ZrO₂, CaO-MgO-SiO₂, sol-gel, co-precipitation

INTRODUÇÃO

As cerâmicas e vitrocerâmicas à base de silicatos têm sido empregadas com sucesso na área biomédica. Isso é devido ao silício que atua como sitio de nucleação nas etapas iniciais de deposição de hidroxiapatita (Ca₁₀(PO₄)₆(OH)₂), processo este que indica a bioatividade do material. A hidroxiapatita compõe fase inorgânica de ossos e dentes e é essencial na remodelação óssea ^[1]. O silicato de cálcio (CaSiO₃) exibe excelente propriedade bioativa por apresentar deposição de hidroxiapatita superior a outros silicatos em *Simulated Body Fluid* (SBF) ^[2]. O silicato de cálcio também propicia elevada proliferação e diferenciação celular, entretanto a velocidade de dissolução iônica de Ca²⁺ ocorre muito rapidamente e isso induz fragilidade estrutural do implante ^[2] e altera o pH local, que pode levar a morte celular ^[3]. A dopagem do silicato de cálcio com íons de magnésio (Mg²⁺) é interessante, pois limita a velocidade de dissolução dos íons de cálcio e, portanto, garante estabilidade mecânica ao sistema ^[3]. Além disso, o magnésio é essencial no organismo e atua na calcificação óssea ^[11]. A dopagem de silicatos de cálcio com magnésio resulta no sistema CaO-MgO-SiO₂ que é polifásico e pode apresentar fases bioativas tais como akermanita (Ca₂MgSi₂O₇), diopsita (CaMgSi₂O₆) e wollastonita (CaSiO₃) ^[3].

A zircônia (ZrO₂) é uma cerâmica policristalina bionerte e a fase tetragonal se destaca na área biomédica devido as excelentes propriedades mecânicas. Essa fase pode ser estabilizada pela adição de dopantes como Y₂O₃, CaO, MgO e Ce₂O₃. Sendo que a dopada com Y₂O₃ é a mais utilizada para a aplicação biomédica, entretanto, a vida útil desta biocerâmica pode ser limitada devido à interação da zircônia com os grupos hidroxilas do meio (Zr-O-Zr) que consiste na transformação de grãos da fase tetragonal em monoclínica ^[4]. A sílica tem sido estudada como alternativa aos dopantes usuais, pois o sistema SiO₂-ZrO₂ forma ligações do tipo Si-Zr-Si que limitam a zircônia livre, impedindo a clivagem com os hidróxidos e a transformação das fases cristalinas ^[5]. Além disso, a sílica pode proporcionar bioatividade ao sistema ^[12].

A síntese de pós destas biocerâmicas de CaO-MgO-SiO₂ e SiO₂-ZrO₂ pode ser realizada por diferentes técnicas. O método sol-gel consiste na mistura de alcoóxidos metálicos através de hidrólise (sol) seguida de condensação (gel) e é recomendado para a síntese de pós cerâmicos porque otimiza a performance biológica dos materiais ^[6]. O método da coprecipitação permite a mistura de dois ou mais componentes, em solução aquosa com o uso de agente precipitante ^[7]. Essa técnica é indicada para a obtenção de produtos com boas propriedades mecânicas e garante a homogeneidade a nível molecular ^[8].

No processo de fusão alcalina da zirconita adotado no IPEN é gerada uma solução efluente de Na₂SiO₃ que é altamente puro ^[9]. Essa solução foi utilizada como fonte de sílica nos dois sistemas desenvolvidos neste trabalho. A matéria prima de ZrO₂ utilizada neste estudo também é proveniente do processo de purificação do zircônio desse mesmo processo de abertura do minério. Foram sintetizados pós do sistema CaO-MgO-SiO₂ e do sistema SiO₂-ZrO₂ pela combinação das técnicas sol-gel e coprecipitação. A composição de CaO-MgO-SiO₂ foi aquela que apresenta boas propriedades mecânicas e bioatividade ^[10] e a composição de SiO₂-ZrO₂ foi definida em estudo anterior no qual obteve-se a fase tetragonal ^[11]. A cerâmica obtida do sistema CaO-MgO-SiO₂ sinterizada a 1200 °C apresentou bioatividade a partir de 7 dias em SBF e teste de citotoxicidade mostrou que o material não é citotóxico. A

cerâmica do sistema SiO₂-ZrO₂ obtida após sinterização a 1550 °C por 2h não exibiu bioatividade e não é citotóxica.

MATERIAIS E MÉTODOS

Foi sintetizada amostra de CaO-MgO-SiO₂, denominada CMS-E. Como fonte de SiO₂ foi utilizado efluente Na₂SiO₃ gerado no processo de fusão alcalina da zirconita ^[9], do qual obtém se SiO₂ com 99,51% de pureza. Como precursores de cálcio e magnésio foram utilizados óxidos de cálcio (Vetec, P.A.) e óxido de magnésio (Vetec, P.A.) que foram dissolvidos em HCl (Casa Americana, P.A.) obtendo-se soluções clorídricas de cálcio e magnésio. O pó obtido foi calcinado em forno tipo mufla a 550 °C por 4h e sinterizado em forno tubular (Lindberg) a 1200 °C por 2 horas.

Para amostra de SiO₂-ZrO₂, denominada SZ, foram empregados o efluente Na₂SiO₃ como fonte de sílica e ZrClO₂ como fonte de zircônia (98,5% de pureza) ^[9]. O pó de SZ foi calcinado em mufla a 900 °C por 3h e sinterizado em forno tubular (Lindberg) a 1500 °C por 2h. Os pós de CMS-E e SZ foram caracterizados por difração de raios-X (DRX) e microscopia eletrônica de varredura (MEV). As amostras sinterizadas foram imersas em solução de SBF para teste de bioatividade ^[12] e verificadas por espectroscopia no infravermelho com transformada de Fourier (FTIR) e MEV. Teste de citotoxicidade foi efetuado com base na NBR ISO 10993-12:2012.

Para a síntese de CMS-E utilizou solução Na₂SiO₃ como fonte de sílica A solução Na₂SiO₃ foi misturada a HCl, sob constante agitação em temperatura ambiente e posteriormente à esta mistura foram adicionadas soluções clorídricas de cálcio e magnésio. Os hidróxidos de magnésio e de cálcio foram precipitados até pH 11 com solução de NaOH (6M) obtida a partir da dissolução de hidróxido de sódio (Alphatec, P.A.) em água destilada. Em seguida, o produto foi filtrado com água destilada até confirmação de cloreto negativo por teste de AgNO₃ (Química Moderna, P.A.) e lavado com etanol (Casa Americana, P.A.). O produto foi seco em estufa a 80 °C por 1 dia e o pó obtido foi desagregado e calcinado em forno tipo mufla a 550 °C por 4h. Após calcinação, o pó foi colocado em matriz cilíndrica de diâmetro de10 mm para compactação e submetido à pressão uniaxial de 98 MPa. O compacto foi sinterizado em forno tubular (Lindberg) a 1200 °C por 2h com taxa de aquecimento de 5 °C por min⁻¹. A Fig. 1 apresenta o fluxograma das etapas de síntese de CMS-E.

Fig. 1 – Fluxograma das etapas de síntese de CMS-E.

A solução de ZrClO₂ foi usada como precursor de ZrO₂. Solução de Na₂SiO₃ foi misturada em HCl, por agitação mecânica em temperatura ambiente, para formação de gel de sílica. Ao gel de sílica formado após 48 horas, foi adicionada solução precursora de ZrO₂ por agitação mecânica. Essa mistura foi colocada em banho de ultrassom por 60 min para homogeneização e em seguida, solução de NH₄OH (Alphatec, P.A.) foi adicionada para a precipitação de hidróxido de zircônio. Esse gel de sílica com o precipitado de Zr(OH)₄ foi

filtrado com água destilada até remoção do cloreto, confirmado com teste de AgNO₃ e lavado com etanol. O produto resultante foi seco em estufa por 24h a 80 °C. O pó amorfo foi desagregado e calcinado em mufla a 900°C por 3h, este pó foi colocado em matriz cilíndrica de diâmetro de 10 mm para compactação e prensado a 98 MPa. A amostra foi sinterizada em forno tubular (Lindberg) a 1500°C por 2h. A Fig. 2 apresenta o fluxograma das etapas de síntese de SZ.

Fig. 2 – Fluxograma das etapas de síntese de SZ.

RESULTADOS E DISCUSSÃO

A Fig. 3 apresenta o difratograma do pó CMS-E calcinado a 550 °C por 4h. Observase a presença das fases cristalinas wollastonita (PDF Nº 76-186) e diopsita (PDF Nº 83-1817). A Fig. 4 apresenta o difratograma da amostra CMS-E sinterizada a 1200 °C por 2h. Observase que após sinterização as fases wollastonita (PDF Nº 76-186) e diopsita (PDF Nº 83-1817) foram preservadas, porém na Fig. 3 a fase wollastonita é maior, enquanto na sinterização a diopsita é a fase majoritária. As fases cristalinas encontradas nas amostras sinterizadas foram obtidas em temperatura inferior em comparação a estudos anteriores ^[10, 13, 14].

Fig. 3 – Difratograma de DRX do pó de CMS-E Fig. 4 – Difratograma de DRX da amostra CMScalcinado a 550 °C por 4h.

E sinterizada a 1200 °C por 2h.

A Fig. 5 exibe a micrografia obtida por MEV da superfície das amostras de CMS sinterizadas submetidas à imersão em SBF em 0 dias (a), 7 dias (b), 14 dias (c) e 21 dias (d).

Fig. 5 - Micrografia de MEV da amostras de CMS-E sinterizadas em imersão em SBF por 0 dias (a), após 7 dias (b), 14 dias (c) e 21 dias (d).

A Fig. 5 (a) mostra que um corpo cerâmico poroso de superfície irregular. A Fig. 5 (b) não apresenta porosidade e mostra a superfície com placas e aglomerados de partículas com morfologia arredondada estão depositados nas mesmas. Na Fig. 5 (c), após 14 dias de imersão, há ainda presença de aglomerados esféricos na superfície, porém em menor quantidade em relação a Fig. 5 (b). É possível observar que nesta ocorreu um aumento na área das placas. A Fig. 5 (d) mostra que após 21 dias, há recobrimento de toda a superfície sendo praticamente difícil de identificar as placas, ou seja, a superfície recoberta não apresenta fissuras como observados na Fig. 5 (a) e Fig, 5 (b), porém, as partículas esféricas estão presentes. As esferas obtidas na superfície do material são características de hidroxiapatita e provavelmente esse recobrimento deve-se a interação dos íons de cálcio da cerâmica com os íons da solução de SBF ^[10]. Para identificar essa camada na superfície, as amostras foram submetidas à análise de FTIR.

A Fig. 6 apresenta a análise de FTIR da amostra CMS-E após imersão em SBF por 7, 14 e 21 dias. Observa-se pico na banda 1041 correspondente ao grupo PO_4^{3-} que indica a deposição de apatita na superfície da biocerâmica, e observa-se sendo de intensidade maior na amostra de 14 dias de imersão em SBF. Destaca-se também a banda 1830 que pode indicar a vibração de grupos fosfatos e carbonatos. Portanto, o resultado confirma a presença de hidroxiapatita, o que indica a bioatividade da cerâmica.

Fig. 6 – Espectros de FTIR da amostra CMS-E após imersão em SBF por 7, 14 e 21 dias.

Resultado do teste de citotoxicidade revela que a_amostra CMS-E não é citotóxica para a célula testada (fibroblasto de camundongo), pois a sobrevivência das células está acima da viabilidade celular >70% requerida de acordo com a NBR ISO 10993-12:2012.

A Fig. 7 exibe o difratograma de DRX da amostra SZ calcinada a 900 °C por 3h. Observa-se a fase tetragonal, (ficha ICDD 01-079-1765- t-ZrO₂), sem a presença de sílica ou outras fases, indicando que a sílica estabilizou a zircônia. Em comparação com estudo realizado por Vasanthavel ^[15], neste trabalho a fase tetragonal foi obtida em menor tempo de calcinação.

Fig. 7 - Difratograma de DRX do pó SZ calcinada a 900 °C por 3h.

A Fig. 8 apresenta micrografia obtida por MEV da superfície da amostra SZ sinterizada (a) e submetida em SBF por 14 dias (b) e 21 dias (c).

Fig. 8 - Micrografia obtida por MEV da superfície da amostra SZ amostra SZ sinterizada (a) e submetida em SBF por 14 dias (b) e 21 dias (c).

A Fig. 8 (a) mostra que após sinterização a 1500 °C por 2h a amostra SZ exibiu partículas depositadas na superfície, aglomeradas com aspecto de sinterizadas. Na Fig. 8 (b) são apresentadas partículas semelhantes às partículas da Fig. 8 (a), porém em maior quantidade. A Fig. 8 (c) mostra que após 21 dias obtiveram-se partículas esféricas levemente espaçadas e maiores em relação às das Fig. 8 (a) e Fig. 8 (b).

A Fig. 9 exibe os espectros de FTIR da amostra SZ após imersão em SBF por 7 e 21 dias. Destacam-se os picos os picos nas bandas 854 e 3432. A banda 854 é atribuída a grupos de Si-OH e a banda 3432 corresponde a presença de OH⁻. A ausência das bandas na faixa 1030-1090, referentes ao grupo PO_4^{3-} que são característicos de hidroxiapatita indica que até 21 dias não ocorreu a sua deposição na superfície da amostra. Vasanthavel ^[15] afirma que esse sistema apresenta bioatividade após imersão em SBF por 36 dias, portanto, sugere-se que nos próximos estudos seja realizado maior tempo de imersão para observação da hidroxiapatita na superfície da amostra.

Fig. 9 – Espectro de FTIR da amostra SZ após imersão em SBF após 7 e 21 dias.

Os resultados do teste de citotoxicidade indicam que a amostra SZ não é citotóxica para linhagem celular 3T3-NIH, pois a sobrevivência das células está acima da viabilidade celular >70% requerida de acordo com a norma NBR ISO 10993-12:2012.

CONCLUSÕES

Foi apresentado um método inovador para a síntese de pós de CaO-MgO-SiO₂ e SiO₂-ZrO₂ através da combinação dos métodos sol-gel e coprecipitação. Obteve-se cerâmica CaO-MgO-SiO₂ com fases cristalinas que indicam a propriedade bioativa e o material não apresentou citotoxicidade para linhagem celular 3T3-NIH. A zircônia tetragonal foi estabilizada com a sílica em tempo de tratamento térmico de 3h inferior ao observado em literatura que é de 6h. Até 21 dias não foi possível verificar indicativo de bioatividade deste sistema em SBF, portanto deve se realizar nova imersão para averiguar a atividade iônica em maior tempo. Esta biocerâmica também não apresentou citotoxicidade para linhagem celular 3T3-NIH. Desta forma, ambas podem ser consideradas para uso biomédico.

AGRADECIMENTOS

À Dra. Chieko Yamagata pela orientação, à Dra. Sônia Castanho pelo apoio. Ao IPEN pela estrutura fornecida e seus respectivos centros CCTM e CEBIO e à CNEN e Projeto FAPESP nº 2018/10114-7 pelo auxílio financeiro.

REFERÊNCIAS

[1] RAHAMAN, M. N. Bioactive ceramics and glasses for tissue engineering. In: MA, P. X.; BOCCACCINI, A. Tissue Engineering Using Ceramics and Polymers: Second Edition, Elsevier Inc, 2014, p. 67-114.

[2] LIN, K *et al.* Study of the mechanical property and in vitro biocompatibility of CaSiO₃ ceramics. Ceram. Int., v. 31, n. 2, p. 323–326, 2005.

[3] MOHAMMADI, H. *et al.* Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. J. Ceram. Sci. Tech., v. 5, n. 1, p. 1–12, 2014.

[4] CHEVALIER, J.; GREMILLARD, L. Zirconia ceramics. In: KOKUBO, T. Bioceramics and their clinnical applications. Woodhead Publishing Limited, p. 243-265, 2008.

[5] CATAURO, M *et al.* Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO₂/ZrO₂ materials. Ceram. Int., p. 1-25, 2020.

[6] OTITOJU, T.A *et al.* Advanced ceramic components: Materials, fabrication, and applications. J. Ind. Eng. Chem., v. 85, p. 34–65, 2020.

[7] PRECIOUS-AYANWALE, A *et al.* Review of the synthesis, characterization and application of zirconia mixed metal oxide nanoparticles. Int. J. Res. Granthaalayah, v. 6, n. 8, p. 136–145, 2018.

[8] IWATA, N. Y *et al.* Sintering behavior and apatite formation of diopside prepared by coprecipitation process. Colloids and Surfaces B: Biointerfaces, v. 34, n. 4, p. 239–245, 2004.

[9] YAMAGATA, C. *et al.* High purity zirconia and silica powders via wet process: Alkali fusion of zircon sand. In: Materials Science Forum, Suiça, 2008, p. 1279–1284, 2008.

[10] CHEN, X *et al.* Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO₂ system. J. Biomed. Mater. Res. B Appl. Biomater., v. 93, n. 1, p. 194–202, 2010.

[11] ERETIDES, G. T.; YAMAGATA, C. Síntese e caracterização de pós cerâmicos de ZrO_2 dopados com Y_2O_3 e SiO₂ para aplicações nucleares e tecnológicas. XXV Seminário Anual - PIBIC, p. 112-113, 2019.

[12] KOKUBO, T; TAKADAMA, H. Simulated Body Fluid (SBF) as a standard tool to test the bioactivity of implants. In: BÄUERLEIN, E. Handbook of Biomineralization: Biological aspects and structure formation, v. 3, p. 97–109, 2008.

[13] HUANG, M *et al.* Dissolution behavior of CaO-MgO-SiO₂-based bioceramic powders in simulated physiological environments. Ceram. Int., v. 43, n. 13, p. 9583–9592, 2017.

[14] ZHANG, M *et al.* Different effects of a novel CaO-MgO-SiO₂-based multiphase glass-ceramic on cell behaviors of normal and cancer cells in vitro. Coll Surf B: Biointerf, v. 116, p. 1–8, 2014.

[15] VASANTHAVEL, S.; KUMAR, P.; KANNAN, S. Quantitative analysis on the influence of SiO₂ content on the phase behavior of ZrO₂. J. Am. Ceram. Soc., v. 97, n. 2, p. 635–642, 2014.