Consistent regional fluxes of CHsub(4) and COsub(2) inferred from GOSAT proxy XCHsub(4)XCOsub(2) retrievals, 2010-2014

Carregando...
Imagem de Miniatura
Data
2017
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Atmospheric Chemistry and Physics
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on previously reported theory that takes advantage that: 1) these ratios are less prone to systematic error than either the full physics data products or the proxy CH4 data products; and 2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA, and with a range of independent data including in particular new profile measurements (0-7 km) over the Amazon basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-topeak seasonal amplitudes of CO2 than either a priori or the in situ inversion, particularly over the tropics and the southern extra-tropics. Over the northern extra-tropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40% increase over tropical South America and tropical Asia and smaller decrease over Eurasia and temperate South America. We find no evidence from GOSAT that tropical South American CH4 fluxes were dramatically affected by the two large-scale Amazon droughts. However, we find that GOSAT data are consistent with double seasonal peaks in fluxes that are reproduced over the five years we studied: a small peak in January to April and a larger peak 60 in June to October, which is likely due to superimposed emissions from different geographical regions.

Como referenciar
FENG, LIANG; PALMER, PAUL I.; BÖSCH, HARTMUT; PARKER, ROBERT J.; WEBB, ALEX J.; CORREIA, CAIO S.C.; DEUTSCHER, NICHOLAS M.; DOMINGUES, LUCAS G.; FEIST, DIETRICH G.; GATTI, LUCIANA V.; GLOOR, EMANUEL; HASE, FRANK; KIVI, RIGEL; LIU, YI; MILLER, JOHN B.; MORINO, ISAMU; SUSSMANN, RALF; STRONG, KIMBERLY; UCHINO, OSAMU; WANG, JING; ZAHN, ANDREAS. Consistent regional fluxes of CHsub(4) and COsub(2) inferred from GOSAT proxy XCHsub(4)XCOsub(2) retrievals, 2010-2014. Atmospheric Chemistry and Physics, v. 17, n. 7, p. 4781-4797, 2017. DOI: 10.5194/acp-17-4781-2017. Disponível em: http://repositorio.ipen.br/handle/123456789/26757. Acesso em: 18 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento
Coleções