Comparison between gold nanoparticles synthesized by radiolysis and by EGCG-driven gold reduction

Carregando...
Imagem de Miniatura
Data
2020
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Radiation Physics and Chemistry
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Radiolytic synthesis and phytochemical-driven gold reduction for the generation of nanoparticles are successful examples of Green Chemistry applied for nanomaterials. The present work compares these two green approaches focusing on hydrodynamic size, stability over time, optical properties and toxicity in NIH 3T3 (ATCC® CRL- 1658™) cells and Danio rerio (Zebra Fish). The radiolytic synthesis was performed by mixing 1 mM NaAuCl4; polyvinyl pyrrolidone 0.5%, AgNO3 6×10−5 M, propan-2-ol 0.2 M and acetone 0.06 M, followed by irradiation at 15 kGy (5 kGy h−1, 60Co source). The EGCG-functionalized nanoparticles were synthesized by mixing 1.6 mM of Au with 0.8 mM of EGCG in phosphate buffer (10 mM) for 2 h. Both methods yield the formation of gold nanoparticles featuring plasmon resonance bands at 520–530 nm, polydispersity above 0.3 was relevant only for the radiolytic protocol. Regarding stability over time, after 30 days, the nanoparticles synthesized radiolytically presented no relevant size changes, while some aggregation was observed for the EGCG-particles. The same nanoparticles demonstrated a lack of stability in high ionic strength medium. Slight toxicity was observed for the EGCG-nanoparticles in Danio rerio, with an IC50 calculated as 40.49%, while no IC50 was established within the concentration range of radiolysis-AuNPs used in this study. In conclusion, both green methods generated nanoparticles with good control of size and optical properties, especially via reduction by EGCG. However, the stability and toxicity results were found to be more promising for the radiolytically synthesized gold nanoparticles.

Como referenciar
FREITAS, LUCAS F. de; CRUZ, CASSIA P.C. da; CAVALCANTE, ADRIANA K.; BATISTA, JORGE G. dos S.; VARCA, GUSTAVO H.C.; MATHOR, MONICA B.; LUGAO, ADEMAR B. Comparison between gold nanoparticles synthesized by radiolysis and by EGCG-driven gold reduction. Radiation Physics and Chemistry, v. 174, p. 1-9, 2020. DOI: 10.1016/j.radphyschem.2020.108959. Disponível em: http://repositorio.ipen.br/handle/123456789/31427. Acesso em: 25 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento
Coleções