Nondestructive evaluation of fused filament fabrication 3D printed structures using optical coherence tomography

Carregando...
Imagem de Miniatura
Data
2020
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Rapid Prototyping Journal
ODS
ODS 9
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose – The quality of components under fused filament fabrication (FFF) is related to the correct filament spacing and bonding of successively deposited layers and is evaluated mainly by scanning electron microscopy (SEM). However, it is a destructive technique and real-time evaluation is not possible. Optical coherence tomography (OCT), on the other hand, is an optical method that acquires cross-sectional images non-invasively and in real-time. Therefore, this paper aims to propose and validate the use of OCT as a non-destructive quality evaluation tool for FFF using Polylactic Acid (PLA) filaments. Design/methodology/approach – PLA three-dimensional (3D) printed samples were made in a variety of nozzle temperatures and mesh spacing. These samples were fractured in liquid nitrogen and inspected using SEM (as a gold standard) to evaluate dimensions and morphology, then the samples were evaluated by OCT in the same area, allowing the results confrontation. Findings – Our results indicate a good correlation between OCT and SEM for the dimensional assessment of layers. When the filament was extruded in lower temperatures, the OCT images presented sharply defined interfaces between layers, in contrary to higher nozzle temperatures, denoting better fusion between them. However, higher extruding temperatures are incurred in greater deviations from nominal dimensions of the mesh. Finally, we demonstrate the advantage of a full 3D tomographic reconstruction to inspect within a FFF sample, which enabled the inspection of “hidden” information, not visible on a single cross-sectional cut. Originality/value – This paper proposes OCT as a novel and nondestructive evaluation tool for FFF.

Como referenciar
DE PRETTO, LUCAS R.; AMARAL, MARCELO M.; FREITAS, ANDERSON Z. de; RAELE, MARCUS P. Nondestructive evaluation of fused filament fabrication 3D printed structures using optical coherence tomography. Rapid Prototyping Journal, v. 26, n. 10, p. 1853-1860, 2020. DOI: 10.1108/RPJ-12-2019-0314. Disponível em: http://200.136.52.105/handle/123456789/31661. Acesso em: 24 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento
Coleções