Microstructural evolution of the refractory WCuNi metallic alloy

Carregando...
Imagem de Miniatura
Data
2021
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Metals and Materials International
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Science and technology of materials are widely interested in the development of new alloys involving tungsten due to its large applicability to the domain of nuclear material transportation. Tungsten is a refractory material and it has many applications in the nuclear industry due to its mechanical properties and excellent cross-section for thermal neutrons, being widely used for shielding of high-energy radiation. Some of the main elements added to tungsten forming alloys are Nb, Cr, Cu, Fe, Ni, Mo, Co, Sn, Ti, and Ta, which are responsible for modifications of the physical and chemical properties of the resulting alloy, interfering on the attenuation of gamma radiation. The main goal of this paper is to present a refractory alloy based on tungsten with embedded infiltrating elements like copper (Cu) and nickel (Ni) and characterize the microstructural evolution of different sintering process during its formation. Such a refractory alloy is submitted to the following characterization process: X-rays diffractometry, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy, and energy dispersive spectroscopy. The diffractometry exhibit typical standard results for the precursor powders: W, Cu, and Ni demonstrating high degrees of purity accordingly to the crystallographic determined parameters. The TGA for the powder W demonstrated thermal stability until 360 ºC, after an increase of mass due to the process of oxidation. The DSC analyze present two endothermal processes at temperatures 350 °C and 450 °C. The microstructural evolution of WCuNi samples presents the absence of oxidation, homogeneous morphology and stability of the binary phase α–β (W and CuNi respectively) for different sintering. These results shall be taken into consideration for future works, particularly on the study of shielding and gamma radiation attenuation.

Como referenciar
SOUZA, ARMANDO C.; ROSSI, JESUALDO L.; TSAKIROPOULOS, PANOS; ARISTONE, FLAVIO. Microstructural evolution of the refractory WCuNi metallic alloy. Metals and Materials International, v. 27, n. 11, p. 4820-4830, 2021. DOI: 10.1007/s12540-020-00648-2. Disponível em: http://repositorio.ipen.br/handle/123456789/32404. Acesso em: 24 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento
Coleções