Mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO2, CaO, and MgO additions

Carregando...
Imagem de Miniatura
Data
2022
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Journal of Biomedical Materials Research Part B: Applied Biomaterials
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Silicon nitride ceramics with SiO2, CaO, and MgO as sintering aids were investigated in view of biomedical applications. In the current study, samples with four different compositions were pressureless sintered at 1750°C for 1 h under a nitrogen atmosphere. The samples were evaluated concerning densification, microstructure, mechanical properties, and in vitro bioactivity. Microstructures with elongated β-Si3N4 grains dispersed in an intergranular phase and with densities from 78.77 to 97.14% of the theoretical density were obtained. Higher contents of SiO2 resulted in the best densification and mechanical properties. Besides, replacements of CaO by MgO in the initial compositions affected Young's modulus and in vitro bioactivity. Considering the samples with relative density higher than 94.14%, those with lower values of Young's modulus had lower SiO2/MgO ratios. After immersion in SBF (Simulated Body Fluid), the samples with high porosity and/or partial replacements of CaO by MgO had their surfaces coated with a layer rich in calcium and phosphorus, morphologically similar to hydroxyapatite. Hence, producing silicon nitride ceramics with the potential to be used as orthopedic implants must consider ideal amounts of additives. In this article, the best combination of mechanical properties and mineralization capability was reached by the composition with low content of MgO, and high content of SiO2 and CaO.

Como referenciar
SONA FILHO, CELSO R.; CARVALHO, FLAVIO M. de S.; GUEDES-SILVA, CECILIA C. Mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO2, CaO, and MgO additions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, v. 110, n. 3, p. 507-516, 2022. DOI: 10.1002/jbm.b.34930. Disponível em: http://repositorio.ipen.br/handle/123456789/32669. Acesso em: 20 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento