OPTICAL PROPERTIES OF Pb⁺(1) CENTERS IN BaliF₃ CRYSTALS*

L Prado, N D. Vieira Jr, S.L Baldochi and S P Morato

Instituto de Pesquisas Energéticas e Nucleares, C P 11049, CEP. 05422-970, São Paulo, Brazil

and

JY. Gesland

U M.C. Université du Maine, 72017, le Mans Cedex, France

(Received 16 September 1992; in revised form 18 February 1993 by R. Fieschi)

A new perovskite crystal, $BaLiF_3$ doped with lead was subjected to e⁻ irradiation A metal related color center involving the Pb²⁺ ion emitting at 880 nm was identified. The excitation spectrum at 70 K shows that there are three bands peaking at 744, 487 and 305 nm (also present in the absorption spectrum) that are responsible for this emission. These bands, either in relative transition magnitudes and energy positions, are the expected ones for the lead perturbed color center, Pb⁺(1), the isoelectronic specie of the laser active Tl⁰(1) center.

1. INTRODUCTION

WITH THE DISCOVERY of metal perturbed color centers as laser active media, a new class of lasers has been found. The prototype of such a laser medium is the KCl: Tl⁰(1) center [1]. It consists of a substitutional metal ion, that has a deeper attractive potential for the electron with respect to the crystal ions. Besides, it is one of the nearest neighbors of an F center. The F electron is shared partially with the metal ion, in such a way that the center is a neutral Tl atom perturbed by an adjacent vacancy. Since then, a great effort has been applied to develop similar laser active media, either using Tl as a dopant or elements of the isoelectronic family Besides In and Ga, other isoelectronic centers involving double ionized ions based on Pb (like the $Pb^+(1)$ center), in other hosts, were developed. In the latter case, the doubly ionized 10n (Pb²⁺) is isoelectronic to the Tl^+ ion, both presenting an outer closed s shell. When incorporating the extra electron, it will occupy a p level, (6p), for the both cases. Therefore, the model assumed of a pelectron outside a positive core is applied either for the $Pb^+(1)$ or the $Tl^0(1)$ center. In particular, the perovskite KMgF₃ crystal doped with Pb²⁺ when irradiated and with subsequent formation of the $Pb^+(1)$ center showed tunable laser action in the near infrared [2] These results showed that the $Pb^+(1)$

centers are more stable than the $Tl^{0}(1)$ centers. A troublesome fading in the lasing process was, however, observed. This seems to be explained by the fact that in KMgF₃ crystals doped with Pb²⁺, the impurity substitutes for the K^+ ion which requires an additional charge compensating defect, probably a cation vacancy. By irradiating the crystals, complexes of Pb²⁺-F centers are created and the F center electron is partially shared with the Pb^{2+} ion due to the large ionization energy of the Pb^+ ion (15 eV). This complex (Pb⁺-anion vacancy) is the laser active $Pb^{+}(1)$ center The fading process could be due to the removal of the anion cation vacancy pair through local heating by the pumping light [3]. In this case, the problem can be solved by suitable choice of a host matrix where the Pb^{2+} substitutes for a divalent ion Studies have been performed in alkaline-earth fluorides doped with Pb²⁺ in which the authors succeeded in creating the $Pb^{+}(1)$ center with a strong emission [4, 5] but laser action was not obtained due to an excited state absorption process [6]

In this paper we present the first fundamental spectroscopic results of lead center defects obtained by irradiating crystals of BaL_1F_3 . Pb at liquid nitrogen temperature with electrons of 15 MeV This crystal is an inverted perovskite [7] which has the same structure of the KMgF₃ crystal and nearly the same lattice parameter with the advantage that it can easily incorporate the Pb²⁺ in a divalent cation position because of the similarity between the Ba²⁺ and Pb²⁺ radii. Its structure can be seen in Fig 1 The

^{*}Work supported by a grant from FAPESP, No. 90/3712-8

Fig. 1 Crystalline structure of BaL_1F_3 The dashed larger circles represent Ba ion site.

crystal has cubic symmetry where both cations occupy sites of local symmetry O_h but with different coordination numbers n For the Ba ions n = 12 and for Li ions n = 6 The fluorine ions occupy the center of the cube face and have D_{4h} symmetry The Pb⁺(1) center consists of a Pb⁺ ion which replaces a Ba ion near an anion vacancy so that the center is along the $\langle 1 1 0 \rangle$ direction and has a local symmetry C_{2v} With the results of optical measurements of absorption, emission and excitation spectra we have been able to identify the Pb⁺(1) centers in this new matrix.

2 EXPERIMENTAL

2.1. Sample preparation and experimental arrangements

The BaL₁F₃ Pb crystals used in this experiment were grown [7] by using the Czochralski growth method and were doped with 0.14 mol% of lead as indicated by atomic spectrographic emission analysis of the grown crystals. Samples 1.5 mm thickness were sealed in aluminium foil and irradiated by electrons of 1.5 MeV (30 up to 130 MRad irradiation range) at liquid nitrogen temperature This was accomplished by placing the crystals in a copper boat floating in a liquid nitrogen pool under the electron beam. After the irradiation, the crystals were stored at liquid nitrogen temperature to avoid centers degradation.

The absorption spectra were performed using a double beam Cary 17D spectrophotometer. For the spectroscopic measurements at low temperatures, a helium closed circuit refrigerator cryostat was employed

The schematics of the emission and excitation apparatus is shown in Fig. 2 The light source is a 300 W xenon, high pressure lamp, focused into a 0.25 m long Ebert monochromator (Jarrel-Ash Div) and is modulated by a mechanical chopper. The detection system is composed by a second monochromator (Kratos, model GM 252), a 780 nm long pass color glass filter to avoid light scattering, an S-1

Fig. 2. Schematic diagram of the emission and excitation apparatus. The modulated monochromatic light from the source impinges on the sample, and the luminescence is analyzed at 90° with respect to the incident light. The emission light passes through a monochromator and is detected by a photomultiplier.

photomultiplier and a lock-in amplifier The results were recorded in an X-t chart recorder.

2 2 Experimental results

Figure 3 and 4 summarizes the experimental results. Figure 3(a) shows the absorption spectrum measured at 10 K of a sample exposed to 127 MRad (irradiation temperature 77 K). The band gap for the BaL1F3 crystal is nearly 9eV The absorption bands related to Pb²⁺ ions occur at wavelengths shorter than 210 nm (5.90 eV), therefore, the measured absorption spectrum for longer wavelengths is due only to other irradiation induced color centers. After the irradiation, the spectrum shows essentially two regions of absorptions bands: in the long wavelength region there are two weak overlapping bands [with peaks at 735 nm and 660 nm, shown in the insert of Fig 3(a)] and an isolated band at 475 nm In the ultraviolet region, strong absorptions occur at 304 and 210 nm. These UV absorptions originate from the composition of several peaks, due not only to Pb^{2+} ions (A band) or association of Pb^{2+} with radiation induced color centers, but also due to F and F aggregate centers. In a first approximation, the band peaking at 210 nm (5.90 eV) is composed by, at least, two bands. From the literature [8] it is known only that the F center absorbs at 280 nm but, on the basis of the similarity with LiF and KMgF₃ crystals, it is expected that the F aggregate centers might absorb in the UV region.

By exciting the crystal at 730 nm a near infrared

Fig. 3. (a) Optical absorption spectrum of the irradiated (127 MRad) $BaL_1F_3 \cdot Pb$ crystal Note the change in the vertical scales showing that the strength of the transition in the near infrared and red are much smaller (b) Excitation spectrum with the monitoring wavelength set at 880 nm. There are three excitation bands that correspond to the absorption spectrum of 3(a)

emission at 880 nm (1.41 eV) is observed, as shown in Fig. 4. This emission is asymmetric and could be fitted by two Gaussian curves in the same way as it was done for the optical emission of Pb^{2+} ions in $KMgF_3$ [9] There are other emission bands weaker than that peaking at the 880 nm which will not be discussed here In order to determine the absorption responsible for this emission, the excitation spectrum was measured at 17 K, the emission being monitored at 880 nm The sample in this case was irradiated with 32 MRad This excitation spectrum [Fig 3(b)] was corrected considering the detector, excitation source and grating responses Three excitation bands peaking at 744, 487 and 305 nm are observed, which can be identified with the 735, 476 and 305 nm absorption bands The minor mismatch with the excitation peaks is probably due to normalization errors and wavelength calibration, since there are no other significant bands in this region. The excitation spectrum was also taken by monitoring the emission

Fig. 4. Emission spectrum of the irradiated BaL_1F_3 . Pb (32 MRad). The excitation light wavelength is 730 nm. Temperature is 17 K.

at a different wavelength (960 nm) within the emission band. The spectrum obtained is essentially the same, showing that if the emission is really described by two Gaussian components, both should be originated by the same defect.

Both emission and excitation measurements were taken for different temperatures between 17 and 300 K A summary of the results obtained for the band peak energies and respective half maximum fullwidths for the temperatures of 17, 70 and 300 K are reported in Table 1. It is also shown the results available from the literature for the $Pb^+(1)$ in KMgF₃ crystals for the sake of comparison [10]

Figure 5 shows the temperature dependence of the half width of the emission band (5a) and the lowest energy excitation band (5b). The spread of the data values for high temperatures suggest a possible interference by other defects like Pb dimers or other aggregate centers. Although the emission band is slightly asymmetric, the width obeys the well known law $W(T) = W(0) [\operatorname{coth} (\hbar w/2kT)]^{1/2}$ for a Gaussian curve. From the experimental results and the above expression we can infer the phonon energy that broadens the bands They are $\hbar w_e = 139 \pm 14 \,\mathrm{cm}^{-1}$ for the excited state and $\hbar w_g = 120 \pm 7 \,\mathrm{cm}^{-1}$ for the ground state. These energies are close to the lowest transverse optical phonon mode of BaL₁F₃ [14] $(142 \text{ cm})^{-1}$, corresponding to the local perturbed phonon mode The difference in the ground state local phonon mode and the excited state local phonon mode is also expected, since the electronic wavefunctions are quite different for both states. Therefore we can evaluate an average value of number of phonons involved in the optical cycle from the mean energy phonon value and from the

Table 1 Transition energies of the three excitation bands A_3 , A_2 and A_1 and the emission band E_e for the centers $Pb^+(1)$ and $Tl^0(1)$ The halfwidths δv_1 and δv_e and crystal field parameters γ_a and γ_e for the lowest energy excitation and emission bands respectively are also given. The energies are given in eV and temperatures in K degrees

Crystal	T	<i>A</i> ₃	<i>A</i> ₂	A_1	δu_1	γ_a	E _e	$\delta \nu_e$	γ_e
BaLiF ₃ .Pb	17	4 05	2 54	1.67	0.176	0.52	1.41	0 097	0.26
	70	4 05	2.54	1.68	0 210		1 40	0 103	
	300	4.00	2.54	1.60	0 362		1 38	0.187	
KMgF ₃ Pb*	77	4.35	2 99	1.94	0 244	0 72	1.40	0.137	0.36
KCl:TI**	77	2.23	1 72	1.19	0 169	0.40	0 82	0 083	0.20

*From [10].

**From [11]

experimental Stokes shift. We obtained S nearly 9 This value of the S factor explains why we could not observe zero phonon lines in the low temperature range investigated (10 K).

3. DISCUSSION

First of all, it should be mentioned that pure BaL₁F₃ crystals, irradiated under the same conditions as used for the Pb doped crystals, did not show the 880 nm band emission described above This fact suggests that we are dealing with a center related to Pb ions. In order to investigate if the defect studied above corresponds really to the $Pb^+(1)$ center we have examined the spectroscopic data fit to the theoretical model of crystal field developed by Mollenauer and collaborators [11] for the $Tl^{0}(1)$ center in KCl. Both, Pb⁺ and Tl⁰ ions have the same electronic structure, $[Xe]4f^{14}5d^{10}6s^26p^1$, with the ground and first-excited states of the single pelectron, ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$, respectively, separated by a large spin-orbit splitting We are dealing thus with the same problem, namely one p electron perturbed by the field of a nearest anion vacancy This perturbing field has even and odd parity terms. As we can see schematically in the insert of Fig. 6, the even parity term of the perturbing field splits the states of the 6p manifold. Also, the odd crystal field component of the perturbed center, mixes in higherlying even-parity states in the P manifold This mixing breaks the parity of the P derived wavefunctions and allows for moderate transitions probabilities (oscillator strength in the order of few percent) between the P derived levels (ϕ, ψ, χ) Figure 6 shows also the theoretical, normalized energy levels separations as a function of the normalized crystal field parameter. The energies are normalized to the spinorbit splitting of the center in the crystal environment. Also, it is shown in the insert, the diagram of the energy levels that gives rise to the level assignment.

The crystal field model permits us to describe the energies for the three lower levels as a function of the crystal field strength (Fig. 6) whose

Fig 5. (a) and (b), shows the behavior of the fullwidth (W) at half maximum of the emission (a) and of the lowest energy excitation (b) bands of the Pb⁺(1) center in BaLiF₃, as a function of the inverse of the temperature. The vertical scale is the arcoth $[W(T)/W(0)]^2$

Fig. 6 Dependence of the normalized transition energy (E/Δ) , on the crystal field normalized parameter, $\alpha(\gamma/\Delta)$ for the A_1 and A_2 transition of Pb⁺(1) center The arrows show the fitting for the various isoelectronic centers The insert shows the energy diagram plot for a free Pb⁺ or Tl⁰ (left side) and for the color center [Tl⁰(1) or Pb⁺(1)] in the presence of crystal field.

transition energies can be written, according to Fockele et al. [12], as

$$A_1 = E(\psi - \phi) = \Delta [(1 - \alpha_a)^2 + 8\alpha_a^2]^{1/2},$$

$$A_2 = E(\chi - \phi) = (\Delta/2)[1 + 3\alpha_a] + A_1/2,$$

and the emission energy as.

$$E_e = E(\phi - \psi) = \Delta[(1 - \alpha_e)^2 + 8\alpha_e^2]^{1/2},$$

where Δ means an effective spin-orbit splitting, γ is the crystal field parameter and $\alpha = \gamma/\Delta$ The subscripts *a* and *e* correspond respectively to lowest energy excitation and emission bands. ϕ , ψ , and χ indicate energy levels as shown in the insert of Fig. 6

Ahlers *et al* [12], supported by the model of Mollenauer *et al.* [11], proposed that γ is proportional to r^{-3} where *r* is the (impurity ion) – (anion vacancy) distance. This is valid for radially confined wavefunctions Therefore, we can infer an approximate value for the crystal field parameter of the BaLiF₃ (0.55 eV). Moreover, by a self-consistent criterion we can fit the values of the observed transition energies, A_1 and A_2 1.67 and 2.54 eV respectively and the result of this procedure is shown in Fig 6 The best fitting of the observed transition energies A_1 and A_2 to the above expressions gives $\alpha_a = 0.36$, $\Delta = 1.45 \pm 0.09$ eV and $\gamma_a =$

 $0.52 \pm 0.05 \,\text{eV}$ For this α_a the value of the reduced spin-orbit splitting Δ is, correspondingly, 1.45 eV On the other hand, it is known that the spin-orbit splitting of the free Pb⁺ ion is 1.746 eV, therefore, Δ is reduced by 17% when the ion is incorporated in the BaL1F₃ crystals. Recalculating the values of the absorption bands peaks positions for these two determined parameters γ_a and Δ we obtain $A_1 = 1.77 \,\mathrm{eV}$ and $A_2 = 2.38 \,\mathrm{eV}$, which fit rather well to the experimental values (within 10%). Using the same criterion for the emission transition energy we obtain $\alpha_e = 0.18 \text{ eV}$ for $\Delta = 1.45 \text{ eV}$. Table 1 summarizes the results obtained for the $Pb^+(1)$ center in BaLiF₃ and for other isoelectronic centers. The crystal field parameter, γ , for the Pb⁺(1) center is larger than that for Tl⁰(1). This is essentially due to the smaller distance between the cation and the anion vacancy in BaLiF₃ than in the KCl (the distance cation-anion for BaLiF₃ is r = 2.83Å, whereas for the KCl it is r = 3.15Å). According to the cubic dependence of the crystal field (r^{-3}) on the cation-(anion vacancy) distance, we calculate the expected value of γ for BaLiF₃.Pb⁺(1) that is 0.55. The obtained γ value from the experimental data is 0 52 (see Table 1) Therefore, the effective charge, in the BaL_1F_3 . $Pb^+(1)$ crystal, is smaller than in KCl (that is approximately unity) Since the effective charge is not the same and the crystal field parameter is smaller in BaL_1F_3 , we expect a smaller effective charge for the BaL₁ F_3 Pb⁺(1). In fact, another evidence for this reduction is that the cation-(anion vacancy) distance for the BaL₁F₃ crystal is r = 2.83 Å whereas for the $KMgF_3$ crystal it is r = 2.82 Å, i.e. essentially the same Therefore, the difference in the crystal field parameter [0.72 for KMgF₃ and 0.52 for $BaL_1F_3: Pb^+(1)$ should again be partially due to a smaller effective charge in $BaLiF_3$ Pb⁺(1) The value obtained for the effective spin-orbit splitting for BaL₁F₃ · Pb⁺(1), Δ , is 1.45 eV, this reduction (17%) is due to a small delocalization of the electron towards the vacancy

Another important feature is the identification of three absorption bands $\phi \Rightarrow \psi(A_1)$, $\phi \Rightarrow \chi(A_2)$ and $\phi \Rightarrow \Sigma(A_3)$ (see insert of Fig. 6). The last A_3 is analogous to the free ion (Pb⁺), $P \Rightarrow S$ transition, therefore it is strongly allowed. Therefore, it is expected that the oscillator strength of the $\phi \Rightarrow \Sigma$ is larger than that of $\phi \Rightarrow \psi$ and $\phi \Rightarrow \chi$ transitions. This is exactly what is observed, as can be seen in Fig. 3(a) and 3(b).

4 CONCLUSION

We were able to obtain, for the first time, lead related color centers in a new matrix, BaLiF₃ crystals, by irradiation with 1 5 MeV electrons $Pb^+(1)$ color centers were identified and studied by means of optical absorption, emission and excitation spectroscopy In particular, there are three excitation bands corresponding to a unique emission band (peaking at 880 nm), that shows essentially the characteristics of the Tl⁰(1) center Furthermore, the relative strengths of the excitation transitions (744, 487 and 305 nm) show a good fit to the model developed for the Tl⁰(1) center. The crystal field parameter and the spin-orbit energy splitting are also in good agreement with the expected values for this new host.

REFERENCES

- 1 W. Gellerman, F Luty & C.R Pollock, Opt Commun. 39, 391 (1981)
- 2. G. Hörsch & H.J. Paus, Opt. Commun 60, 69 (1986)
- 3. W. Flassak, A. Goth, G. Hörsch & H.J. Paus, IEEE J Quantum Electron 24(6), 1070 (1988).
- 4. M Fockele, F. Lohse, J M Spaeth & R H. Bartram, J Phys. Condens. Matter 1, 13 (1989)

- 5. F Lohse, M. Fockele & J M. Spaeth, Cryst. Latt. Def. and Amorph. Mat. 16, 275 (1987).
- 6 J.M Spaeth, R.H Bartram, M. Rac & M. Fockele, J. Phys Condens Matter 3, 5013 (1991).
- 7. S L Baldochi & J.Y. Gesland, *Mat Res. Bull* 27, 891 (1992).
- 8 N. Kristianpoller & B. Trieman, *Rad. Effects* 72, 201 (1983)
- 9 M. Missori & A. Scacco, Solid State Commun. 76, 5 (1990)
- 10 M Fockele, F. Lohse & J.M. Spaeth, *Israel. J. Chem.* 29, 13 (1989)
- 11. LF Mollenauer, ND Vieira Jr & L Szeto, Phys. Rev. **B27**, 5332 (1983).
- M. Fockele, F.J Ahlers, F. Lohse, J.M. Spaeth & R H. Bartram, J. Phys C Solid State Phys. 18, 1963 (1985).
- 13 F J Ahlers, F. Lohse, Th. Hangleiter, J.M. Spaeth & R.H. Bartram, J Phys. C Solid State Phys. 17, 4877 (1984).
- A. Boumriche, P. Simon, M. Rousseau, JY Gesland & F Gervais, J Phys Condens Matter 1, 5613 (1989).