DETERMINAÇÃO DE UMIDADE EM REAGENTES LIOFILIZADOS POR ENSAIO NÃO DESTRUTIVO

Bianca Cunha Guimarães de Abreu e Margareth Mie Nakamura Matsuda Instituto de Pesquisas Energéticas e Nucleares - IPEN

INTRODUÇÃO

^{99m}Tc é utilizado em medicina nuclear para marcação de Reagentes Liofilizados (RL), a presença de SnCl₂ torna a determinação do teor de umidade um procedimento fundamental para garantir a qualidade, pois a decomposição por hidrólise e oxidação do agente redutor pode diminuir o rendimento de marcação com ^{99m}Tc [1].

O método de Karl Fisher é comumente utilizado para determinação de água e alguns instrumentos, como o Vapor Pro, foram projetados para atender a algumas especificidades da indústria farmacêutica [2, 3].

OBJETIVO

O objetivo deste trabalho é determinar o teor de umidade dos RL DEXTRAN, DISIDA, DMSA, DTPA, EC, ECD, FITATO, GHA, MAA, MDP, MIBI, PIRO, SAH e Sn Col por ensaio não destrutivo e comparar os resultados obtidos por método coulométrico.

METODOLOGIA

Foi utilizado equipamento Computrac Vapor Pro RX, da Arizona Instrument. Os frascos foram lavados, mantidos secos em dessecador, e antes da análise de RL, a umidade residual do frasco foi retirada. A amostra foi pesada e colocada dentro do frasco e este foi inserido na câmara de aquecimento. A temperatura de aquecimento (T) (100, 140, 170 e 200 ° C) e a taxa final de perda de umidade (TF) (0,01, 0,1 e 0,5 μ g s⁻¹) foram avaliadas para os RL DEXTRAN 500, DISIDA, DMSA, DTPA, EC, ECD, FITATO, MDP, MIBI, Sn (análises em triplicata). Para DEXTRAN 70, GHA, MAA, PIRO e SAH, as

análises foram realizadas em duplicata com TF de $0.1 \, \mu g \, s^{-1}$, variando-se a temperatura.

Os RL DISIDA, DMSA, DTPA, EC, ECD, FITATO, MDP e MIBI foram também analisados com o titulador coulométrico automático Seradyn Photovolt modelo Aquatest 2010, em que amostra foi pesada e inserida na cela do equipamento.

RESULTADOS

Cada equipamento possui uma faixa adequada de massa de água a ser determinada. Com base neste parâmetro, foi avaliada a massa de produto e as condições de análise para obter resultados reprodutíveis e confiáveis. A Tabela 1 mostra as especificações dos equipamentos usados neste trabalho.

TABELA 1 - Especificações dos Equipamentos Vapor Pro e Aquatest.

Equipamento	Faixa de Aplicação (mg H₂O)	Precisão
Vapor Pro	0,5 – 1	± 50 @g para 1000 @g
Aquatest	0,01 – 100	< 10% para > 0,1%

Com base nestas informações e considerandose as especificidades de cada RL, foi definida a faixa de massa de produto a ser utilizada nas análises (11-18 mg para DISIDA, DTPA, EC, ECD, FITATO, MAA, MIBI e SAH; 1-8 mg para MDP, PIRO e Sn Col; 75-100 mg para DEXTRAN 500 e GHA; 20-43 mg para DMSA e 53-61 mg para DEXTRAN 70). I. Determinação de Umidade em RL com Equipamento Vapor Pro.

A umidade inicial residual no frasco vazio foi reduzida para cerca de 0,02 mg após duas corridas. A curva analítica para determinação de água foi linear no intervalo 0,5-3,5 mg sendo representada pela equação y = 228,4 + 1070,9 x $(r^2 = 0.998; n = 6)$. A temperatura de análise dos RL foi 140 ºC. Os resultados mais reprodutíveis (desvio padrão < 1,2%) foram com TF = 0,1 µg s⁻¹. Em análises com GHA a 200 °C ocorreu expansão de volume do RL. DTPA e MAA em T > 170 ºC apresentou coloração escura, indicando que pode ter ocorrido decomposição. MAA apresentou grande variação de % H₂O com a temperatura (4,3-11,2

Os valores de % H₂O para os RL encontram-se descritos na Tabela 2.

TABELA 2 - Valores de % H_2O em Reagentes Liofilizados (T = 140 ${}^{\circ}C$ e TF = 0,1 ${}^{\circ}\mu$ g s⁻¹).

RL	% H₂O
DEXTRAN 70	4,67 ± 0,42
DEXTRAN 500	3,90 ± 0,66
DISIDA	7,13 ± 0,41
DMSA	6,19 ± 2,14
DTPA	9,73 ± 0,56
EC	7,99 ± 0,98
ECD	1,60 ± 0,13
FITATO	9,06 ± 0,52
GHA	6,66 ± 0,21
MAA	7,11 ± 3,50
MDP	7,37 ± 0,44
MIBI	3,70 ± 0,61
PIRO	5,62 ± 0,51
SAH	6,56 ± 0,33
Sn Col	6,32 ± 0,63

II. Determinação de Umidade em RL com Equipamento Aquatest

A curva analítica para determinação de água foi linear no intervalo 0,5-4 mg, sendo representada pela equação:

$$y = 194 + 967,3 x (r^2 = 0.998; n = 8)$$

Os resultados de % H_2O obtidos com o equipamento Aquatest encontram-se na Tabela 3.

TABELA 3 - Resultados de % H₂O em Reagentes Liofilizados.

RL	% H₂O
DISIDA	6,91 ± 0,52
DMSA	3,21 ± 0,96
DTPA	12,61 ± 1,12
EC	9,18 ± 1,58
ECD	0,97 ± 0,41
FITATO	5,45 ± 0,73
MDP	5,67 ± 0,83
MIBI	4,92 ± 1,13

A diferença nos valores de porcentagem de água entre os dois métodos para os RL DISIDA, ECD e MIBI foi <1%. Para EC, FITATO e MDP foi entre 1 e 2%. DTPA e DMSA apresentaram diferença >3%, o que pode ser atribuído à interferência destes compostos, que possuem grupos ácidos na reação com os reagentes de Karl Fisher.

CONCLUSÕES

O método não destrutivo se mostrou eficiente na determinação da porcentagem de água nos LR utilizados em Medicina Nuclear.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] G. B. Saha, Fundamentals of Nuclear Pharmacy 46-171, 5. Ed., Springer Publish Company, New York, United States of America, 2004.
- [2] M. A. Rouf, K. J. Farrington, Appl. Radiat. Isot. 11: 992 (1987).
- [3] Arizona Instrument Computrac Vapor Pro Rx Moisture Analyzer User Manual, Arizona Instrument LLC, 2003.

APOIO FINANCEIRO AO PROJETO

CNPq