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 i  g  h  l  i  g  h  t  s

A  fuzzy  classification  system  for  two-
phase flow  instability  patterns  is
developed.
Flow  patterns  are  classified  based  on
images  of  natural  circulation  experi-
ments.
Fuzzy  inference  is  optimized  to use
single  grayscale  profiles  as  input.
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a  b  s  t  r  a  c  t

Two-phase  flow  on  natural  circulation  phenomenon  has been  an  important  theme  on  recent  studies
related  to  nuclear  reactor  designs.  The  accuracy  of  heat  transfer  estimation  has  been  improved  with
new models  that  require  precise  prediction  of  pattern  transitions  of flow.  In this  work,  visualization
of  natural  circulation  cycles  is  used  to study  two-phase  flow  patterns  associated  with  phase  transients
and  static  instabilities  of  flow.  A  Fuzzy  Flow-type  Classification  System  (FFCS)  was  developed  to  classify
these  patterns  based  only  on  image  extracted  features.  Image  acquisition  and  temperature  measure-
ments  were  simultaneously  done.  Experiments  in natural  circulation  facility  were  adjusted  to generate

a series  of characteristic  two-phase  flow  instability  periodic  cycles.  The  facility  is composed  of  a  loop
of glass  tubes,  a heat  source  using  electrical  heaters,  a  cold  source  using  a  helicoidal  heat  exchanger,  a
visualization  section  and  thermocouples  positioned  over  different  loop  sections.  The  instability  cyclic
period  is  estimated  based  on  temperature  measurements  associated  with  the  detection  of  a  flow  transi-
tion  image  pattern.  FFCS  shows  good  results  provided  that  adequate  image  acquisition  parameters  and

nts  ar
pre-processing  adjustme

. Introduction

The new generation of nuclear power plant projects has

ncluded natural circulation as one of the main heat removal mech-
nisms for “loss of pump power” or “plant shutdown” accidents
Nayak and Sinha, 2007). In this regime, fluid circulation is mainly
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caused by a driving force which arises from density differences
due to temperature gradient. Natural circulation circuits have been
used on chemical processes refrigeration, electronics, solar energy
heating, nuclear energy and many other applications.

Many test facilities were built in order to study low pressure
natural circulation in conditions related with reactors design, oper-
ational problems and their associated changes in flow patterns and
hydro-dynamics. Boiling-water reactors development was  one of
the main causes for this study to happen. Two-phase flow patterns

have been studied for many decades, and their related instabilities
have been object of special attention recently. Many different insta-
bility categories have been established during this period both due
to natural and forced two-phase circulation.
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Natural circulation two-phase flow instabilities have been
ccepted to be classified as established by Delhaye in 1981 (Delhaye
t al., 1981; Andrade et al., 2000; Nayak and Vijayan, 2008). These
nstabilities are usually divided into Type-I and Type-II groups,

here the first group refers to gravity effects and was  very impor-
ant on SBWR (Simplified Boiling-Water Reactors) development
He and Edwards, 2008). Classical static phenomenon explains
nown bumping, geysering and chugging oscillations, which may
ouple to produce a repetitive behavior that not always is periodic.
he term “chugging” is usually used to denominate the character-
stic periodic expulsion of coolant from a flow channel (Bouré et al.,
973).

Recent improvements on image processing and acquisition
echnology made possible the discovery of new features and the
etection of two-phase flow patterns through acquired digital

mages. Most of these studies have been looking for online detec-
ion and classification of flow patterns using digital processing
esources (Crivelaro et al., 2002). As pressure drop from each phase
s fundamentally dependent on void fraction values, flow param-
ters estimates and phase transitions characteristics are being
ursued by many groups. Estimation of these features has been
ttained throughout the use of different artificial intelligence tech-
iques.

A relation between flow type transitions and time-frequency
ovariances of void fraction signals was proposed by Seleghim and
ervieu (1998) and neural networks have been used to detect
hase transitions based on signal changes by Crivelaro et al.
2002). Improved image processing techniques (Hsieh et al., 1997;
hamoun et al., 1999; Maurus et al., 2002) and qualitative image
nalysis (Kirouac et al., 1999) have often been associated with other
ow-measurement experimental techniques. Hot-wire anemome-
er (Zenit et al., 2001), conductivity probe (Yeoh et al., 2002),
lectrical-resistance-tomography (Dong et al., 2006), multiple-
lectrode impedance (He and Edwards, 2008), particle velocimetry
Fujiwara et al., 2004) and optical treatments (Ursenbacher et al.,
004; Wojtan et al., 2005) are other associated techniques used.
he use of artificial intelligence techniques on these applications,
an still be improved quantitatively and qualitatively in order to
stablish new database handling capabilities and to develop new
ow-types detection methods. Precise prediction of flow-type tran-
itions, void fraction, dry angles and other parameters are required

y new two-phase flow heat transfer evaluation (Kattan et al.,
998a,b,c; Thome and El Hajal, 2003). Most of precedent work has
een done on generic typical Steiner type flow map  (Jassim et al.,
007).
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Fig. 1. Fuzzy Flow-type Classification System (FFCS) overall scheme.

This work proposes an automatic flow pattern recognition algo-
rithm developed to detect chugging instability flow types observed
on a natural circulation experimental loop, based on digital images
acquired through a visualization section. Instability phase denom-
inations are based on classical Bouré classification (Bouré et al.,
1973). FFCS was created in order to demonstrate the importance
and feasibility of implementing simple, fast (online) flow type iden-
tification systems using Fuzzy Inference Logic. FFCS was optimized
to use as few fuzzy rules as possible. The rules were constructed

based only on two main image extracted features. A previous work
has described this system development initial steps (de Mesquita
et al., 2010).
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ig. 3. Schematics of natural circulation loop facility with: (a) electrical heating
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. Experimental setup and methods

.1. Overall classification system

A representation of FFCS methodology is shown in Fig. 1, where
 sequence of steps (database formation, image processing and
eature extraction) precede Fuzzy Inference System (FIS) module.
eature extraction module is shown in Fig. 2, where feature extrac-
ion steps are represented. The two selected features are: mean of
rayscale level profile (mean(GP) or MGP) and standard deviation
f grayscale profile peak sizes (std(peak size) or STDPS), which will
e further explained on this text.

.2. Natural circulation glass loop

The Natural Circulation Facility (NCF) (Fig. 3) installed at
nstituto de Pesquisas Enérgeticas e Nucleares, IPEN/CNEN, is an exper-
mental circuit designed to provide thermal hydraulic data related
o one and two phase flow under natural circulation conditions.

NCF is a rectangular assembly (with 2600 mm height and
50 mm width) of borosilicate glass tubes that are temperature
esistant, with 38.1 mm internal diameter and 4.42 mm wall-
hickness each. The loop has a heated section (Fig. 3(a)), also made
f glass tube with 76.2 mm internal diameter and 880 mm length.
his section has two Ni–Cr alloy electric heaters (H1 and H2) in
 form and stainless steel cladded. Electric power in H1 can be
djusted in a 0–100% range by an autotransformer. The heaters are
omposed of electrical resistors that can deliver up to 8000 W.  The
2 heater operates at constant power. The cooling section (Fig. 3(c))
ng and Design 250 (2012) 592– 599

consists of a heat exchanger/condenser, also made of glass, with
two internal spiral coils where tap water flows. Cooling water at
ambient temperature is pumped from a 2 m3 reservoir to the heat
exchanger/condenser with the desired cooling flow rate being mea-
sured by two  rotameters. Circuit has an expansion tank (Fig. 3(d))
opened to atmosphere in order to accommodate fluid level changes
due to the temperature and void fraction changes. This tank is con-
nected to the circuit through a flexible tube at its lower region in
order to prevent steam entrance (Andrade et al., 2000). Approxi-
mately 12 l of demineralized water are used to fill the circuit.

Fifteen 1.5 mm K-type (Chromel-Alumel) ungrounded thermo-
couples are distributed along the circuit to measure fluid and
ambient temperatures. Three K-type thermocouples with exposed
junction are attached to the glass tube wall at the circuit hot leg.
Two  Validyne differential pressure transducers are used to measure
the relative pressure at the heaters outlet and the water level in
the expansion tank. All instruments were calibrated in laboratory.
A data acquisition system assembled with SCXI series equipment
from National Instruments is used to acquire sensor data. Visual-
ization is possible in all regions of the circuit, and a visualization
section with a CCD (charged-couple device) camera was adjusted
with backlight illumination (Fig. 3(b)). Temperature measurements
and image acquisition were concomitantly done in order to char-
acterize phase transition patterns and correlate them with the
periodic static instability (chugging) measured cyclic period.

Chugging instability cycles are usually divided in three differ-
ent phases called incubation, expulsion and refill periods (Delhaye
et al., 1981; Andrade et al., 2000; Nayak and Vijayan, 2008). They are
considered relaxation instabilities characterized by periodic expul-
sion of coolant from the channel. The experiments were adjusted
to sustain a cyclic and periodic behavior of this instability.

The incubation phase has no net flow at the loop when vapor
bubbles grow in number and size and vapor remains at upper
horizontal leg. At this phase, the circuit pressure grows slightly
expulsing the liquid from the cold leg to the expansion tank
(Fig. 3(d)). The slug flow is replaced by churn flow at the called
expulsion phase, when liquid entrained by vapor is expulsed from
hot leg. The expansion tank level arises to its maximum value. The
final phase is characterized by the inversion of flow rate direc-
tion caused by the difference of hydrostatic head, replacing the hot
water at the heater by cold water coming from coil cooler. The vapor
production at the heater decreases and the horizontal part of the
hot leg is filled with water again, beginning the overall cycle once
more (Andrade et al., 2000). This periodic flow oscillation behavior
can be observed thoroughly in this facility due its glass-made tubes
transparency.

2.3. Image acquisition setup

Image acquisition was done simultaneously with temperature
measurements using high resolution digital camera with 250 �s
shutter speed. Lens mount were configured to enable macro focus
and image acquisition was done at one frame per second rate dur-
ing different cycles of 1000–1500 s long. Typical acquisition modes
generated 3888 × 2592 pixels frames at longitudinal tube section
with a resolution of approximately 0.03 mm/pixel. Backlight illu-
mination technique showed to be the optimal condition to obtain
image borders best definition. Images were acquired at an approx-
imate 120 mm longitudinal section of the cylindrical hot leg tube
(46.3 mm external diameter) shown in Fig. 3(b).

2.4. Image patterns characterization
Image database was organized based on three main chugging
subtypes, incubation (I), expulsion (E) and refill (R). Temperature
measurements of a typical NCF two-phase flow experiment are
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output. The following function is a histogram equalization function
(imadjust) which maps the values in intensity image to new values
in such that 1% of data is saturated at low and high intensities of
this image. After these two  steps, a line extraction algorithm is
T

Fig. 4. Temperature cyclic periodic behavior through time on a natu

hown in Fig. 4. Patterns images were acquired simultaneously with
ircuit temperature measurements synchronized in time. The heat-
ng power was estimated to be raised up to 7270 W with an ambient
emperature of 25 ◦C. Cooling flow rates of 140 l/h were kept con-
tant during the approximate 9500 s experiment. Periodic behavior
as confirmed by the detection of the refill-to-incubation phase

ransition image pattern (Fig. 5). This detection is described with
ore detail elsewhere (Andrade et al., 2000; de Mesquita et al.,

010).
The instability two-phase flow cyclic behavior can be observed

hrough temperature measurements and by cyclic flow pattern
etection time interval. A regular T period of 49 s for a complete
hugging cycle is estimated after stabilization (Fig. 4) occurs. The
ycle is composed of an incubation phase (T to (T + 30) s), an expul-
ion phase ((T + 30) s to (T + 35) s) and a refill phase which lasts for
he remaining 14 s of the cycle period.

The image database (Fig. 1) was composed of selected images
elated to each subtype phase of chugging cycle. Images acquired
t moments corresponding to the center region of each instability
hase time-intervals were selected in order to adjust the classifi-
ation system. Images corresponding to periods near to instability
ow subtype transitions were not considered on this work in order
o best estimate the fuzzy classification ability. From 2530 images,
2 sample images were selected to characterize each flow subtype.
he images in Fig. 8 show four examples for each chugging sub-
ype. From these images is possible to note that there are visual
imilarities and differences among the same subtype examples.

.5. Digital image processing

Image database was composed of 96 full-sized 107 pixels “rgb”
mages (red-green-blue pattern) in compressed image files for-
ats (ISO/IEC 10918-4:1999) organized in three subtype classes in
rder to adjust FIS parameters. The digital image processing (DIP)
lgorithm module was composed of a consecutive set of Matlab
MATLAB, 2010) functions (Fig. 1) An interpolating gray-level
(s)

rculation facility two-phase flow instability (chugging) experiment.

transforming function (rgb2gray) produces a grayscale image as
Fig. 5. Characteristic image of periodic transition from refill-to-incubation phase in
ascending flow of a chugging instability.
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Fig. 6. Up-down grayscale profiles and cropping sections.
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are composed by four basic components: rules, fuzzifier, inference
engine and defuzzifier (Mendel, 1995). As a product of the system
of rules using fuzzy variables, a non-linear mapping is obtained
pplied in order to obtain grayscale profiles. From each sample,
our longitudinal (top-down) and equidistant (inside tube) lines
f 3888 pixels (Fig. 6) were extracted. Acquired images originally
ncluded (inside the visual field frame) a focus calibration pattern
eside the tube (Fig. 6). This pattern was used to measure the
eld depth and the distance from the camera to the glass tube

urface.
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Fig. 7. Up-down grayscale profiles for different chugging
ng and Design 250 (2012) 592– 599

2.6. Image feature extraction

The feature extraction (FE) module (Fig. 2) is composed of func-
tions applied solely on one vertical grayscale profile line each time
(second or third lines). This choice was based on optimization
through testing the system with different combinations of pro-
files. Typical vertical grayscale profiles related to each flow-type
are shown in Fig. 7.

A subsequent step inside FE module smoothes grayscale pro-
files in order to obtain meaningful information from posterior peak
detector. A “peak and valley” algorithm is then applied, in order
to obtain peak sizes and the number of peaks relative to different
peak-to-peak thresholding levels. At first, gray intensity level (I)
variation is obtained by subtracting I(t) − I(t − 1), where t is the pixel
number. Gray intensity level variation contains information about
image borders on small scale. Most of images analyzed had high
density of bubbles with different sizes. Peak sizes are given in num-
ber of pixels unit. Each grayscale profile had different peak sizes
distribution. Profiles that had wider peaks were related to images
with higher contrast steps. Thresholding level was used as one of
our free parameters adjustment in order to obtain the best classifi-
cation. Standard deviation of gray-level profile peak size (STD(GP))
was  one chosen extracted feature. The other chosen feature was
the simple mean of grayscale level profile (MGP). Feature choice
was  done observing many different features and comparing their
distribution over chugging instabilities flow subtype regions. Some
of these image samples are shown in Fig. 8.

2.7. Fuzzy inference system

A fuzzy inference system (FIS) is an inference system based on
Fuzzy Logic (Zadeh, 1965) that uses linguistic expressions to com-
pose a set of rules describing a method for inferring conclusions or
obtaining results, based on a set of input data. On a classification
task, FIS is based on extracted features from data that best repre-
sents and differentiates a data class from the other. These systems
are usually described to map  “crisp” inputs into “crisp” outputs and
and can be expressed as a function y = f(x). This mapping can be

00 2500 3000 3500 4000

00 2500 3000 3500 4000

00 2500 3000 3500 4000

 pixel number

(a)

(b)

(c)

 phases: (a) incubation, (b) expulsion and (c) refill.
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Fig. 9. Fuzzy Flow-type Classification System (FFCS) input membership functions:

intersection. All these logical operations are used to aggregate the
ig. 8. (a–d) Incubation (I), (e–h) expulsion (E) and (i–l) refill (R) cropped image
amples.

escribed as a relation between fuzzy sets. A fuzzy set F in U may
e represented as a set of ordered pairs of a generic element x and

ts grade of membership �F(x):

 = {(x, �F (x))|x ∈ U} (1)

hether U is discrete or continuous, F is commonly written as:
 =
∑

U

�F (x)
x

(2)
(a)  standard deviation of grayscale profile peak sizes (STDPS) and (b) mean of
grayscale level profile (MGP).

or,

F =
∫

U

�F (x)
x

(3)

where the summation and integral symbols describes the union of
all points x ∈ U with �F(x) membership.

The fuzzification will map  a collection (col) of “crisp” points (real
or integer numbers) into a fuzzy set Ȧ in U, which can be usu-
ally represented as a fuzzy membership function associated with
x, attributing different membership values representing the true-
ness of pertinence of each x to set Ȧ. This membership functions
assume different types and shapes. In this work we  used Gaussian
membership functions (see Fig. 9).

Each Fuzzy rule is usually based on a “IF-THEN” sentence that has
a membership value between 0 and 1. The sentence “IF u is A, THEN
v is B”, where u ∈ U and v ∈ V has a membership value represented
by:

�(A→B)(x, y) ∈ [0,  1] (4)

The inference engine is evaluated combining IF-THEN rules based
on fuzzy input sets in U : U1 × U2 × . . . × Up to output sets in V,
where p is the size of each discrete universe of discourse associ-
ated with each rule which is interpreted as a fuzzy implication.
Using a discrete collection of data, each rule can be represented as:
�(Bl)(y) = �(Ax) ◦ Rl(y) or,

�(Bl)(y) = max
(x∈Ax)

[�(Ax) ∗ �(A→B)(x, y)] (5)

where the symbol ◦ denotes fuzzy set composition, max is the max-
imum operator, and ∗ is any t-conorm operator used for fuzzy set
different rules and quantify trueness values for each rule and for its
consequent part. The inference then is done obtaining a final value
for inferred outputs.
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Table  1
Classification outcome rates.

Instability type 2nd line 3rd line

Incubation 93.75% 68.75%

t
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Expulsion 87.50% 84.38%
Refill 90.63% 90.63%
Total (I + E + R) 90.63% 81.25%

The final fuzzy set B = Ax ◦ [R(1), R(2), . . .,  R(M)] determined by all
he rules in the rule base, combining all Bl and its associated mem-
ership function �(Ax) ◦ Rl(y) for all l = 1, 2, . . .,  M (Mendel, 1995).

For a Gaussian membership function for �x, where all input
oints for each input variable have the same level of uncertainty,
he spreads of the input sets will be the same, in which case �2

(Xk)
s a constant. The kth input fuzzy set and the corresponding rule
ntecedent fuzzy sets are assumed to have the following forms:

(Xk) = exp

{(
−1

2

)[
(xk − m(Xk))

�(Xk)

]2
}

(6)

ssuming the mean of the fuzzy input sets to be m(Xk), the crisp
easured input, xl

k
can be seen as a noisy data pre-filtered by

aussian inference. Finally, for a system based on non-singleton
uzzification, max-product composition, max-product inference, and
aussian membership functions, y can be written as a non-linear

unction of x by:

 = f (x) =
M∑

l=1

y−l�l(x) (7)

here �l(x) are called fuzzy basis functions for non-singleton fuzzi-
cation, where l = 1, 2, . . .,  M.  Fuzzy Inference System can then be
eferred as a fuzzy basis function expansion (Wang, 1992; Mendel,
995).

.8. Fuzzy Flow-type Classification System

The fuzzy flow-type classification system (FFCS) was  imple-
ented using Fuzzy Matlab Toolbox (MATLAB, 2010) where two

elected image features were used as Gaussian membership inputs:
tandard deviation of grayscale profile peak sizes (STDPS) (Fig. 9(a))
nd the simple mean of each grayscale profile (mean of grayscale
evel profile (MGP)) (Fig. 9(b)). FFCS overall classification was
mplemented in this work based on a simple Mamdani inference
ype system (Esragh and Mamdani, 1981) using three basic rules.
he implication was optimized through the following rules:

ule 1: If MGP  is DARK and STDPS is NARROW then flow-type is R;
ule 2: If MGP  is LIGHT and STDPS is NARROW then flow-type is I;
ule 3: If MGP  is LIGHT and STDPS is WIDE then flow-type is E.

. Results

The results of tests made with FFCS are shown in Table 1.
FFCS showed good results to the sampling method described

n Section 2.4 as can be seen in Table 1. The right classification
ates corresponding to each instability type and the total classifi-
ation rate are presented in table first column. These rates were
btained using the second up-down grayscale profile as can be
een in Fig. 6. In the second column the classification rates obtained
pplying FFCS to third up-down grayscale profile are shown. Best

lassification rates would have been obtained if more specific and
niform patterns were used as input to FFCS. System generalization
apability was stressed to its limit by using a testing set composed
f significant variations of subtype typical flow-patterns (Fig. 8).
ng and Design 250 (2012) 592– 599

Fuzzy membership functions were constructed based on chosen
features distribution over individual grayscale lines. Superposition
of two grayscale vertical lines did not present improvements on
classification task.

4. Conclusions

These results show that it is possible to implement image pat-
tern classification systems based on simple features using a fuzzy
inference system, provided that proper image processing is done.
FFCS was  based on single grayscale profiles, which allows its usage
on line-scan camera image acquisition systems. Fuzzy systems have
a real advantage over other artificial intelligence methods, as they
allow expert knowledge to be explicitly included on inference rules.
This property can be read directly over the rule base and mem-
bership functions definition. Among the different features tried on
this work, peak-size distribution (STDPS) and grayscale level mean
(MGP) showed to be the best features. A comprehension of these
features predominance can be investigated by looking directly into
subtype typical images (Fig. 8). These features may  be used as a first
step to elaborate new models able to extract useful information
based on high void fraction two-phase flow visualization.
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