METODOLOGIA DE CALCULO DE BARRAS DE CONTROLE DO REATOR OSIRIS

Leda Cristina Cabelo Bernardes Fanaro Roberto Ferreira Carlos Instituto de Pesquisas Energéticas e Nucleares-IPEN/CNEN-SP Travessa R, 400 - caixa postal 11049 CEP: 05508-900 - São Paulo, SP

RESUMO

Este trabalho tem por objetivo a comparação de duas metodologias de cálculo de barras de controle do reator OSIRÍS. A primeira consiste nos sistemas NJOY/AMPX-II/HAMMER-TECHNION e a segunda com o NJOY/AMPX-II, com O Cálculo espectral efetuado com o XSDRNPM. Os resultados comparados com valores experimentais, apresentaram desvios menores que 10 % para o exces so de reatividade do núcleo, para a reatividade das barras de segurança e a reatividade global das 6 barras. Desvios maiores, de até 21 %, foram observados para a reatividade individual das barras de controle 1 e 6.

INTRODUÇÃO

Com o objetivo de estudar reatores de alto fluxo para irradiação de materiais, procurou-se reproduzir um experimento realizado na crítica ISIS, com a primeira configuração do reator OSIRIS.

Devido à particularidade da barra de controle do reator OSIRIS, que possue uma parte combustível e uma parte absorvedora, efetuou-se o desenvolvimento de metodologia de cálculo das barras controle. Foram analisadas duas metodologias, a primeira consiste na geração das seções de choque com os sistemas NJOY [1]/ AMPX-II [2]/ HAMMER- TECHNION [3], e a segunda como sendo o NJOY/ AMPX-II, espectral através do XSDRNPM. com o cálculo

O programa HAMMER [4] foi utilizado para a geração das seções de choque dos elementos combustíveis e o HAMMER- TECHNION, para os refletores e materiais estruturais, em 4 em 4 grupos de energia.

O cálculo da reatividade das barras de controle é efetuado com o programa CITATION [5], nas geometrias bidimensional (x,y) tridimensionail (x,y,z).

Os valores calculados são comparados com os resultados experimentais do reator OSIRIS, .com elemento combustível caramelo [6].

O REATOR OSIRIS

O reator OSIRIS é do tipo piscina, com potência de 70 MW e elementos combustíveis

tipo placa caramelo.

O elemento combustível padrão possue 17 placas e o elemento de controle é formado por 2 partes, totalizando o dobro da altura ativa de um elemento combustivel padrão. A primeira contém 14 placas combustíveis e a segunda possue Háfnio como material absorvedor, de modo que quando se insere a barra de controle retira-se combustível do núcleo, vice-versa.

O reator possue também posições para irradiação, cujos elementos são simulados por um bloco de Alumínio contendo 1 ou 4 furos, revestidos com aço e 2 blocos de refletor de Berílio.

Na configuração analisada 0 possue 38 elementos combustíveis padrão, com zonas de enriquecimentos diferentes em 20nas de enriquecimentos diferences em 1235; 6 elementos de controle, sendo que 2 elementos são utilizados para a segurança (bancos 2 e 5); 5 elementos internos para irradiação, sendo que 4 possuem 4 furos e 1 contém somente 1 furo; 5 posições externas para irradiação, contendo 1 furo e 2 blocos de Berílio, como refletor.

A Figura 1 ilustra 0 diagrama esquemático da configuração do reator OSIRIS, analisada neste trabalho. Os elementos do reator estão dispostos no núcleo através de um engradado de Alumínio, e cercados por uma caixa de Zircaloy.

A parte absorvedora do elemento de controle é composta por Háfnio e encamisada por aço. A Figura 2 ilustra a estrutura do absorvedor do controle.

METODOLOGIA DE CALCULO

Duas metodologias, já mencionadas acima,

foram utilizadas na determinação das constantes nucleares das barras de controle:

A metodologia de cálculo 1 é mostrada no diagrama da Figura 3. O processamento de dados começa com as bibliotecas básicas de dados nucleares avaliados ENDF/B-IV, e JENDL-2, sendo utilizado um acoplamento [7] dos sistemas NJOY [1] e AMPX-II [2], para produzir as bibliotecas térmica (30 grupos, 0.00001 ev \leq E \leq 0.625 ev) e epitérmica (54 grupos; 0.625 ev \leq E \leq 10 MeV) para o programa celular HAMMER-TECHNION [3]. Este programa, gera seções de choque homoge-neizadas em 2 e 4 grupos de energia para o código de difusão de neutrons CITATION [5], no qual são efetuados os cálculos dos fatores efetivos de multiplicação e reatividades dos sistemas em estudo.

Nesta metodologia, o HAMMER-TECHNION foi modificado tal que, o tratamento auto-blindagem das ressonâncias resolvidas dos nuclídeos actnídeos é feita no módulo ROLAIDS do sistema AMPX-II, o qual resolve a equação integral de transporte, considerando espalhamento isotrópico, em milhares de pontos de energia no intervalo considerado de

7,0 %	7,0	5,62 %	5,62 %	5,62 %	7,0	7,0
7,0	4,75 %	7,0 % 5	4,75	7,0 % —6—	4,75	7,0
7,0	4,75	4,75	@ @ @ @	4,75	4,75 %	7,0
7,0	6 6 6 6	7,0 % 3	4,75	7,0 % —4—	@	7,0
7,0	4,75	4,75	6 6 6 6	4,75 %	4,75	7,0
7,0	4,75 %	7,0 % ——1——	4,75 %	7,0 % ——2	4,75 %	7,0
7,0	5,62	5,62	@ @ @ @	5,62 %	5,62 %	7,0 %
000	e	@	e	@	@	00 000 0

 @ @
 MOCK-UP COM 4 CANAIS
 ΘΘΘ
 BERÍLIO

 @ Ø
 DE REFRIGERAÇÃO
 CONTROLE

 (ε - % U235)
 (n - IDENT.)

Figura 1 - Reator OSIRIS (Primeira Configuração)

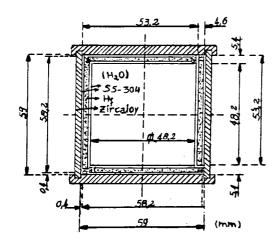


Figura 2 - Estrutura do Absorvedor do Elemento de Controle

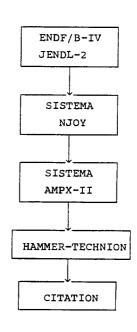


Fig. 3. Metodologia de cálculo 1: NJOY/AMPX-II/HAMMER-TECHNION/CITATION

0.625 ev a 5530 ev (cerca de 40 mil pontos de energia, ou mais). Na metodologia usual, o tratamento é feito pelo método de Nordheim no próprio HAMMER-TECHNION.

Nesta metodologia foram utilizadas as seguintes opções de cálculo no HAMMER-TECHNION, para as barras de controle : "Standard Thermos" e a aproximação B1 nos cálculos de transporte.

Com referência à procedência dos dados nucleares, nota-se que: os dados provieram da biblioteca ENDF/B-IV, menos os do U-238 e os isótopos do Háfnio que provieram da JENDL-2.

A metodologia de cálculo 2 utiliza o acoplamento NJOY [1]/AMPX-II(XSDRNPM) [2]/CITATION [5] sendo similar à metodologia 1, a não ser pelo fato de que os dados nucleares são processados em 85 grupos de energia e a homogeneização celular final (em 4 grupos de energia) é feita no módulo XSDRNPM do AMPX-II. O Fluxograma da Figura 4 mostra a sequência de processamento:

A célula representativa das barras de controle do reator OSIRIS está ilustrada na Figura 5, sendo a homogeneização das seções de choque efetuada nas regiões 6 a 13.

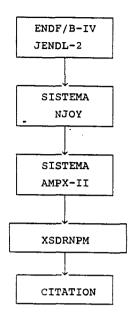


Fig. 4. Metodologia de cálculo 2: NJOY/AMPX-II(XSDRNPM)/CITATION

Comb (hom)		H2O	Al	H2O	Al	H2O	Zr		SS 304	ABS	304	H2O	
	-												
1	2	3	4	5	6	7	8	9	10	11	12	13	

Figura 5 - Célula Representativa da Parte Absorvedora do Elemento de Controle

Os cálculos das reatividades das barras de controle e de segurança foram efetuados com o programa CITATION nas geometrias bidimensional (x,y) e tridimensional (x,y,z). Para o cálculo bidimensional o buckling foi determinado por uma pesquisa realizada com o CITATION. Os resultados para as duas geometrias são muito semelhantes, desse modo neste trabalho serão apresentados somente os cálculos tridimensionais.

Para a condição de todas as barras

retiradas o excesso de reatividade calculado neste trabalho é igual 10.375 pcm, contra 10.530 pcm para o valor medido, na referência [6]. O erro neste caso é de 155 pcm (- 1,47%). A referência [6] apresenta ainda o valor calculado, pelos franceses, para o excesso de reatividade igual a 10.800 pcm.

reatividade igual a 10.800 pcm.

A Tabela 1 mostra os valores obtidos, para as reatividades das barras de controle, calculados com as duas metodologias descritas e os resultados experimentais da referência [6].

Tabela 1 - Reatividade das Barras de Controle do Reator Osiris (Cálculo Tridimensional)

condição	OSIRIS	NJOY/AI	MPX-II/H-T	EC (a)	NJOY/AMPX-II (XSDRNPM)			
das barras	ρ(pcm)	Kef	ρ (pcm)	desvio	Kef	ρ (pcm)	desvio	
todas inseridas	16.580	0,9370	16.121,9	- 2,76	0,9454	15.172,8	- 8,49	
2 + 5	5.800	0,9895	5.657,7	- 2,45	0,9952	5.288,6	- 8,82	
1	2.100	1,0135	2.396,6	+14,12	1,0179	2.239,3	+ 6,63	
6	2.820	1,0379	2.317,3	-17,83	1,0413	2.212,8	-21,53	
3	2.810	1,0703	2.922,4	+ 4,00	1,0721	2.757,6	- 1,86	
4	3.050	1,1038	2.827,9	- 7,28	1,1038	2.674,5	-12,31	

⁽a) HAMMER-TECHNION

CONCLUSOES

De acordo com os resultados apresentados observa-se que os cálculos do excesso de reatividade do núcleo, para a reatividade global das 6 barras de controle mais segurança, e para a reatividade das barras de segurança (2 e 5), concordam com os resultados experimentais, para as duas metodologias apresentadas, com desvios inferiores a 10 %.

Para a reatividade individual da barra de controle 1, os cálculos superestimaram o resultado experimental em até 14 % na primeira metodologia, e para a barra de controle 6, os cálculos subestimaram o resultado experimental em até 21 % na segunda metodologia.

Observa-se ainda que na metodologia NJOY/AMPX-II/HAMMER-TECHNION, as barras são mais reativas, e os resultados estão mais próximos dos valores medidos.

A complexidade do reator e principalmente das barras de controle, que são muito diferentes das convencionalmente utilizadas em reatores de pesquisa, dificultaram a obtenção dos resultados.

REFERENCIAS

- [1] MACFARLANE, R. E.; MUIR, D. W.; BOICOURT, R. M.; The NJOY Nuclear Data Processing System. Vol.I: User's Manual, Los Alamos National Laboratory Report, LA-9393-M, Vol(ENDF-324), 1982.
- [2] GREENE, N. M.; FORD III, W. E. et alli, AMPX-II: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries from Data in ENDF Format. PSR-53, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- [3] BARHEN, J.; ROTHENSTEIN, W.; TAVIV, E.

 The Hammer Code System TECHNION Israel Institute of Technology,
 EPRI-NP-565, 1978.
- [4] SUICH, J.E. & HONECK, H. C. The HAMMER Code System Heterogeneous Analysis of Multigroup Method of Exponential and Reactor. Savannah River Laboratory -D. P. 1064, 1967.
- [5] FOWLER T. B.; VONDY, D. R.; CUNNINGHAN, G. W. Nuclear Reactor Core Analysis Code: CITATION. Oak Ridge, Tennessee, Oak Ridge National Laboratory, ORNL-TM-2496, Rev. 2. July 1971.
- [6] Critical Experiments In The ISIS Reactor With The Caramel Fuel Element. In: Safety and Licensing Guidebook Research Reactor Core Conversion from the Use of Highly Enriched Uranium to the Use of Low Enriched Uranium Fuels. Analytical Verification vol 3. Apendix H-1. Vienna, 1980.
- [7] SANTOS, A.; FERREIRA, C. R.; LOPEZ, E. M.
 Elaboração de Uma Interface AMPX-II/
 HAMMER-TECHNION. In: Proceedings of
 the 3° Encontro. Geral de Energia
 Nuclear(CGEN). (Rio de Janeiro, RJ,
 Brasil, 22 27 Abril, 1990).

ABSTRACT

The objective of this work is the comparision of two control rod methodologies for the OSIRIS reactor. The first one consists on the compud systems NJOY/ AMPX-II/ HAMMER- TECHNION while the second one consists on the NJOY/ AMPX-II systems, where the spectral calculations are performed by XSDRNPM. Compared to the experimental values, the calculated results slowed errors less than 10 % for the reactivity excess and for the control rod total reactivity, and up to 21 % for the individual control rod 6.