MONITORAÇÃO CONTÍNUA DO BALANÇO TÉRMICO PARA DETERMINAÇÃO DA POTÊNCIA DO REATOR IEA-R1

José Patrício N. Cárdenas e Valdemir Gutierrez Rodrigues

Instituto de Pesquisas Energéticas e Nucleares. IPEN-CNEN/SP Caixa Postal Cep 34567, São Paulo, Brasil

ABSTRACT

This research deals with thermal balance calculation for real time power level determination of IEA-R1 nuclear research reactor. It is also shown the development of a supervision software (Visual Basic) of operation parameters.

The assembled data acquisition system allows data analysis during reactor operation, giving a reliable measurement of reactor power, and the organization of a data base allows a back-up surveillance of reactor operation whenever necessary.

Results obtained from temperature and primary flow are shown in a continuous form and also the Data Base implementation for further studies and analysis of energy balance behavior of the many reactor components. Besides it is planned to manage N-16 activity measurement channel (monitoring) for comparison of acquired data results for thermal calculations.

The results of this acquisition and related thermal balance calculations are shown in a continuous shape (On-Line) by means of windows operational system using Visual Basic software for development.

Key Words: Nuclear Research Reactors

I. INTRODUÇÃO

O reator IEA-R1 é um reator de pesquisas do tipo piscina aberta, projetado e construído sob a responsabilidade da firma BABCOX and WILCOX de USA, atingindo a primeira criticalidade em Setembro de 1957.

Atualmente a operação do IEA-R1 obedece a um regime de operação contínua de 60 horas semanais, aproximadamente, a uma potência de 2 MW.

Para esta condição de operação (ou outra em termos de potência) é necessário a disposição de uma leitura confiável da potência do reator. Uma das alternativas é a calibração do Canal Linear da mesa de controle a partir da técnica do Balanço Térmico, a qual baseia-se no acréscimo de temperatura sofrido pelo fluído de refrigeração ao passar pelo núcleo .

A técnica do Balanço Térmico utiliza como parâmetros de cálculo a vazão mássica **m** do fluído refrigerante, o calor específico **Cp** e do gradiente de temperatura (**Dt**) na entrada e saída do núcleo [1].

Obtido esses valores experimentalmente, a potência do reator é calculada pela relação:

$$P = n \times Cp * \Delta t \tag{1}$$

em que $\mathbf{D}\mathbf{t}$ =temperatura $_{\mathbf{saida}}$ - temperatura $_{\mathbf{entrada}}$

Da mesma maneira, podemos determinar a potência térmica dissipada no circuito primário, no circuito secundário, no tanque de decaimento e no circuito de retratamento da água .

As experiências realizadas no reator têm mostrado uma diferença de 8 a 10% entre os cálculos do Balanço Térmico e a potência nominal de operação a 2 MW.

Constatou-se que a instrumentação de processos existente na sala de controle não é aferida adequadamente para a determinação da potência do reator, assim também observou-se variação na medida do Nitrogênio-16, sem ocorrer variação da potência do reator.

Em vista da importância de uma monitoração contínua, faz-se necessário a adequação de uma instrumentação para condicionar os sinais de temperatura e vazão para um sistema de aquisição de dados, de forma a determinar a potência através do Balanço Térmico [2] e [3].

II. OBJETIVO.

Para a monitoração da potência do reator, são utilizados detectores nucleares para deteção de nêutrons

quando da multiplicação subcrítica na partida do reator e acompanhar, logo após a criticalidade, as flutuações no fluxo neutrônico e assim proceder o controle automático da reatividade e manter o reator numa potência estável.

Um dos sinais de controle do reator é o Canal Linear, o qual utiliza como detector uma câmara de ionização compensada (CIC) . Outro sinal para o controle é o Canal de Partida que utiliza uma câmara de fissão, sendo este um detector especial para deteção de amplo espectro da energia dos nêutrons [4] .

Outro sistema de controle é o Canal para monitoração do ¹⁶N, que utiliza uma câmara de ionização não compensada (CINC) fornecendo um sinal correspondente à atividade do ¹⁶N. Considera-se esta uma medida confiável para a monitoração de potência do reator [5].

Este trabalho tem como objetivo calcular a potência do reator através do Balanço Térmico e desenvolver um sistema computacional para acompanhar em tempo real as variáveis envolvidas no Balanço Térmico do núcleo do reator.

III. Monitoração da Potência pela técnica do Balanço Térmico

Para realizar o balanço térmico do reator IEA-R1, deve-se considerar o sistema formado pela piscina, pelas paredes de concreto que a envolve, o circuito primário de refrigeração, o tanque de decaimento, o sistema de retratamento de água e o trocador de calor.

Para um determinado intervalo de tempo tem-se que:

$$\mathbf{Qps} = \mathbf{Qe} - \mathbf{Qs} \tag{2}$$

onde:

Qps = calor perdido no sistema **Qe** = calor que entra no sistema **Qs** = calor que sai do sistema

O calor perdido no sistema ocorre principalmente no início e término de uma operação do reator e devido a variações climáticas durante o evento sendo conveniente realizar as medições com este termo zerado, desde que a temperatura da piscina se encontre num valor estável [2] e [3].

O calor que entra no sistema é o calor gerado pelo próprio reator . O terceiro termo da equação é dissipado no Trocador de Calor (TC), no Tanque de Decaimento (TD) e por evaporação da água da piscina [2], [3] e [6] .

Para controle da operação do reator são necessárias as leituras de dois pontos de temperatura e um ponto de vazão uma vez que a rotina de operação estabelece monitorar o Delta-T no núcleo do reator e observar a vazão do circuito primário de resfriamento.

Na Figura 1, observam-se 2 sensores de temperatura denominados ST1 e ST2 o primeiro localizado na piscina a uns 30 centímetros de distância acima do núcleo aproximadamente e o segundo localizado na tubulação do circuito primário junto à entrada do Tanque de Decaimento (TD).

O fluido refrigerante (água da piscina) é succionado pela bomba do circuito primário passando através do núcleo seguindo para o Tanque de Decaimento (TD), passando pelo Trocador de Calor (TC) A ou B . O fluído segue para o Bocal de Vazão (BV) - Flow Nozzle, o que permite o sensoreamento da diferença de pressão no BV, voltando o fluído para a piscina através de um elemento Difusor.

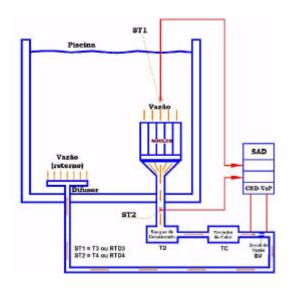


Figura 1 Diagrama mostrando a posição dos sensores para o Balanço Térmico

A medida da diferença de pressão é processada num instrumento medidor/transmissor da diferença de pressão e transmitida através de um loop de corrente para o sistema de aquisição de dados (SAD) . O valor obtido pela medida da diferença de pressão (ΔP) é convertido em vazão (gpm) e mostrado em um registrador (FUJI) .

Deste modo, dispõe-se de dois dados de temperatura e um dado de vazão, com esses valores efetua-se o cálculo do balanço térmico por meio da expressão (1).

Para obter o valor da temperatura, tem-se 2 opções: utilizar termopares ou termoresistores.

VI. MEDIÇÕES DE TEMPERATURA E VAZÃO NO REATOR IEA-R1.

No reator IEA-R1 as variáveis de processos necessárias para operar o reator são as variáveis de temperatura e vazão além das variáveis nucleares . Os sistemas de medição dessas variáveis são:

Sistema de Medição de Temperatura

O sistema de medição de Temperatura do reator utiliza sensores termopares do tipo T, fios de extensão (compensação) para esses termopares e um registrador de 24 pontos Yokogawa - UR1800.

A resposta da linha de medição dos canais T3 e T4 foi obtida utilizando um instrumento fonte (ALTEK 322-1 certificado) como gerador de miliVolts e o resultado é mostrado na Tabela 1 (os termopares T3 e T4 são utilizados para o cálculo manual do Delta-T).

TABELA 1 Resposta dos canais de Medição de temperatura T3 e T4 (Reg. Yokogawa)

Temp. (°C) Canal T3 (°C) Canal T4 (°C)					
	` /				
0.0	0.6	0.5			
10	10.4	10.3			
20	20.6	20.5			
25	25.7	25.5			
30	30.6	30.4			
32	32.5	32.5			
35	35.4	35.5			
38	38.4	38.4			
40	40.5	40.3			
42	42.3	42.4			
45	45.4	45.4			
50	50.4	50.3			
75	75.7	75.3			
100	100.5	100.4			
150	150.4	150.4			
200	200.5	200.4			

Verificação da resposta eletrônica do Registrador Yokogawa UR1800.

A verificação do registrador Yokogawa foi realizada utilizando como fonte de sinal de entrada um gerador de tensão **Keithley model 263** (vide TABELA 2)

TABELA 2 Resposta eletrônica do Registrador Yokogawa
- UR1800

Sinal Keithley 263 (Volts)	Temperatura Canal T3 (°C)	Temperatura Canal T4 (°C)		
0,00500	0,19	0,18		
0,02500	0,97	0,96		
0,05000	1,98	1,97		
0,10000	3,98	3,97		
0,20000	7,98	7,96		
0,30000	11,98	11,96		
0,40000	15,97	15,96		
0,50000	19,96	19,96		
1,0000	39,98	39,96		
2,0000	79,98	79,94		
3,0000	120,0	120,0		
4,0000	159,97	159,97		
5,0000	199,96	199,94		

Com as tabelas de Calibração/aferição e tabelas de resposta das linhas de medição dos sensores termopares e termoresistores dos canais correspondentes (registradores Yokogawa e FUJI), foram obtidas as equações de regressão destes canais, as quais foram utilizadas como funções de transferência para o procesamento digital dos dados e visualização em telas gráficas.

Equações de regressão para sensores de temperatura.

As equações das linhas de regressão foram obtidas utilizando as tabelas obtidas experimentalmente e

Certificados de Calibração, sendo calculadas utilizando o programa ORIGIN [10] .

Equação da linha de Regressão para o Termopar do Canal T3 (temperatura entre 0 e 50 °C)

Exemplo conforme ITS-90 / ASTM E230 em que 1 miliVolt é equivalente a 25 °C

Equação de Regressão Linear

Y = 0.6915 + 24.407*X (Desvio Padrão= 0.28062 °C)

Exemplo: para 1 miliVolt \Rightarrow Y = 25,09866 C

Equação da Linha de Regressão para o Termopar do Canal T4 (temperatura entre 0 e 50 °C)

Exemplo conforme ITS-90 / ASTM E230 em que 1 mili Volt é equivalente a 25 °C

Y = 0.5367 + 24.51*X (Desvio Padrão = 0.277 °C).

Exemplo 1 miliVolt \Rightarrow Y = 25.047

Equação da linha de Regressão para o Termoresistor RTD3 (temperatura entre 0 e 50 °C)

 $Y=-258,\!337+2,\!5816*X$, onde Y é a Temperatura em °C e X está dado em Ohms (Desvio Padrão = 0,0478 °C) Exemplo conforme ITS-90 em que 114,00 Ohms é

 $Y = 36,09 \, ^{\circ}C$

equivalente a 36,00 °C

Equação da linha de Regressão para o Termoresistor RTD4 (temperatura entre 0 e 50 °C)

Y= -258,0236 + 2,579*X , onde Y é a Temperatura em °C e X está dado em Ohms (Desvio Padrão = 0,0337 °C) Exemplo para 114,00 Ohms é Y = 36,09 °C

Sistema de Medição de Vazão

O sistema de medição de vazão é formado por sensores de pressão diferencial, processador da pressão diferencial, transmissor da pressão diferencial e o registrador da vazão (elementos de malha de medição) do circuito de resfriamento primário e do circuito secundário (vide TABELA 3 para o canal Ch1 - Circ. Primário) .

TABELA 3 Resposta do REGISTRADOR FUJI em LOOP de corrente .

Calibr,	DMM	Regist. FUJI		
ALTEK	HP3468A	(gpm)		
model 334 (mA)	(mA)			
4,00	4,06	0,238		
6,00	6,08	1616		
8,00	8,11	2274		
10,00	10,13	2780		
11,00	11,15	3004		
12,00	12,16	3209		
16,00	16,21	3928		
20,00	20,25	4534		

Equações de regressão do Transmissor de Pressão Diferencial

A equação foi obtida utilizando a Tabela do Certificado de Calibração e o programa Origin. Equação polinomial de 2ª. ordem

 $Y = 3,99866 + 0,07991*X + 0,0000057*X^2$

Exemplo para 100 polegadas de coluna de H₂O

Y = 11,99536 mA (Desvio Padrão = 0,00825 mA)

Exemplo para 88,5 polegadas de coluna de H₂O

Y = 11,11534 mA que resultam em 3006 (gpm) utilizando a função de transferência do fabricante [8] :

$$Q = 2254*(V-1)^{1/2}$$

Onde V é dado em Volts para obter galões por minuto.

Equação de regressão do registrador FUJI:

 $Vazão = -17943 +39292*V -32809*V^2 +14627*V^3 3570*V^4 + 451.41*V^5 - 23.1*V^6$, (Desvio P = 32.64 gpm)

V. ANÁLISE DE INCERTEZAS

Para a medição de temperatura pode-se fazer uso de termopares (TCs) ou de termoresistores (RTDs) e para a vazão utiliza-se o sinal do transmissor de pressão diferencial obtida do bocal de vazão. Com esses instrumentos foi realizada a aquisição dos dados e desenvolvida a análise de incerteza.

Foram consideradas as incertezas relacionadas com o próprio sensor, o padrão de calibração/aferição, a linha de medição/aquisição, fios ou cabos e a incerteza dos registradores (FUJI para o caso de RTDs e Yokogawa para os TCs).

A incerteza de medida é a faixa em torno do valor médio onde se supõe que o valor verdadeiro esteja associado a um determinado nível de confianca (confiabilidade) que normalmente é de 95,4% [9].

Incerteza na Medição de Temperatura utilizando Termoresistores (RTD marca ECIL tipo Banda 1 e registrador FUJI)

Incerteza Global dada por:

 $I_{g23} = 0.122 \,^{\circ}\text{C} \, (RTD3) \, \text{e} \, I_{g24} = 0.103 \,^{\circ}\text{C} \, (RTD4)$

Incertezas nas Medições de Temperatura utilizando **Termopares** (sensor ECIL convencional)

De forma idêntica ao RTD, só que neste caso foi considerado também o fio de extensão/compensação e o condicionador de sinal. (registrador Yokogawa) Incerteza Global dada por:

 $I_{g3} = 0.1446 \,^{\circ}\text{C} \text{ (para T3) e } I_{g4} = 0.1332 \,^{\circ}\text{C (para T4)}$

Incertezas na medição de Vazão (Circuito Primário)

A malha de medição de vazão do circuito primário de resfriamento está composta de um Bocal de Vazão (flow nozzle) [7] , um Transmissor de Pressão Diferencial que mede a diferença de pressão (ΔP) entre as tomadas a montante e a jusante do bocal, sendo esta medida transmitida (saída 4 a 20 mA) para um registrador (canal Ch1 FUJI).

No caso do reator as componentes da incerteza na medição de vazão podem ser simplificadas como [6]:

 I_P = componente do processo.

 I_S = componente do sensor, onde tem-se a influencia da instalação (I_{ins}) e a tolerância dos parâmetros (I_{pr}).

 I_{Tx} = incerteza do transmissor diferencial de pressão e

 I_{RG} = incerteza do registrador de vazão (FUJI).

Nas componentes do sensor assume-se que a instalação do sensor está de acordo, então a componente (I_{ins}) = 0.

 $I_{pr} = 2 \%$ assim $I_S = 2 \%$.

As componentes I_{Tx} e I_{RG} são determinadas através de aferição. I_{Tx} » 0,14 % e I_{RG} » 0,08 %.

Assim, a incerteza global da vazão é I_{Om} = 2,006 %

Incerteza no cálculo da Potência

Assumindo que o regime têm uma variação normalmente lenta e que :

$$P = n \times Cp * \Delta t$$

Sendo que:

$$\begin{array}{l} \textbf{S}_{\textbf{P}} = \text{erro da potência} \\ \textbf{S}_{\textbf{P}}^{\ 2} = \left(\partial P/\partial m\right)^2 \ \sigma_m^{\ 2} + \left(\partial P/\partial Ts\right)^2 \ \sigma_{Ts}^{\ 2} + \left(\partial P/\partial Te\right)^2 \ \sigma_{Te}^{\ 2} \\ \textbf{S}_{\textbf{P}}^{\ 2} = \left[C_p \left(\ Ts\text{-}Te \ \right) \right]^2 \ \sigma_m^{\ 2} + \left[m \ C_p\right]^2 \sigma_{Ts}^{\ 2} + \left[m \ C_p\right]^2 \sigma_{Te}^{\ 2} \end{array}$$

$$\mathbf{s_{P}}^2 / \mathbf{P}^2 = \sigma / m + [1/(Ts-Te)^2] (\sigma_{Ts}^2 + \sigma_{Te}^2)$$

Considerando que as medidas de temperatura são tomadas pelo mesmo registrador (YOKOGAWA), pode-se assumir que os desvios são iguais [6]:

$$\mathbf{s}_{\mathsf{Ts}} = \sigma_{\mathsf{Te}} \Rightarrow \mathbf{s}_{\mathsf{P}}/\mathsf{P} = \left[(\sigma_{\mathsf{m}}/\mathsf{m})^2 + 2(\sigma_{\mathsf{T}}/\Delta_{\mathsf{T}})^2 \right]^{1/2}$$

 $\mathbf{DP} = [\Delta m^2 + 2 \Delta T^2]^{1/2} \text{ em que "}\Delta$ " ou então, está dado em % do valor medido, resultando

 $\mathbf{DP} = 4.0 \%$ para Delta-T de 6 °C e Δ m de 2 %.

Incerteza na Medição de potência do Canal Linear [4]

Incerteza global $I_g = 1,12 \%$ (sem considerar o detector)

Incerteza na monitoração do Nitrogênio-16 [5].

Incerteza global = 1,12 % (sem considerar o detector)

VI. ESPECIFICAÇÃO DO SISTEMA DE BALANÇO TÉRMICO

A maneira de como se realiza o balanço térmico do reator IEA-R1, foi descrita na parte II, acrescentando que da mesma forma, pode-se obter os dados para a vazão do Circuito Secundário e as temperaturas de entrada e saída correspondentes aos trocadores de calor A (TCA ou B (TCB) . O diagrama de aquisição de dados para o balanço térmico é mostrado na Figura 2.

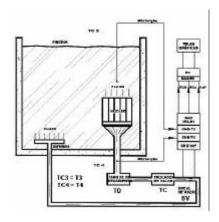


Figura 2 Diagrama de Aquisição de Dados utilizando **Termopares**

Os sensores de temperatura são termopares, dos canais T3 (TC3) e T4 (TC4) respectivamente no registrador YOKOGAWA, estando eles ligados a condicionadores de sinal (CND-T3 e CND-T4) (localizados no sistema de aquisição de dados SAD) os quais amplificam o sinal dos termopares (milivolts), entregando na sua saída sinais de 0 a 5 volts e o sinal de vazão é obtido da queda de tensão no resistor de 250 ohms (CND-VzP) na faixa de 1 a 5 Volts para uma corrente entre 4 e 20 mA fornecida pelo transmissor de pressão diferencial.

Placa de Aquisição de Dados.

Os sinais de temperatura e vazão (em volts) são ligados a uma placa de aquisição de dados analógicos (AT-MIO-16E) da National Instruments (NI) localizada ou inserida na Placa-mãe de um computador do tipo PC a qual, através de uma configuração (8 canais diferenciais), fará a aquisição e processamento dos dados via a implementação de um Software Visual Basic.

A TABELA 4 mostra as variáveis envolvidas, seu canal de aquisição correspondente, tensão de entrada e sua função de transferência para conversão de sinais em volts para temperatura (°C) ou vazão (gpm).

TABELA 4 Variáveis do Sistema

Descrição do	Can.	Entr.	Função de
Sinal	ADC	ADC	Transferência
Termopar TC3	0	0-10 V	- 0,0215+39,998V
Termopar TC4	1	0-10 V	-0,0346+39,998V
Vazão C. Prim.	2	0-10 V	$2254*(V-1)^{0,5}$
Vazão C. Sec.	3	0-10 V	$2254*(V-1)^{0,5}$
Atividade N ¹⁶	4	0-10 V	10 * (V)

7. PROGRAMA DE AQUISIÇÃO DE DADOS.

Para o desenvolvimento do programa aplicativo do sistema é utilizado o Visual Basic da Microsoft, /12, 13 e [4] . No presente projeto de aplicação foi utilizado a versão 6.0 .

Os 8 canais da placa de aquisição são utilizados com sinais de 0 a 5 volts, vindos dos condicionadores de sinais do SAD correspondentes a :

Canal-1 Sinal de temperatura do TERMOPAR T3

Canal-2 Sinal de temperatura do TERMOPAR T4

Canal-3 Sinal de Vazão (circuito Primário)

Canal-4 Sinal de Vazão (circuito Secundário)

Canal-5 Sinal da atividade do Nitrogênio-16

Canal-6 Sinal do Canal Linear

Canal-7 e Canal 8 são de Reserva.

Esses sinais em Volts são utilizados para obter os valores de temperatura de TC3 (T3), de TC4 (T4) e Vazão do Primário (VzP), transformando esse valores em graus Celsius (°C) e galões por minuto (gpm).

Estes valores de temperatura e vazão e as funções de transferência são utilizados na programação das telas em Visual Basic (códigos) para obter a visualização de dados de temperatura Delta T e de vazão assim obtendo o valor da potência térmica do reator (valores On-Line) .

O critério para o desenvolvimento do software foi o seguinte :

- a) o software deverá mostrar em forma contínua os variáveis envolvidas no Balanço Térmico;
- b) capacidade para gerar arquivos sobre o andamento da operação, e
- c) o software deverá gerenciar os seguintes modos de funcionamento:
- Aquisição e armazenamento de dados (placa da NI)
- Atualizar as telas em função do tempo
- Registrar as informações em impressora
- Montar um Banco de Dados das varáveis do processo

Descrição das interfaces do software.

As relações entre o Programa de Monitoração, o Sistema de Aquisição de Dados do reator e o usuário através do Diagrama de Fluxo de Dados (DFD), estão representados na Figura 3.

O programa de monitoração permite visualizar os valores correspondentes de temperatura (TC3 e TC4), de vazão do circuito primário de resfriamento (VzP) e do circuito secundário (VzS) e o valor da atividade do N-16.

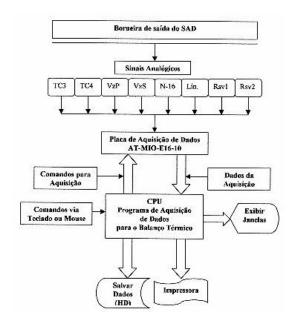


Figura 3 Fluxograma da Aquisição de Dados

As ações do operador sobre o programa são os comandos como iniciar e concluir aquisição, solicitação de telas e relatórios.

Códigos de Programação.

Os códigos de programação foram redigidos a partir do estudo da programação em Visual Basic utilizando livros didáticos sobre o assunto, idéias de alguns autores assim como também utilizando códigos que são de praxe nesse tipo de software [12], [13] e [14] .

Foram desenvolvidas 10 telas, sendo elas: Balanço Térmico (inicial ou apresentação), Operação, Esquema OnLine, Variáveis (processo), Info (informação) Digital, Relatório e Gráficos das variáveis envolvidas.

Telas e Menus

Apresentam-se como exemplo algumas das janelas desenvolvidas.

Tela de VARIÁVEIS DO PROCESSO

Nessa página apresentam-se as variáveis de temperaturas (TC3 e TC4), Delta-T, vazões (Primário e Secundário) e do Nitrogênio-16 em formato visual de instrumentação industrial (simulação) com amostragem em Tempo Real a cada 1 segundos .

Além disso, temos a visualização do valor da Potência Térmica calculada e a Potência corrigida .

Nas figuras a seguir apresentam-se as telas (duas) geradas em tempo real (simulação) de operação do reator IEA-R1 para o Balanço Térmico (vide Figuras 4, e 5).

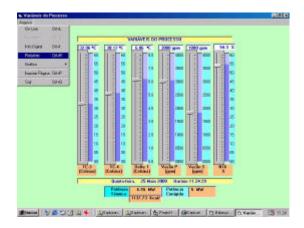


Figura 4 Tela Operacional Variáveis do Processo

Figura 5 Tela de Banco de Dados Operacionais

8. RESULTADOS

Na medição de temperatura com termoresistores, a maior parcela da incerteza está associada com o sensor RTD3 com a incerteza global de 0,12 $^{\circ}\mathrm{C}$. Já para o sensor RTD4 a incerteza global é de 0,1 $^{\circ}\mathrm{C}$.

Para o caso das medições utilizando termopares as incertezas resultaram ser levemente maiores, sendo a incerteza global em torno dos 0,145 °C para o TC3 e de 0,133 °C para o TC4 .

Na medição de vazão, o fato de se utilizar relações empíricas de engenharia, facilitou os cálculos de incertezas, sendo a de maior influência, a correspondente aos parâmetros (2 %) envolvidos na obtenção da tolerância global da vazão [15].

Os resultados da aquisição de vazão (registrador FUJI) e temperatura (registrador YOKOGAWA) são mostrados na TABELA 5 onde são apresentadas as diferenças no cálculo da potência e o nível de incerteza final (em %).

TABELA 5 Cálculo da Potência com a Vazão e o DeltaT instantâneos

Pot. MW	Intz Pot.	Dia	Horas	Vazão	Intz-Vz	Delta-T	Intz- Δ1
5,0009	3,1 %	17/03/98	64:60	3024 gpm	60 gpm	5.0 C	0,1 °C
4,9899	3,1 %	18/03/98	04:00	3017 gpm	60 gpm	6.0 C	0,1 °C
4,715	3,1 %	24/03/98	04:00	3055 gpm	60 gym	3,5 C	0.1 °C
4,916	3,1%	25/03/98	00:00	3023 gpm	60 gpm	5,9 C	0.1 °C
2,084	5.0 %	05/05/98	64:00	3006 gpm	60 gpm	2,5 C	0,1 °C
2,17	5,8 %	06/05/98	04.00	3006 gpm	60 gpm	2,5 C	0.1 °C
2,15	5,8 %	26/05/98	04:00	3000 gpm	60 grm	2.6 C	0,1 °C
2,15	5.8 %	27/05/98	04:00	3000 gpm	60 gpm	2.5 C	0,1 90
2,08	6.0 %	09/02/00	16:30	3027 gpm	60 gpm	2.5	0,1 °C
2,02	6.2 %	17/04/00	22:00	3065 gpm	60 gpm	2,4	0,1 °C
3,07	4.3 %	22/05/00	22:00	3020 gpm	60 gem	3,7	0,1 °C

OBS : A incerteza do calor específico é definida como $DC_p/C_p = 0.01 = I_c$ [25]

Conversão numérica (simples) para potência:

Potência = Vazão (gpm)* \mathbf{D} T($^{\circ}$ C)*0,000276

A diferença de temperatura também varia conforme as condições climáticas que afetam a temperatura do fluído circulante pelo circuito secundário de resfriamento como foi constatado na prática operacional.

Através da implantação do sistema de monitoração contínua desenvolvido será feita uma aquisição de dados a cada 5 ou 10 minutos, tendo como limite a aquisição a cada 1 minuto.

Para melhorar o erro máximo de medição a única opção seria a de se utilizar termoresistores (RTD) de alta precisão (Banda 5), além de condicionadores para a conversão de valor ôhmico do RTD para Volts e esses valores de tensão serão processados na placa de Aquisição substituindo no projeto os termopares por termoresistores.

Com relação à medição de vazão, não é necessário qualquer melhoria do sistema já que a instrumentação é adequada para a função [15].

9. CONCLUSÕES

A instrumentação proposta para as medições de temperatura e vazão é adequada para obter os dados operacionais do reator conforme foi mostrado nas tabelas obtidas na verificação da resposta dos instrumentos.

Através da análise de incertezas pode-se estabelecer o erro no cálculo do Balanço Térmico para diferentes níveis de potência.

Os resultados obtidos, conforme TABELA 5, são adequados para os requisitos de operação a 2 e 5 MW .

Nestas potências é importante obter medições precisas, as quais devem ser feitas periodicamente para permitir o cálculo exato da potência do reator. Isto é importante para realizar a calibração neutrônica e os cálculos do grau de queima de combustível no reator.

Os sensores de temperatura atualmente utilizados no reator (termopares tipo T convencional) são adequados para a aquisição de dados desde que se estabeleça uma verificação periódica de desempenho.

Com a instalação de novos sensores (já previsto) nas torres de resfriamento será possível verificar as variações de rendimento destas e dos trocadores de calor, através do Banco de Dados implantado no sistema de aquisição de dados, devido à possibilidade de expansão permitida pelo sistema .

Com referência ao programa de aquisição de dados (software) desenvolvido, ele apresentou bons resultados dos valores obtidos utilizando a placa de aquisição da NI. Em comparação com o sistema atual (SAD) ele tem a vantagem de funcionar em ambiente Windows, padrão atual para informática, e a sua ampliação em termos de telas gráficas é ilimitada, sendo sua principal vantagem a de formar um Banco de Dados operacionais para o Balanço Térmico com a possibilidade de expansão para obter e armazenar todos os dados operacionais do reator (através do gerenciamento digital de outras placas de aquisição) de forma automática e em tempo real.

Assim também podemos concluir que o Banco de Dados formado pela aquisição de dados de temperatura e vazão permitirá uma melhor operação do reator e através da análise desses valores ter-se-á uma melhor compreensão do funcionamento termohidráulico e utilização do reator.

10. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Kreith, F. **Princípios de Transmissão de Calor**. Editora Edgard Blucher Ltda. São Paulo SP, Brasil, 1973
- [2] Parkansky, D. **Balance Térmico del Reactor RA-3.** CNEA, Re84, Buenos Aires-Argentina, Abril 1974
- [3] Balderrama, H. Rodriguez, A ., Parkansky, D. **Determinación de la Potencia del Reactor RA-3.** CNEA, Re166, Buenos Airea-Argentina, Mayo 1980 .
- [4] General Atomic, San Diego-CA, USA . **IEA-R1 São Paulo Research Reactor**, 1975
- [5] Alvarenga, J. de Sousa **Sobre a Monitoração de Potência do Reator Nuclear IEA-R1 pela Atividade do Nitrogênio-16.** Dissertação de Mestrado, EPUSP 1970.
- [6] Pasqualetto, H. .Hiromoto Y. M. Calibração do Reator IEA-R1 por Balanço Térmico. Relatório Interno, IPEN-CNEN/SP, Setembro 1993 .
- [7] Eng. Hertz Pasqualetto-Comunicação pessoal (IPEN)
- [8] Hiromoto Y. e Nelson **Manual de Instalação e Operação do SAD IEA-R1.** CTMSP Novembro/1995

- [9] Rodrigues, Luiz A H Modelagem Teórica-Experimental da Equação de Movimento para Geradores de Vapor de Reatores PWR. -Dissertação MestradoIPEN / 1994
- [10] Miller, J.C. and Miller, J.N. **Statistic for Analitical Chemistry** . Wiley and Sons, New York, 1988
- [11] **Tabelas de Dados Operacionais do Reator IEA-R1m.** Outobro/97 Março/98 IPEN Divisão ROI .
- [12] Nathan & Ori Gurewich Visual Basic 5.0 em 21 DiasSão Paulo : Editora Campus Ltda, 1997 .
- [13] Siler B. , Spotts J. , **Usando Visual Basic 6.0** . Editora Campus, 1999
- [14] Hitt W., **Write a Lean Chart Control**. Visual Basic Programmer's Journal June/1998-USA.
- [15] Delmeé, Gerard J. **Manual de Medição de Vazão.** Editora Edgard Blucher Ltda, São Paulo, 1983

RESUMO

O trabalho trata do cálculo do balanço térmico, para a determinação da potência do reator IEA-R1, em tempo real. Apresenta-se também o desenvolvimento de um programa de visualização (em Visual Basic) dos parâmetros operacionais.

O sistema de aquisição montado, permite a análise dos dados durante a operação, fornecendo leitura confiável da potência do reator, e a formação de um banco de dados operacionais, permitindo o rastreamento do histórico de operação a qualquer instante.

Apresentam-se os resultados obtidos do sistema de aquisição de dados de temperatura e vazão de forma contínua e, também a implantação de um Banco de Dados operacionais para estudos e posterior análise do comportamento do balanço de energia dos diversos componentes do reator.

Procurou-se também viabilizar a utilização do canal de medida do Nitrogênio-16 (monitoração) como uma referência para comparar os resultados dos dados adquiridos para o cálculo da potência do reator.

Os resultados desta aquisição de dados e os respectivos cálculos de Balanço Térmico são mostrados em forma contínua (sistema On-Line) através de telas gráficas de computador (software Visual Basic 6) em ambiente Windows.