DETERMINAÇÃO DE PERÓXIDO DE URÉIA EM SANGUE TOTAL UTILIZANDO A SONDA TETRACICLINA-EURÓPIO

Flávia R. O. Silva^{*}, Lilia C. Courrol^{**}, Maria H. Bellini^{***}, Luis V. G. Tarelho^{****}, Ronaldo D. Mansano^{*}, Nilson D. Vieira Jr^{****}, Nestor Schor^{***}

*LSI/EPUSP, São Paulo, SP, Brasil,

FATEC-SP/CEETEPS, São Paulo, SP, Brasil., *Nefrologia, UNIFESP, São Paulo, SP, Brasil, ****IPEN/CNEN-SP São Paulo, SP, Brasil. e-mail: flavia.rodrigues@poli.usp.br

Resumo

Nós apresentamos o uso do complexo de lantanídeo, tetraciclina-európio (Tc-Eu), para diagnóstico clínico de peróxido de uréia em sangue total humano.

As soluções foram preparadas com pH neutro e a luminescência visível dos lantanídeos foi detectada após uma incubação das amostras por 10 minutos.

Até agora a determinação de níveis de PHU era um método muito indireto com várias etapas e reagentes [1]. Esse estudo descreve a determinação de PHU em sangue humano total usando tetraciclina-európio como sonda fluorescente.

Os valores obtidos conferem com a variação de uréia verificada em 50 pacientes, incluindo 25 prédiálises, 15 hemodiálises e amostras de controles. Esse método é não-invasivo e pode ajudar na identificação de doenças renais e cardíacas.

Palavras-chave: tetraciclina, európio, uréia, peróxido de uréia, peróxido de hidrogênio, fluorescência.

Introdução

Complexos de lantanídeos tornaram-se particularmente atrativos por aumentarem a sensibilidade e seletividade em bioanálises devido à características específicas em sua fluorescência: grande "Stoke -shift", a intensidade da fluorescência da banda principal do complexo de lantanídeo é muito forte embora seu rendimento quântico seja normalmente mais baixo do que em fluoróforos convencionais, o tempo de decaimento relativamente longo dos complexos de lantanídeo facilita muito a fluorometria resolvida no tempo [2-4], podem ser excitados com laser diodo em 405 nm e "photobleaching" não mensurável.

Esses complexos são formados por um quelante (no caso, a tetraciclina), que é uma macromolécula que captura o íon da solução, absorve a energia de radiação incidente e através do efeito antena, transfere essa energia para o Európio (figura 1).

Após a complexação com íons trivalentes de európio, a tetraciclina forma quelantes estáveis, os quais exibem banda de absorção larga e uma banda de emissão estreita centrada em 612 nm e com característica da transição do Eu^{3+} em ${}^{5}D_{0} - {}^{7}F_{2}[5]$.

As tetraciclinas têm diversos grupos prótonativos que oferecem possibilidades diferentes de complexação dos íons de lantanídeos dependendo do pH. Para o pH em torno de 7,0, o lantanídeo provavelmente substitui os átomos de oxigênio [6]. Y. Rakicioglu [7], por exemplo, observou que a intensidade da fluorescência é aumentada em 15 vezes quando se adiciona peróxido de hidrogênio (PH) ao complexo tetraciclina-európio [8]. Recentemente foram apresentados trabalhos usando a sonda tetraciclina-európio para obtenção de imagem óptica da atividade da glicose oxidase [9], bem como a determinação espectrofluorométrica de heparina [10].

Figura 1 - Mecanismo de Emissão de Fluorescência de Complexos Tetraciclina-Európio

Figura 2 – Proposta de estrutura para o complexo Tc-Eu.

Nós observamos em uma publicação recente [11] que a luminescência do európio também é aumentada na presença de peróxido de uréia. Peróxido de uréia (PHU), ou peróxido de carbamida, em seu nome obsoleto, é uma forma estável do H_2O_2 e um potencial agente citotóxico [2]. Níveis renais e cardíacos de PHU são próximos da concentração de pentosidina da Reação Maillard [12].

Ambos, PHU e PH, apresentam efeito prejudicial para várias células, incluindo as renais e vasculares. Sabendo-se que a insuficiência renal crônica está relacionada com o aumento de PHU e com o processo de glicoxidação da matriz renal e cardíaca, métodos capazes de indicar a concentração destas toxinas permitem retardar danos funcionais do coração e destruição dos rins em pacientes em pré-diálises ou acelerar sua remoção pelo desenvolvimento de procedimentos mais efetivos para pacientes antes da diálise [11].

Materiais e Métodos

Todos os sais inorgânicos usados eram de pureza analítica e foram obtidos da Sigma Aldrich e Molecular Probe. Todas as soluções foram preparadas em 10 mmol L⁻¹ 3-(N-Morpholino) ácido propanesulfônico (MOPs de Carl Roth, Alemanha) solução tampão (pH 6,9). A tetraciclina-HCl usada era padrão secundário gentilmente fornecida pela Indústria Farmacêutica Bunker Ltda. O peróxido de uréia 98% usado neste trabalho foi obtido da Aldrich.

Solução I: 63 mmol L^{-1} de Eu^{3+} em 10 mL de água bi-deionizada com solução tampão MOPS (pH ~6,8).

Solução II: 21 mmol L^{-1} de Tetraciclina em 10 mL de água bi-deionizada com solução tampão MOPS (pH ~6,8).

Solução III: solução Tc-Eu, preparada misturando 10 mL da solução I em 10 mL da solução II.

Seleção de amostras:

Um total de 40 pacientes com doenças renais foram envolvidos nesse estudo, 12 estavam em tratamento peritoneal (CARD), 15 estavam em hemodiálise (HD) e 13 pacientes que não estavam em tratamento por diálise (IR).

Amostras de pacientes saudáveis, para controle, (n = 10), que não apresentavam sinais clínicos de doenças renais ou vasculares e sem histórico familiar de doenças renais foram obtidas entre doadores de sangue e funcionários do hospital. A comissão de ética local da faculdade aprovou o estudo de pesquisas no sangue.

Aproximadamente 4,3 cm³ de sangue intravenoso foi coletado. EDTA foi usado como anti-coagulante e as amostras de sangue foram conservadas á 4 0 C.

Análises Bioquímicas

As amostras de sangue dos 50 pacientes foram separadas em 4 grupos: CO (controle), IR (tratamento conservador), CAPD (diálise peritoneal) e HD (hemodiálise).

Uréia plasmática foi determinada pelo método enzimático colorimétrico usando o kit LABTEST (Labtest Diagnóstica, Lagoa Santa, MG/Brasil) em um espectrômetro semi-automático (Fotometro 5010, Boheringer Mannheim).

Peróxido de uréia foi determinado misturandose 200 μ L de sangue de cada amostra à 200 μ L de solução Tc-Eu estocada. A fluorescência da solução, incubada por 10 minutos (uma vez que a reação com o peróxido é lenta) foi imediatamente medida após a excitação das amostras (cubeta com 1 mm de espessura) com uma lâmpada de Xenônio de 300 W. e um monocromador (Jarrel Ash) de 0.25 m fixado em 400 nm com freqüência de 20 Hz obtida através de um modulador mecânico. As emissões das amostras foram analisadas com um monocromador de 0,5m (Spex) e detectadas por uma fotomultiplicadora. O sinal foi amplificado por um amplificador de sinal e freqüência EG&G 7220 e processado por um computador. Os erros relativos nas medidas de emissão estão estimados inferiores a 10%.

Resultados

Quando a solução Tc-Eu (solução III) é excitada em 400 nm (comprimento de onda no qual a tetraciclina absorve), essa energia absorvida pelo quelante é transferida do estado tripleto excitado para o íon central do Eu³⁺ (figura 1) e um espectro típico de emissão da banda principal com o pico de máxima intensidade em 612 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) é observado. A comparação entre a banda de emissão da solução Tc-Eu e a solução Tc-Eu adicionada ao sangue total (200 µL da amostra de sangue do grupo de controle (CO) misturado à 200 µL da solução de Tc-Eu estocada) é mostrada na figura 3. Nós observamos uma redução na intensidade da banda em 612 nm devido a forte absorção da luz azul pelo sangue.

Figura 3 - Espectro de emissão do Tc-Eu (solução III), e solução sangue-Tc-Eu adquirida excitando a amostra em 400 nm.

A solução de sangue foi misturada à diferentes quantidades de peróxido de uréia variando entre 0,3 mg e 1,1 mg em massa para obter uma curva de calibração de peróxido de uréia no sangue. O espectro de emissão da solução sangue-Tc-Eu com diferentes concentrações de PHU é mostrado na figura 4. Pode-se observar que a forma da banda de emissão da solução sangue-Tc-Eu é diferente da forma da banda de emissão da solução sangue-Tc-Eu-PHU.

Figura 4 - Concentração efetiva de peróxido de uréia do complexo Tc-Eu em solução de sangue.

O comprimento de onda da banda principal de emissão desloca-se aproximadamente de 612 nm para 619 nm. Também pode ser visto que a emissão do európio (III) aumenta com o aumento da concentração de PHU. A intensidade de fluorescência da solução sangue-Tc-Eu-PHU é até sete vezes maior que da solução sangue-Tc-Eu para 0,0049 g de PHU. O peróxido de uréia substitui ao menos um ligação da molécula de água com o európio.

A sensibilidade do complexo Tc-Eu em sangue apresentada nesse estudo foi de 0,0009 g de PHU.

Na figura 5 é mostrado o gráfico da variação da intensidade da banda de emissão do európio (em torno de 614 nm) com a concentração de PHU.

Modelo: Logístico: $y=A2 + (A1-A2)/(1 + (x/x0)^p)$ Chi^2/DoF = 6.39159 R^2 = 0.97441 A1 5.88286 ± 1.43777 A2 39.95071± 4.48163 x0 0.00003 ± 4.4469E-6 p 3.13205 ± 1.12987

Figura 5- Curva de calibração da concentração de PHU (µmol/L) em função da máxima intensidade da banda de emissão.

Os dados experimentais foram ajustados pela expressão:

$$Y = A2 + (A1 - A2)[1 + (x/x0)^{p}]^{-1}$$
(1)

Os valores ajustados para A1, A2, x0 e P são mostrados no quadro anterior. Usando essa equação e conhecendo a intensidade de emissão é possível obter a concentração de peróxido de uréia das amostras analisadas.

Considerando que a concentração de uréia para hemodiálises (HD) e pré-diálises (IR e CAPD) é consideravelmente mais alta que do grupo de controle (CO), nós consideramos a hipótese de que a concentração de peróxido de uréia deveria ser mais alta no sangue desses pacientes. Para provar essa hipótese a luminescência do európio nas 50 amostras de sangue foi medida e comparada. Os resultados são mostrados na tabela 1.

Amostra	Intensidade	Amostra	Intensidade
	(u.a.)		(u.a.)
HD20	11.8235	CAPD10	8.3342
HD11	8.7941	CAPD11	8.78577
HD14	8.3024	CAPD13	6.4174
HD17	9.3461	CAPD18	5.5168
HD21	6.329	CAPD12	5.039
HD24	7.6245	CAPD16	6.0759
HD12	7.1416	CAPD19	3.0106
HD18	7.257	CAPD20	6.81287
HD23	8.7201	CAPD22	6.49685
HD25	6.584	CAPD24	4.0585
HD8	5.7256	CAPD15	6.462
HD9	7.6245	CAPD23	7.022
HD10	6.2732		
HD19	6.111		
HD13	6.5141		

Amostra	Intensidade	Amostra	Intensidade
	(u.a.)		(ua)
IR215	6.9178	CO19	4.226
IR220	6.2857	CO29	4.585
IR221	5.601	C011	3.9459
IR210	7.5734	CO17	3.8057
IR216	7.4776	CO25	8.672
IR211	6.269	CO21	6.141
IR226	7.8619	CO24	5.628
IR206	7.5722	CO33	6.2176
IR207	6.8601	CO20	6.269
IR208	7.3813	CO28	5.8335
IR209	5.603		
IR220	6.2942		

Tabela 1 – Intensidade de emissão do Európio (III) e erros obtidos para a análise das amostras em quatro diferentes grupos: HD, CAPD, IR e CO e variação da concentração de peróxido de uréia nesses grupos.

Nós observamos que a intensidade da emissão do európio em torno de 614 nm é $5,53 \pm 0,46$ u.a., $6,73 \pm 0,22$ u.a., $6,17 \pm 0,47$ u.a. e $7,61 \pm 0,41$ u.a para os grupos CO, IR, CAPD e HD, respectivamente. A intensidade de emissão é 12% (CAPD) e 21% (IR) mais alta em pré-diálises e 38% (HD) mais alta em grupos de diálises comparadas com grupos CO. Um deslocamento na banda de emissão do európio foi observado comparando amostras dos grupos CO e HD (figura 6).

Figura 6 - Comparações entre a emissão do európio nas amostras de: a) grupo de controle (CO24), b) grupo diálises (HD24).

Comparando o aumento da banda de emissão com a curva de calibração da figura 5 é possível estimar a variação da concentração de PHU nas amostras de sangue. Esses resultados são mostrados na tabela 2.

Série	Uréia	a	Anova Test
	(mg/d	l)	Serie/CO
СО	<40		-
IR	104 ± 15		0.02082
CAPD	98 ± 34		0.35092
HD	138 ± 26		0.00322
Cálculo Estatístico		PHU	
(Intensida	de u.a.)	(μg/μl)	
5.53237 ±	0.46478	-	
6.72918 ±	0.22332	9.2945±1.3942	
6.16932 ±	0.46931	6.5418 ± 0.9813	
7.61138 ±	0.41234	11.7755 ± 1.7663	

Tabela 2 – Valores obtidos do cálculo estatístico e concentrações de uréia e de PHU dos grupos estudados.

Com isso verifica-se uma relação entre as concentrações de Uréia e Peróxido de Uréia nas amostras estudadas. Isso sugere que um novo método para determinação de uréia em solução usando o aumento da luminescência do complexo tetraciclina-európio após a complexação com o peróxido de uréia pode ser proposto.

Conclusão

Um aumento e um deslocamento na banda de emissão do európio com a adição de peróxido de uréia em amostras de sangue com Tc-Eu foi observado e uma curva de calibração foi obtida. As concentrações de 6,5 - 9 μ g/ μ l nas amostras prédiálises e de 12 μ g/ μ l nas amostras de diálises foram determinadas. A sonda tetraciclina-európio possibilita um método fácil, direto, barato e alternativo aos já existentes para detecção e quantificação de peróxido de uréia.

Agradecimento

Agradecemos o apoio da FAPESP, processo nº 05/57403-3.

Bibliografia

[1] V.M. Monnier, D.R. Sell, R.H. Nagaraj, S. Miyata, S. Grandhee, P. Odetti, S.A. Ibrahim. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes aging, and uremia, abetes;41 Suppl 2:36-41,(1992).

[2] Paul R. Selvin, Principles and biophysical applications of lanthanides-based probes, Annual Review of Biophysics and Biomolecular Structure, Vol. 31: 275-302 (2002).

[3] Paul R. Selvin, The renaissance of fluorescence resonance energy transfer, *Nature Structural Biology* 7(9), 730-734 (2000).

[4] Jiyan Chen, Paul R. Selvin, Lifetime and colortailored fluorophores in the micro- to milli-second time regime, *J. Amer. Chem. Soc.* 122(4) 657-660 (2000).

[5] M. A. Diaz-Garcia, S. Fernandez De Avila, M. G. Kuzyk, Energy transfer from organics to rareearth complexes, Applied Physics Letters, Volume 81, Number 21 18 (2002).

[6] L. M. Hirschy, E. G. Dose, J. D. Winefordner, Lanthanide-sensitized luminescence for the detection of tetracyclines, Anal. Chim. Acta, 147, 311-316, (1983).

[7] Y. Rakicioglu, J.H. Perrin, S.G. Schulman, Increased luminescence of the tetracyclineeuropium(III) system following oxidation by hydrogen peroxide, Journal of Pharmaceutical and Biomedical Analysis, Vol. 20, No. 1, 397-399 (1999).

[8] M.Wu, Z. Lin, A. Durkop, O.S. Wolfbeis, Timeresolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide, Anal Bioanal Chem. 2004 Oct; 380 (4) :619-26, (2004). [9] M. Wu, Z. Lin, M. Schaferling, A. Durkop, O.S. Wolfbeis, Fluorescence imaging of the activity of glucose oxidase using a hydrogen-peroxide-sensitive europium probe, Anal Biochem., 1;340(1):66-73, (2005).

[10] X. Zhu, X. Wang, C. Jing, Spectrofluorimetric determination of heparin using a tetracyclineeuropium, Probe. Anal Biochem. 15;341(2):299-307, (2005).

[11] F. R. da Silva, L.C.CourroL, L.V.G. Tarelho, L. Gomes, N. D. Vieira Jr, Enhancement of Europium Luminescence in Tetracycline-Europium Complexes in the Presence of Urea Hydrogen Peroxide, J. of Fluorescence, (2005).

[12] M. A, N. Sakata, S. Takebayashi, K. Tateishi, R. Nagai, S. Horiuchi, J. Chihara, Increased production of urea hydrogen peroxide from Maillard reaction and a UHP-Fenton pathway related to glycoxidation damage in chronic renal failure, J Am Soc Nephrol. Apr, 15 (4) : 1077-85, (2004).