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Abstract
Palladium nanoparticles supported on carbon Vulcan XC72 (Pd/C) and biocarbon (Pd/BC) synthesized by sodium boro-
hydride process were used as catalysts for ethanol electro-oxidation in alkaline media. The biocarbon (BC) from coconut 
shell with mesoporous and high surface area (792 m2 g−1) was obtained by carbonization at 900 °C and the hydrothermal 
treatment in a microwave oven. The D-band and G-band intensity ratio (ID/IG) from Raman analysis showed high disorder of 
the biocarbon, while X-ray photoelectron spectroscopy (XPS) suggests higher percentage of oxygen groups on the surface 
of biocarbon than of Vulcan XC72. From X-ray diffraction (XRD), it was observed peaks in 2θ degree related to the face 
centered cubic (fcc) structure of palladium and the mean crystallite sizes calculated based on the diffraction peak of Pd (220) 
were 5.6 nm for Pd/C and 5.3 nm for Pd/BC. Using Transmission Electron Microscope (TEM), it was observed particles 
well dispersed on both carbons support materials. The electrocatalytic activity of the materials was investigated by cyclic 
voltammetry (CV) and chronoamperometry (CA) experiments. The peak current density (on CV experiments) from ethanol 
electro-oxidation on Pd/BC was 50% higher than on Pd/C, while the current density measured at 15 min of CA experiments 
was 80% higher on Pd/BC than on Pd/C. The higher catalytic activity of Pd/BC might be related to the large surface area of 
the biocarbon (792 m2 g−1) vs (239 m2 g−1) of Vulcan carbon, the defects of the biocarbon structure and higher amount of 
oxygen on the surface than Carbon Vulcan XC 72.
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Introduction

The search for new energy sources based on the concept 
of clean and renewable energy has been intensified in the 
recently years [1–3]. Fuel cells are pointed out as a promis-
ing technology for clean energy generation and its concept is 
based on the conversion of chemical energy into electricity 

[4–6]. Liquid fuels cells (LFC) are considerably more con-
venient in terms of easy handling than gaseous hydrogen 
[7], and low temperature fuel cells based on ion exchange 
membrane can be fed with different fuels, such as methanol, 
ethanol, formic acid, etc., [8–10]. Ethanol has been recog-
nized as a promising fuel, since it can be produced directly 
from the fermentation of biomass; thus, it is a renewable fuel 
that does not promote alterations on the natural balance of 
carbon dioxide in the atmosphere [11–13].

It has been reported that the ethanol electro-oxidation 
kinetic in alkaline media is enhanced compared to the acid 
media [14, 15]. However, catalysts are required to promote 
ethanol electro-oxidation. Palladium is pointed out as the 
metal with the highest catalytic activity for ethanol electro-
oxidation in alkaline media [16–18] and catalysts are usually 
synthesized as nanoparticles in order to increase the surface 
area which increases the catalytic rate compared to the bulk 
materials [19, 20].
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Support materials for catalysts nanoparticles are very 
important in the ethanol electro-oxidation process. An 
appropriate support must attend some requirements, such 
as low cost, large surface area, high electrical conductivity 
and stability in the catalysis process [21–23]. Carbon attend 
satisfactorily all these requirements [22, 23]. Carbon with 
different structures and morphology have been investigated 
in the literature as support material for nanoparticles, such as 
carbon nanotubes [24–26], carbon nanofibers [27] graphene 
[28] and carbon black [22, 23].

Considering support materials, carbon from biomass has 
been considered as a suitable option [1, 29–31]. Among dif-
ferent sources, biomass coconut shell seems to be a good 
choice, because it is abundant, cheap, environmentally safe, 
commercially available and sustainable; moreover, it is suit-
able for the preparation of porous carbons due to its excellent 
natural structure [32, 33]. Additionally, it presents high sur-
face area ranging from 800 to 1500 m2 g−1 [33, 34], which 
is much higher than that reported for carbon Vulcan XC-72 
(239 m2 g−1) [35] (commercial support usually used). The 
mesoporous structure is highly desirable for the faster diffu-
sion of the electrolyte and larger molecules (such as ethanol) 
into the internal porous surface of carbons. Consequently, 
this structure provides numerous accessible active sites and 
facilitates efficient mass transport in the catalyst layers [36, 
37].

Thus, the coconut shell is a very interesting option to 
be used as support for catalysts nanoparticles for ethanol 
electro-oxidation.

In the present work, palladium nanoparticles were sup-
ported on high surface area porous biocarbon from coconut 
shell and on carbon Vulcan XC-72. The materials were used 
as catalysts for ethanol electro-oxidation in alkaline media. 
As far as we know, this is the first report related to the etha-
nol electro-oxidation in alkaline media on palladium nanoar-
ticles supported on porous biocarbon from coconut shell.

Experimental

The biocarbon from coconut shell was obtained by carboni-
zation at temperature of 900 °C for 40 min at heating rate of 
10 °C/min and in a second step the hydrothermal treatment 
in a microwave oven at 75 °C for 20 min in 0.3 mol L−1 
HNO3. Carbon Vulcan XC72 Cabot was previous treated 
at in a tubular oven at 800 °C under argon atmosphere as 
reported in our recently publications [38, 39].

Palladium nanoparticles were synthesized by the 
sodium borohydride reduction process [22], using 
Pd(NO3)2.2H2O (Sigma-Aldrich). In the synthesis, car-
bon Vulcan XC-72 or biocarbon from coconut shell was 
first dispersed in isopropanol/water solution (50/50, v/v). 
The mixture was homogenized under stirring and then 

the metal precursor was added to obtain 20 wt% of metal 
loading, and placed in an ultrasonic bath for 5 min. Then, 
10 mL of 0.15 M NaBH4 in 0.1 mol L−1 KOH was added 
in one portion under stirring at room temperature. The 
resulting colloidal solution was stirred for 15 min more 
before filtering and washing the solids with water and then 
dried at 70 °C for 2 h.

A Rigaku diffractometer model Miniflex II using Cu Kα 
radiation source (0.15406 nm) was used to characterize 
the synthesized materials by X-ray diffraction (XRD). The 
X-ray diffraction patterns were recorded with a step size of 
0.05° and a scan time of 2 s per step from 2θ = 20° to 90°. 
Raman measurements of carbon supports were performed 
on LAMULT (Xplora) da Horiba spectrometer with a laser 
wavelength of 532 nm.

XPS experiments were performed in a K-alpha surface 
analysis (Thermo Scientific) equipment with an Al-Kα X-ray 
source (1486.6 eV) and a flood gun. The investigated area 
was an ellipse of approximately 300 μm in diameter and 
three different areas of each sample were examined. Peaks 
were fitted using the Avantage software (Thermo Scien-
tific) using a Gaussian–Lorentzian product function and 
integrated at their full widths at half maximum (FWHM) 
for quantification. The binding energies (BE) of the spectra 
were corrected with that of adventitious carbon C 1 s (C–C, 
C–H) at 284.8 eV.

A JEOL transmission electron microscope (TEM-FEG) 
JEM-2100F operated at 200 kV was used to obtain informa-
tion about the distribution and sizes of the nanoparticles. A 
JEOL JSM6010 LA scanning electron microscope (SEM) 
was used to obtain information of the carbon morphology 
and Brunauer–Emmett–Teller (BET) analysis was performed 
in a Quantachrome, ChemBET 3000 to obtain the surface 
area of the biocarbon (792 m2 g−1).

Electrochemical measurements were done with a bipoten-
tiostat/galvanostat μStat 400 DropSens at room temperature 
and in a three-compartment electrochemical cell. A platinum 
foil was used as counter electrode and the Hg/HgO as refer-
ence electrode. A Glassy carbon (GC) with the geometric 
area of 0.031 cm2 was used as working electrodes to support 
the synthesized materials. Alumina (1 μm) was employed to 
polish the GC support before each experiment. In all experi-
mental procedures, Ultrapure water obtained from a Milli-Q 
system (Millipore®) was used.

The working electrodes were constructed by dispersing 
3 mg of the electrocatalyst powder in 900 μL of water, 100 
of μL isopropyl alcohol and 20 μL of 5% Nafion®. Then, 
the mixture was dispersed in an ultrasonic bath for 30 min. 
Shortly thereafter, aliquots of 5 μL of the dispersion fluid 
were deposited onto the GC surface (The catalyst loading 
on the working electrode was 0.47 mg cm−2) and dried for 
20 min at 60 °C. 1 mol L−1 KOH solution was used in all the 
electrochemical measurements.
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Cyclic voltammograms (CV) in ethanol-free solutions 
were carried out at the potential range of − 0.85 V to 0.1 V 
vs Hg/HgO at a scan rate of 20 mV s−1. The electrocata-
lysts were cycled for ten consecutive cycles resulting in 
the reproducible shape of the CVs. The CVs in 1 mol L−1 
KOH + 1 mol L−1 ethanol were carried out at a scan rate of 
20 mV s−1 from − 0.85 to 0.1 V. The electrocatalysts were 
cycled for three consecutive cycles and the third cycle is 
shown. Chronoamperometric experiments were carried out 
at − 0.35 V for 15 min.

Results and discussion

Figure 1 shows the XRD patterns of the electrocatalysts Pd/C 
and Pd/BC. In all XRD patterns, a broad peak at about 25º 
2θ due to the (022) reflection of the hexagonal structure of 
carbon can be seen [40, 41]. Furthermore, it was seen peaks 
related to the palladium face centered cubic (fcc) structure at 
around 2θ = 39°, 46°, 67° and 81°, corresponding to (111), 
(200), (220) and (311) planes, respectively [42, 43]. The 
mean crystallite size estimated using Scherrer equation and 
(220) peak [4, 44] was 5.6 nm for Pd/C and 5.3 nm for Pd/
BC, which is in agreement with the palladium nanoparticles 
synthesized using sodium borohydrate process [45, 46].

The carbon supports were also characterized by Raman 
spectroscopy (Fig. 2). The ratio of intensities of D-band 
(~ 1335 cm−1) and G-band (~ 1590 cm−1) was used to meas-
ure the carbon disorder [30, 47]. The G-band reveals the 
presence of graphitic in carbon materials and the D-band 
provides information about the structure defects and disorder 
in the carbon structures [30]. The ID/IG of the biocarbon was 
1.25, and of carbon Vulcan XC 72 was 0.71. Higher ID/IG values are associated with the higher disorder in the biocar-

bon support material [30, 48].
X-ray photoelectron spectroscopy analysis was performed 

to obtain chemical information of the surface of the materi-
als. Figure 3a shows the spectra of Pd/BC and Pd/C electro-
catalysts. Pd 3d region exhibits a doublet at binding energies 
of ~ 335.7 assigned to Pd 3d5\2 and 340.9 assigned to Pd 
3d3\2 with a spin-orbit splitting of about ~ 5.2 eV, in agree-
ment with the literature [49–51] and the tails on the left 
side of each peak suggest the presence of oxide palladium 
with metallic palladium on both samples. The components 
located at ~ 335.3, ~ 336.2 and ~ 337.3–336.6 eV and attrib-
uted to metallic Pd, Pd(II) and Pd(IV) phases, respectively 
[52, 53].

It was not possible to observe any considerable shift 
of the binding energies in the spectra of Pd nanoparticles 
supported on both support materials. In the Fig. 3b, it is 
possible to see the C 1 s deconvoluted spectrum. The dom-
inant peak at about 284.4 eV is assigned to graphitic car-
bon phase, whereas the peak at around 286 eV is related to 
hydrocarbons (C–H) from defects in the graphitic structure Fig. 1   X-ray diffraction patterns for Pd/C and Pd/BC electrocatalysts

Fig. 2   Raman spectra of carbon Vulcan XC 72 and biocarbon
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[54–56]. The peak at around 286.7 eV is related to the 
epoxy carbon, and at ~ 288 eV associated with the car-
bonyl carbon C=O [57]. It is important to point out that 
the graphitic carbon phase in biocarbon was ~ 77%, while 
in Vulcan carbon was ~ 73%. The O 1 s peak (Fig. 3c) 
of the biocarbon consists of ~ 3.50% of the total species, 
while on carbon Vulcan ~ 2.1%. Thus, the biocarbon has 
higher amount of oxygen on the surface than Carbon Vul-
can XC 72.

In Fig. 4a, b, the SEM micrographs of the biocarbon are 
shown. As can be seen, the biocarbon consists of high degree 
of porosity. The presence of mesoporous is characteristic of 
coconut shell [32, 33, 58]. Figure 4c shows the SEM micro-
graph of palladium supported on the biocarbon; it is possible 
to observe the presence of palladium on the surface and into 
the porous of the biocarbon. In the dark field micrograph 
from STEM (Fig. 4d), it is possible to observe nanoparticles 
from 5 to 8 nm supported on the biocarbon, and in Fig. 4e 

(a)

(b) (c)

Fig. 3   XPS results of the Pd 3d region (a), C 1 s (b) and O 1 s (c)
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(TEM micrograph) it is possible to see the palladium nano-
particle of 6 nm. From SEM micrograph (Fig. 4f), it is pos-
sible to see that carbon Vulcan XC 72 consists of clusters of 
spheres [59]. Thus, the morphology is completely different 
from the biocarbon from coconut shell. Figure 4g shows the 
TEM micrograph of palladium nanoparticles supported on 
carbon Vulcan XC 72 from 3 to 8 nm; as suggested by Scher-
rer equation the palladium particle sizes supported on both 
materials are very close and lower than 8 nm.

In Fig. 5, the results from cyclic voltammetry experi-
ments in 1 mol L−1 KOH in the potential range of − 0.85 

to 0.1 V vs Hg/HgO are shown. The shape of the CVs of 
palladium catalysts supported on both materials is similar 
and in agreement with the results from the literature [52, 60, 
61]. The region associated with palladium oxide formation 
in the forward scan from − 0.20 to 0.1 V, and the palladium 
oxide reduction at around − 0.2 V in the backward scan, was 
observed [52, 62]. Additionally, the peak at ~ − 0.4 V in the 
forward scan due to OH adsorption on palladium can be 
seen [46, 52]. Thus, as expected the carbon support from the 
different sources has not promoted modifications of the CV 
shape of palladium catalysts.

Fig. 4   SEM micrographs of biocarbon (a) and (b), Pd/BC (c), STEM micrograph of Pd/BC (d), TEM micrograph of Pd/BC (e), SEM micro-
graphs of carbon Vulcan XC 72 (f) and TEM micrograph of Pd/C (g)
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In Fig. 6, the results from CVs experiments in 1 mol L−1 
KOH + 1 mol L−1 ethanol are shown. The Pd/BC shows 
higher catalytic activity towards ethanol electro-oxidation 

than Pd/C. Using the Pd/BC, the onset potential from etha-
nol electro-oxidation was 60 mV lower than on Pd/C, and 
the peak current density from ethanol electro-oxidation was 
about 50% higher than on Pd/C. The higher catalytic activity 
might be related to the large surface area of the biocarbon 
(792 m2 g−1) vs (239 m2 g−1) of Vulcan carbon [35], which 
could increase the density of the catalyst active sites acces-
sible to reactants [63], and also due to the mesoporous struc-
tures, since it is reported that the presence of porous facili-
tate the diffusion of the electrolyte in the material [33] and 
consequently the ethanol. This enhancement in the diffusion 
may increase the mass transport process of ethanol [63] and, 
therefore, the ethanol electro-oxidation rate. The influence of 
the carbon structure in the catalyst activity for different reac-
tion can be seen in the literature [27, 29, 30, 64], which is 
associated with the surface area, defects in the structure and 
the functional groups on the carbon support. As shown in 
the XPS results, the biocarbon has higher amount of oxygen 
species on the surface than carbon Vulcan XC 72. The peak 
current density from ethanol electro-oxidation on Pd/BC 
was about twice higher than that one obtained for electro-
oxidation on Pd/CNT reported in the literature [65].

Figure 7 displays the results from chronoamperometry 
experiments at − 0.35 V during 15 min in the presence of 
1 mol L−1 ethanol + 1 mol L−1 KOH. In the CA experiments, 
the current value decreases faster in the first minutes due to 
the instability of the nanoparticles and the poisoning of the 
surface sites [4]. As in the CV experiments, using Pd/BC 
was obtained better result than on Pd/C electrocatalyst. The 
current density from ethanol electro-oxidation at the end 
of the CA experiments on Pd/BC was ~ 80% higher than 
on Pd/C. Thus, it is obvious the improvement in the cata-
lytic activity using biocarbon as support for the palladium 
nanoparticles.

Fig. 5   Voltammograms of Pd/C and Pd/BC in 1 mol L−1 KOH at 20 
mVs−1

Fig. 6   Voltammograms of Pd/C and Pd/BC in 1  moL  L−1 
KOH + 1 moL L−1 ethanol at 20 mVs−1

Fig. 7   Chronoamperometric results at − 0.35 V of Pd/C and Pd/BC in 
1 moL L−1 KOH + 1 moL L−1 ethanol
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As can be seen, in both CV and CA experiments, bio-
carbon improves the catalytic activity of palladium towards 
ethanol electro-oxidation. Thus, this suitable material 
could be used in the future works as support for bimetal-
lic or multimetallic Pd-based materials catalysts for ethanol 
electro-oxidation.

Conclusions

The result of this work showed that biocarbon from coco-
nut shell is a suitable support for palladium nanoparticles 
towards ethanol electro-oxidation reaction in alkaline media. 
Mesoporous of biocarbon was observed in the micrograph 
from SEM and according to TEM micrographs the palla-
dium nanoparticles supported on both carbon support (car-
bon Vulcan XC 72 and biocarbon) are smaller than 8 nm 
with very narrow size. The ID/IG from Raman analysis 
showed higher disorder of the biocarbon (1.25) than that of 
carbon Vulcan (0.71) and according to the BET experiments 
the biocarbon has surface area (792 m2 g−1) ~ 3.4 higher than 
carbon Vulcan XC-72 (236 m2 g−1).

In CV experiments, it was seen that the onset potential of 
ethanol electro-oxidation was 60 mV lower on Pd/BC than 
on Pd/C and the peak current density from ethanol electro-
oxidation on Pd/BC was 50% higher than on Pd/C. In the 
CA analysis, the current density measured at the end of the 
experiment was 80% higher on Pd/BC than on Pd/C. The 
enhancement in the catalytic activity might be related to 
the higher surface area, higher disorder of biocarbon, and 
also higher percentage of oxygen groups on the surface (as 
suggested by XPS analysis) and the mesoporous structures 
that facilitate the diffusion of the ethanol into the support 
material.
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