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The proper choice of the pressure number was employed to obtain the best form of the non-dimensional
conservation equations for a two-volume pressurizer.  This form and the non-dimensional constitutive models,
define the similarity numbers of scaled systems similar to the IRIS reactor pressurizer.  The similarity numbers
represent the scaled transport of mass and energy, and of the local rainout, flashing, and wall condensation mass
and energy transport.  The genetic algorithm (GA) search variables of scaled models are the geometric sizes, the
surge mass flow rate, and the heater power needed to control the pressure.  The similarity numbers are used to
define a “fitness function” to evaluate the quality of the defined variables.  The operation of the systems is
verified using a two-volume transient model to simulate a typical out-surge transient.  The agreement of the
non-dimensional pressure as the model pressure increases, and the good agreement of the non-dimensional
volumes of different scaled systems recommends this non-dimensional formalism, the GA optimization, and the
numeric simulation of a surge transient, to design scaled experiments for modeling the IRIS pressurizer.

��� ,1752'8&7,21
The IRIS reactor pressurizer is contained within the integral vessel upper head that is the
upper boundary of the vapor volume.  Because of its large volume, the IRIS pressurizer does
not need a spray system of sub-cooled liquid to reduce pressure increments due to in-surge
transients, but heaters are provided in the liquid volume of the pressurizer to control the out-
surge transients.  The liquid volume is separated from the circulating reactor coolant by a
steel structure through it surge liquid flows.  The pressurizer layout is shown in Figure 1.

�� 7+(�0$66�$1'�(1(5*<�&216(59$7,21
The upper vapor volume may contain liquid drops, and vapor bubbles may be generated in
the lower liquid volume.  The two-volume model of the pressurizer comprises the upper
volume of vapor and the lower volume of liquid assuming that the liquid drops and the liquid
condensed on the walls fall into the liquid volume, while the vapor bubbles rise to the vapor
volume [1].  The volume averaged mass and energy conservation equations, the constitutive
models, and the state equations represent the transient vapor and the liquid mass and energy.
The non-dimensional mass and energy balance equations in the two-volume pressurizer are:

( ) :&52)/Y :::PWG
G ′−′−′=′

′ (1)
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The primed variables in the Eqs. (1)-(4) are non-dimensional.  The 0 superscript parameters

are reference values.  The YP′ , OP′ , YK′ , and OK′ are the non-dimensional unknowns in these

equations.  The )/: ′ , 52: ′ , and :&: ′ are non-dimensional mass flow rates which are

obtained through specific non-dimensional constitutive equations.  The constitutive
equations, in turn, introduce new non-dimensional numbers, as defined later in this report.
All other prime variables are non-dimensional that need to be made equal in a similar model.
The similarity concept is defined later in this report.  The surge mass flow rate prime variable

is a given function that is equal in all scales.  For in-surge, the surge enthalpy, VXUJHK′ , is a

given function, that is the same in all scales.  For out-surge, the surge enthalpy prime variable

is a function of the solution, hence 
0
IJOVXUJH KKK =′ .
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The reference time used in the Eqs. (1)-(4) is the reference mass divided by the reference
mass flow rate.  Due to this reference time, the mass equations introduce only the non-
dimensional mass flow rates that, as mentioned, may introduce non-dimensional numbers
through respective constitutive equations.

The prime variables, IK′ and JK′ , in Eqs. (3) and (4) are expanded in the neighborhood of the

reference pressure, respectively, as
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Besides these non-dimensional, in the energy equations appear two additional non-
dimensional factors: the pressure number and the heat source power number, which are,
respectively, defined as
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�� 7+(�/2&$/�3+(120(1$
The closure equations in non-dimensional form represent the scaled mechanisms of rainout,
flashing, and wall condensation.  The model derived by Nusselt [2] defines the heat rate of
wall condensation as
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The non-dimensional form of Eq. (9) is

( ) ( )ZYY:&:&:& 776K414 ′−′′′=′ 0�� (10)
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where the wall condensation heat number is defined as
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The mass flow rate associated to wall condensation is

IJ
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:& K
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The non-dimensional form of the wall condensation Eq. (12) is
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Eq. (13) defines a mass flow wall condensation number as

( ) ( )( )000
:&KHDWHU:& 41411: ��= (14)

Liquid drops are generated in the vapor volume due to bulk condensation (rainout) and flow
through the liquid interface.  The drag force is neglected because the acceleration resulting
from the drop weight and the buoyancy reaction force is small in the equation of motion of a
single liquid drop.  The non-dimensional equation of motion of a liquid drop is
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The similarity number for the local phenomena of rainout is defined as the inverse of the
Froude number.  The rainout number and the Froude number are defined as

( )
2
0

0
0 1

X
J/

)U1:52 == (16)

The rainout mass flow rate is

( ) OYYGI52 $X: αρ −= � (17)

where the velocity that the liquid drop reaches the liquid interface is
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The non-dimensional form of the rainout mass flow rate Eq. (17) is
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Vapor bubbles are generated in the liquid volume due to bulk evaporation (flashing) and flow
through the liquid interface into the vapor volume.  Because the acceleration resulting from
the bubble weight and the buoyancy reaction force is large, it is necessary to include the drag
force in the equation of motion of a vapor bubble in the liquid volume.  If the bubble terminal
velocity is calculated using the Zuber formula [3],
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the non-dimensional equation of motion of a vapor bubble is
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The reference difference density ratio is fixed for a given pressure.  The Froude number, )U ,
equivalence is necessary for the rainout similarity.  The flashing number is obtained from the
ratio of square of the non-dimensional factor that appears in the drag force, to the non-
dimensional factor in the gravitational force term of Eq. (21).  The flashing number is thus
defined as
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If the bubble terminal velocity is calculated using the Wilson formula [4],
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the non-dimensional equation of motion of a vapor bubble is
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The bubble non-dimensional velocity, Oγ , is assumed, in the model pressurizer, of the same

magnitude of that in the IRIS pressurizer.  Therefore, the same Eq. (22) expression for the
flashing number is obtained.  In the second derivation, the flashing number is also defined as
the ratio of square of the non-dimensional factor that appear in the drag force, to the non-
dimensional factor in the gravitational force term of Eq. (24).

The flashing mass flow rate is

OYOEJ)/ $X: αρ= (25)

The non-dimensional form of the flashing mass flow rate Eq. (25) is
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The substitution of Eqs. (5) and (6) into the equations (3) and (4) introduce eight new non-
dimensional numbers.  As the rain-out mass flow equation Eq. (19) and the flashing mass
flow equation Eq. (26) do not introduce new non-dimensional numbers, the similarity
numbers associated with the enthalpy transport by rain-out and flashing are defined,
respectively, as
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As the mass flow wall condensation equation Eqs. (13) introduces the mass flow wall
condensation number, defined in Eq. (14), the similarity numbers associated with the
enthalpy transport by wall condensation are defined as
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�� 7+(�3,�&21752/(5
In a transient of out-surge, the pressure can be controlled by a PI controller [5].  The equation
for the heater bank control can be put in a non-dimensional form as
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As the PI controller is employed to simulate the dynamic behavior of the pressurizer, the
substitution of Eq. (35) into Eq. (4) define new similarity numbers.  These new similarity
numbers are the proportional and integral numbers, defined respectively, as
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These PI controller numbers of Eqs. (36) and (37) substitute the heat source number.

�� 6,0,/$5,7<
In general, similar systems are those represented by the same equations.  For similarity, it is
sufficient the equality of all the corresponding similarity numbers of the scaled models and
the full-scale system.  In a scale optimization, the values of the similarity numbers are used to
define the parameters of the scaled system.  Due to the impossibility to match the prime
variables (that are not the unknowns) with different pressure, it can be attained only an
approximate similarity.  The pressure numbers of the full scale and of the scaled systems with
smaller pressure are shown in the in third column of Table 1.

7DEOH�����3UHVVXUH�QXPEHU�IRU�WKH�,5,6�DQG�WKH�PRGHO�SUHVVXUL]HU�
Pressure P (MPa)      P x Vf / Hfg Ψm = P x Vfg / Hfg     ε = (1-Ψm /Ψp)

15.5 0.027366 Ψp = 0.13038 0.00

10.0 0.011016 0.12581 0.03149

5.0 0.003928 0.11636 0.1047

2.5 0.001628 0.10699 0.1794

0.5 0.000259 0.0886 0.3179

0.2 0.000096 0.0803 0.3818

All scaled models with smaller pressure can only be designed with approximate similarity,
due to the distortion in the pressure number.  The pressure number as defined in Table 1 have
“self similarity”, which is defined as the repetition of details at descending scales [6].  If the
liquid density were defined as reference (column 2), the resulting pressure number would be
much more distorted.  The last column of Table 1 shows the distortion in the pressure number
with reduced pressure.

�� *(1(7,&�$/*25,7+0�237,0,=$7,21
Genetic algorithms are optimization methods that associate a biologic “chromosome”
composed of binary numbers to each search variable [7].  The chromosomes can suffer
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mutations and can suffer mitosis.  Thus they can split and each half can recombine with
another representing the same search variable.  The chromosomes set represent the set of the
search variables.  Each generation set is evaluated through fixed attributes, the best adapted
generations has more chance of survival and of passing their genes or characteristics to future
generations.

Fixing the pressure of a scaled model, one search variable is the radius of the hemisphere as
in the IRIS pressurizer [8].  The other dimensions are in a linear proportion.  The remaining
search variables are the surge mass flow rate and the heater thermal power.  Several sets of
these variables are defined and tested by the genetic algorithm (GA).  The tests are made
using as attribute a “fitness function” (FIT) that contains the square of the differences
between respective similarity numbers of the scaled system and the full-scale pressurizer.
The fitness function is defined as
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In Eq. (38) 3
L1 represent the similarity numbers of the IRIS pressurizer and P

L1 those of the

scaled model, as defined in the Nomenclature, and LZ are weighting numbers.  The

weighting numbers used were 11410 ==== ZZZ � .

The out-surge test transient in IRIS pressurizer is driven by a mass flow rate curve having a
maximum (negative) of -54,84 kg/s [8].  An adequate PI controller can control the transient.
The maximum heat power of the proportional bank of the PI controller is 1 MW.  This
transient requires different sizes for scaled models, as defined by GA.  The parameters of the
PI controller can also be calculated by GA algorithm, and was done for the consistency test.
Nevertheless, it was observed that the GA search always matched the similarity numbers of
the controller.  Therefore, the parameters of the controller of the models with reduced
pressure were calculated from the exact equality of their corresponding similarity numbers.

The consistency of the method is verified searching the parameters of a full pressure system
similar to the IRIS pressurizer.  In the GA search, the ranges of the search variables are
shown in Table 2.  The obtained variables are shown in Table 3.

7DEOH�����5DQJHV�RI�WKH�SUHVVXUL]HU�YDULDEOHV�
Hemispheric radius Surge mass flow rate Heating power

0.31115 m to 3.1115 m 5.484 kg to 54.84 kg 10 kW to 1000.0 kW
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7DEOH�����&RQVLVWHQF\�WHVW�GDWD�IRU�WKH�,5,6�SUHVVXUL]HU�
Pressure

(MPa)

Hemispheric
radius     (m)

Surge mass flow rate

(Maximum), (kg/s)

Heating power

(Maximum), (kW)

15.5 3.1115 54.84 1000.0

15.5 (*) 3.0239 51.75 937.61

The consistency test in the PI controller numbers of the scaled system of Table 3 is shown in
Table 4.  The size data of the small-scaled models are shown in Table 5.  The similarity
numbers for the models are shown in Tables 6, 7, and 8.  An asterisk marks the consistency
data (*) in these Tables.  It is shown that the similar pressurizer in the same pressure reaches
excellent agreement in all similarity numbers for a final discrepancy of ~ 0.0138 in the final
fitness function.  Figure 2 shows the good agreement also obtained for the non-dimensional
pressure curve of the outsurge transient for the similar pressurizer with same pressure.

7DEOH����3,�&RQWUROOHU�QXPEHUV�IRU�WKH�,5,6�SUHVVXUL]HU�
Pressure

(MPa)

0
S1. 0

L1.
15.5 3.4392 9.7672e-9

15.5 (*) 3.4392 9.7672e-9
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The similarity numbers of the controller of all models matches the respective numbers of
IRIS pressurizer, presented in Table 4.  As expected, the discrepancy in the similarity
numbers increase when the pressure decreases.  It is shown by the relative deviation in the
wall condensation number, that the local phenomena most difficult to attain similarity in a
much-reduced pressure are wall condensation.  The deviations in the similarity numbers
cause the distortion in the solution of the pressurizer Eqs. (1)-(4) for the small-scaled models.

7DEOH�����6L]H�GDWD�IRU�WKH�PRGHO�SUHVVXUL]HU�
Pressure

(MPa)

Hemispheric
radius     (m)

Surge mass flow rate

(Maximum), (kg/s)

Heating power

(Maximum), (kW)

10.0 2.6434 51.1719 558.4416

5.0 1.6512 30.0 150.0

2.5 1.2394 20.0 60.0

0.5 1.5237 25.0 25.0

0.2 1.5285 10.0 6.1877

7DEOH����6LPLODULW\�QXPEHUV�IRU�WKH�,5,6�DQG�WKH�PRGHO�SUHVVXUL]HU��$��
Pressure

(MPa)

( )0
0
:&1: ( )10

:&1: ( )2
0
:&1: ( )3

0
:&1: ( )4

0
:&1:

15.5 0.32811 0.55338 0.20831 0.88148 0.15564

15.5 (*) 0.33288 0.56143 0.21134 0.89431 0.15790

10 0.51007 0.54501 0.16668 1.10551 0.06995

5 0.87080 0.61312 0.16537 1.4839 0.021687

2.5 1.2552 0.65621 0.16751 1.9114 0.0008228

0.5 3.2962 1.0011 0.25274 4.2973 0.070473

0.2 10.822 2.4808 0.65541 13.303 0.22770

Figures 3 to 7 show the degree of agreement that can be obtained for the non-dimensional
pressure curve of the outsurge transient of the similar pressurizer with reduced pressures.
Despite the fact that experiments with much reduced pressure as 0.2 MPa or 0.5 MPa, have
much distorted non-dimensional pressure, the variation in the pressure still permit
experimental measurement for code validation.  A much better experiment, the 2.5 MPa
experiment, certainly is adequate and acceptable by the licensing authority for code
validation.
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7DEOH����6LPLODULW\�QXPEHUV�IRU�WKH�,5,6�DQG�WKH�PRGHO�SUHVVXUL]HU��%��
Pressure

(MPa)

( )10
521: ( )2

0
521: ( )10

)/1: ( )2
0
)/1:

15.5 1.6866 0.63489 2.6866 0.47436

15.5 (*) 1.6866 0.63489 2.6866 0.47436

10.0 1.0685 0.32678 2.0685 0.13717

5.0 0.70408 0.18991 1.7041 0.024904

2.5 0.52280 0.13346 1.5228 0.006555

0.5 0.30370 0.076675 1.3037 0.021380

0.2 0.22924 0.060564 1.22992 0.021941

7DEOH����6LPLODULW\�QXPEHUV�IRU�WKH�,5,6�DQG�WKH�PRGHO�SUHVVXUL]HU�
Pressure

(MPa)

0:&41 � 0521: 0)/1: ),7
15.5 17.388 8.5569e5 35.805

15.5 (*) 17.641 8.3300e5 34.739 0.01381

10.0 27.031 5.8344e5 40.921 0.36950

5.0 46.147 2.0586e5 68.354 0.81692

2.5 66.517 1.2737e5 104.67 1.2915

0.5 174.68 2.7493e5 278.74 3.9064

0.2 573.49 1.8527e6 92.158 12.296
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Despite the discrepancy in these numbers, the transient simulations, presented in Figure 3 to
Figure 7, show that the non-dimensional pressure curves of the models, tend to the curve of
the IRIS pressurizer prototype when the pressure of the models increase.  It is observed that
the non-dimensional time for the minimum pressure is approximately the same in all scaled
models.

Although the largest distorted pressure is for the model with 0.2 MPa, the non-dimensional
vapor and liquid volumes still show good agreement with the IRIS transient results, as shown,
respectively, in Figures 8 and 9.
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��� )8785(�:25.
In a future work, new non-dimensional numbers will be incorporated in a new fitness
function.  These new numbers will substitute the pressure number.  To complete the
description, the derivation of these numbers is included in this section.

Using the homogeneous model, the specific volume in the vapor volume is calculated as

Y

J

IJ

IY
Y

Y
K
KKY

α








 −
= (39)

Therefore, the non-dimensional form of Eq. (39) is

( )
Y

J
IYY

YKKY
α

′
′−′=′ (40)

The variable JY′ is expanded in the neighborhood of the reference pressure as
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The substitution of Eq. (5) and Eq. (41) into Eq. (40) result,
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The substitution Eq. (42) into Eq. (3) will introduce four additional non-dimensional
numbers.  They are
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When the same procedure is done for the specific volume in the liquid volume, the same

numbers will be generated, because it involves, again, the expansion of JY′ and IK′ in the

neighborhood of the reference pressure.

��� &21&/86,216
Because of the smaller distortion in the pressure number, the form obtained of the non-
dimensional mass and energy equations shall always be used.  The derivation of non-
dimensional constitutive models is of great relevance to scale the local phenomena of rainout,
flashing and wall condensation in a scaled model.  The GA defined the model parameters
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(size, flow rate, power, and the PI control constants).  For this definition, the sum of the
square of the differences between respective similarity numbers was minimized.  This GA
optimization is a much valuable tool to obtain the parameters for the model.  Without the GA
or other good optimization algorithm, the individual designer would have much difficulty to
define the best parameters.  The agreement of the non-dimensional pressure as the model
pressure increases, and the good agreement of the non-dimensional volumes of different
scaled systems recommends this non-dimensional formalism, the GA optimization, and the
numeric simulation of a surge transient, to design scaled experiments for modeling the IRIS
pressurizer.

120(1&/$785(

$=Flow area,)U =Froude number,K =Enthalpy per unit mass,
N =Thermal conductivity,

S. =Proportional constant of the PI controller

L. = Integral constant of the PI controller

/ =Length,P =Mass,
:P,� =Mass flow rate,

:&1:1 =0 = Mass flow wall condensation number

521:1 =1 = Rainout number,

:&411 �=2 = Wall condensation heat number,

)/1:1 =3 = Flashing number,

Ψ=41 = Pressure number,

L1.1 =5 = Integral pressure control number,

S1.1 =6 = Proportional pressure control number,

( )17 521:K1 = = First enthalpy transport rainout number

( )28 521:K1 = = Second enthalpy transport rainout number

( )19 )/1:K1 = = First enthalpy transport flashing number

( )210 )/1:K1 = = Second enthalpy transport flashing number

( )111 :&1:K1 = = First enthalpy transport wall condensation number

( )212 :&1:K1 = = Second enthalpy transport wall condensation number

( )313 :&1:K1 = = Third enthalpy transport wall condensation number

( )414 :&1:K1 = = Forth enthalpy transport wall condensation number

S = Pressure,

4� = Thermal power,



INAC 2005, Santos, SP, Brazil.

S= Wall area,7 = Temperature,W = Time,
u= Velocity,9 = Volume,

αα
J

IJ

IJ Y
K
KKY[Y 









 −
== = Volume per unit mass

IJ

I

K
KK[ −

= = Steam quality

Y
Y[ J=α = Vapor (void) fraction

Oγ = Bubble non-dimensional velocity,

ρ= Density,
µ= Viscosity,
σ= Surface tension

Subscripts:    FL=Flashing,    RO=Rainout,    WC=Wall condensation,    0=Reference value
PI=Proportional-integral,    p=proportional,    i=Integral,    f=Saturated liquid    g=Saturated
vapor    l=liquid volume,        v=Vapor volume
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