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A B S T R A C T   

A numerical approach has been successfully developed to treat the self-shielding effects in the multigroup cross 
section covariance matrices of thermal reactors fueled with slightly enriched uranium. The procedure employs 
the coupled NJOY/AMPX-II systems developed at IPEN and the 238U resonance parameter covariance data from 
JENDL 3.3. Only the first two most important 238U resonances are under analyses. The direct and indirect effects 
of the 238U resonance self-shielding is taken into account. The effect of the change in the cross section is called 
the direct effect and that of the neutron flux due to change in the cross section is called the indirect effect. The keff 
uncertainty analyses applied to the IPEN/MB-01 reveal that the self-shielding effects both direct and indirect 
have an important bearing on the multigroup covariance matrix as well as on the keff uncertainty. Also, the 
indirect effects account for nearly 44% of the total uncertainty. The ERRORR module of the NJOY system is in 
severe disagreement to the developed method because it considers only the direct effect in the multigroup cross 
section covariance matrix. Such results underline the application dependence of multi-group cross section 
covariance matrix, and that ENDF FILE 33 content must be corrected due to the resonance self-shielding effects 
mainly for applications in thermal reactor fueled with slightly enriched uranium.   

1. Introduction 

Nuclear data are the results of nuclear physics experiments and 
evaluated data produced from nuclear models. In any application of 
nuclear data there is a genuine interest to use the best information that is 
available and in a convenient form. Among the several types of nuclear 
data, those describing the neutron-nuclide interactions play an impor
tant role in the nuclear science and technology areas. The nuclear 
reactor applications are their major users. 

Nuclear reactor calculations are processes that require a large 
number of input quantities including those that characterize the 
neutron-nuclide interactions. The nuclear data represent well-defined 
physical quantities that have definite but unknown true magnitude. 
The current knowledge of nuclear data is summarized by its joint 
probability density function defined so that f(qi(E), qj(E))Δqi,Δqj rep
resents the probability that the best-known numerical values of qi and qj 

lies in the range ΔqiΔqj. Thus, the basic nuclear data are usually known 
only with a certain margin of certainty and their data accuracy depends 
on the degree of sophistication with which the measurements and 

evaluation were performed. Their uncertainties are completely 
described by their covariance matrix (Peelle, 1982; Smith, 1981; Smith, 
1980; Leal et al., 2005). 

The nuclear data libraries are organized and released to the general 
public in the evaluated nuclear data files. Examples of these nuclear data 
libraries are: ENDF (Brown et al., 2018), JENDL (Shibata et al., 2011) 
and JEFF (Plompen et al., 2020) among others. These nuclear data li
braries by their turn represent the best sources of evaluated nuclear data 
employing results from experiments available worldwide in conjunction 
with nuclear data models. Particularly in the resonance region, the 
SAMMY code (Larson, 2008) plays a major role. This code has been 
widely used for nuclear data in the resolved and unresolved resonance 
region. It includes simplified versions of the R-matrix resonance 
formalism, with the Reich-Moore approach being the most used. One 
feature of the SAMMY code is the possibility of generating resonance 
parameter covariance (RPC) as part of the evaluating process. 

The nuclear data libraries share an important characteristic. They all 
have the same format; the ENDF format (Trkov and Brown, 2018). An 
evaluation for a specific nuclide is subdivided into data blocks called 
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“FILES”, identified by the MF-number. The important files for the 
development of this paper are FILE 2 which provides the data for the 
resolved resonance parameters and FILE 32 which provides the resolved 
resonance parameter covariance matrix. 

The propagation of the uncertainties of the basic nuclear data to the 
reactor responses is becoming an essential part of the reactor physics 
area. The development of the module TSUNAMI of the SCALE system 
(Wieselquist and Lefebvre, 2023) and the MCNP-WHISPER (Brown 
et al., 2016) are good examples of codes that deal with this important 
subject. Particularly, MCNP-WHISPER uses sensitivity profiles and data 
covariances to select similar benchmarks, determine bias, bias- 
uncertainty, and margin-of-subcriticality for setting the Upper- 
Subcritical-Limit. In this context the covariance matrix of the basic nu
clear data plays an important role in setting up uncertainty margins in 
several reactor responses such as the ones related to the criticality safety. 

A complete knowledge of the uncertainties in the nuclear reactor 
responses due to the basic nuclear data is essential for assessing the 
technical feasibility, safety, and economics of such systems. Further
more, vital information can be furnished to reactor designers from the 
results of the estimation of the response uncertainties. They can decide 
whether or not to improve the basic nuclear data, for example by 
including integral experiments information. Finally, the nuclear data 
uncertainty propagation is a requirement for the regulatory bodies in 
several countries (NRC, 2012). 

1.1. A brief overview of the covariance data in the ENDF FILEs 

The start points to include the uncertainty data in the ENDF FILEs 
arose with the advent of ENDF/B-IV (Garber, 1975) in 1975. Still in this 
decade, an important contribution came in 1979 with the release of 
ENDF/B-V (Perey, 1977). Besides of introducing an organizational 
structure for the covariance data, the ENDF/B-V introduced the ENDF 
FILEs 31, 32, and 33 whose contents presented the covariances, 
respectively, for the average number of fission neutrons, for the resolved 
resonance parameters, and for the multigroup cross sections. This li
brary was user-restricted and just a few nuclides was released to the 
general public. The coming decade (1980́s) showed some advances in 
the covariance data and also the development of specific routines for the 
data interpretation (Perey, 1978). Two ENDF/B-V revisions were 
released with new information and corrections. The ENDF/B-VI (Rose, 
1991) was released later on in 1991 followed by several revisions to the 
covariance FILEs. Very important progresses were made in this decade 
with the developments of MCNP-WHISPER and the TSUNAMI module of 
SCALE. JENDL 3.3 (Shibata et al., 2002) was released in 2002. To date, 
this is the only nuclear data library that released the contents of FILE 32, 
that is, the covariance matrix for the resolved resonance parameters, to 
the general public. Of major interests to this work were the covariance 
matrix for the 238U resolved resonance parameters. Also, in JENDL 3.3 
there were resolved resonance covariance data for 26 nuclides. The 
ENDF/B-VII (Chadwick et al., 2006) was released in 2006 but only FILEs 
31 and 33 were released to the general public. This decade witnessed 
several new methods employing the multigroup cross section covariance 
(FILE 33) (Vanhanen, 2015; Zwermann et al., 2011) and the utilization 
of Monte Carlo Methods employing these data in several practical ap
plications. The recently released ENDF/B-VIII (Brown et al., 2018) as its 
predecessor did not released FILE 32 to the general public; just some 
improvements in FILE 33. Similarly, JENDL 4.0 (Shibata et al., 2011) did 
not provide FILE 32 as its predecessor did. In this decade (2010́s) several 
studies employing uncertainty analyses were performed for basic 
research and power thermal reactors (Rochman et al., 2017). Some 
recent works can be found in (Sobes et al., 2021a; Sobes et al., 2021b). 

1.2. The resonance self-shielding in the multigroup covariance matrix 
(FILE 33) and the purpose of this work 

The resonance self-shielding is, by definition, the effect of reduction 

of the neutron flux in the neutron energy region close to the resonance 
energy of a specific resonance. This phenomenon occurs mainly in the 
thermal and epithermal energy region, and it is very important for 
thermal reactors fueled with slightly enriched uranium. In this case, the 
main nuclide is 238U which exhibits strong resonances in this neutron 
energy region. Fig. 1 illustrates the self-shielding phenomenon for the 
IPEN/MB-01 reactor. 

Resonance self-shielding also occurs in the construction of FILE 33; 
the multigroup covariance matrix. The phenomenon of self-shielding in 
the multigroup covariance matrix appears in the determination of the 
derivative of the group cross sections to the resonance parameter under 
consideration. The definition of the group cross section involves two 
quantities: the cross section and the neutron flux, both as a function on 
energy. When a perturbation is performed in the resonance parameter 
both quantities change. The effect of the change in the cross section is 
called the direct effect and the change in the neutron flux due to change 
in the cross section is called the indirect effect. Due to that the derivative 
of the group cross section to the resonance parameter must consider both 
effects. There are other implications to be taken into account in the 
resonance self-shielding of the multigroup covariance matrix. These 
features will be shown in the methodologies developed in this work. 

Several methods (Zwermann et al., 2011; Chiba, 2007; Wiarda et al., 
2008; Chiba, 2006; Takeda and Foad, 2013; Cullen, 2010; Hiruta et al., 
2008), and more recently (Hursin et al., 2020) and (Yu et al., 2018) have 
been proposed to address this important phenomenon in the multigroup 
covariance matrix. The first aspect that must be noted in the recent 
history is that the theme of the multigroup covariance self-shielding 
phenomenon is a contemporary subject. The second aspect is that all 
these methods rely on isolated resonances. Neither of these methods 
consider the phenomenon of resonance mutual shielding. The effect of 
the neutron flux dip due to the presence of a specific resonance might 
shield the resonance of other nuclides that have a resonance whose 
energy is close to the one under consideration and vice-versa. The third 
aspect and the most important one is that all these methods do not 
consider the indirect effect due to the neutron flux variation on the 
derivative of the group cross section with respect to the resonance 
parameter. These features will become clearer in the method proposed 
in this paper. 

Among the several types of nuclear data involved the portion perti
nent to thermal and epithermal energy region the resonance parameter 
representation of the cross section is of major concern. Particularly in 
this neutron energy region, the 238U nuclear data play a major role and it 
is the isotope mostly responsible for the phenomenon of resonance self- 
shielding. The reactor analyses even nowadays still rely mostly on the 
multigroup formalism, and an important topic to be dealt in the un
certainty analyses is the resonance self-shielding of the multigroup cross 
section covariance matrix (FILE 33). This is still an open subject and just 
few works have addressed this important phenomenon (Boyarinov et al., 
2017; Chiba et al., 2014; Leal and de Saint Jean, 2018). This paper aims 
at contributing to this subject and to present a numerical approach that 
employs the coupled NJOY/AMPX-II (Dos Santos et al., 2000) system 
developed at IPEN. The code NJOY version 2016.53 (MacFarlane, 2019) 
was employed throughout of this paper. With exception to 238U, all other 
nuclear data come from ENDF/B-VII.0 (Chadwick et al., 2006). The 238U 
nuclear data are from JENDL 3.3 because this library is the only one 
available at IAEA-NDS that contains the covariance matrix for the 
resonance parameters of this nuclide. The JENDL 3.3 resonance 
parameter covariance matrix (RPC) were generated with the KALMAN 
code (Kawano and Shibata, 1997). 

2. The multigroup covariance matrix and its self-shielding 
effects 

This section describes the propagation of the uncertainties in the 
basic nuclear data to a generic integral reactor response R. Section 2.1 
presents this methodology and its extension to the multigroup 
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formalism. Section 2.2 presents the extension of the multigroup 
covariance formalism to the thermal and epithermal energy region. 

2.1. Uncertainty of the reactor response r due to the nuclear data 
uncertainties 

The variance of the reactor response R due to the uncertainties in the 
basic nuclear data is given by: (Dos Santos, 1984): 

V(R)
R2

0
=

∫ ∫ ∫ ∫

S( r→,E)Q(E,E′)ST( r→′
,E′)dVdV′dEdE′ (1)  

where steady state and no angular dependence were for simplicity 

considered, S( r→, E) is defined as the sensitivity vector, ST( r→′
, E′) is its 

transpose, and Q(E, E′) is the relative covariance matrix (Perey, 1977) 

whose elements are: 

Qi,j(E,E′) =
cov

(
pi(E), pj(E′)

)

pi(E) • pj(E′)
; (2) 

In Eq. (2) pi and pj are two generic nuclear data, respectively at en

ergy E and E′ and cov
(

pi(E), pj(E′)
)

is its covariance. Si

(
r, E

)
is a vector 

whose components to a generic nuclear data pi are given by: 

Si

(
r,E

)
=

pi

R(t)
dR
dpi

(3)  

with 

dR
dpi

=
∂R
∂pi

+
∂R
∂ϕ

•
dϕ
dpi

(4)  

where the first term of Eq. (4) is the direct effect of the nuclear data on 
the integral response R while the second one is the indirect effect. 

Practical applications of uncertainty analysis adopt the multigroup 
formalism (Vanhanen, 2015) which requires the use of group cross 
section sensitivities and their corresponding correlation matrices. In this 
case the uncertainty analysis is made in two parts. In the first part, the 

uncertainty in the basic nuclear data field is propagated to the group 
cross sections and in the second part these uncertainties are propagated 
to the reactor responses. Let the nuclear reactor response R(t) be an 
explicit functional of some specific components of the microscopic group 
cross section vector σ defined as follow: 

σ =
[
σ1

11, σ1
12,⋯, σ1

1G, σ2
11,⋯, σj

1g,⋯, σj
lg, ..., σJJ

MG

]
(5)  

where σj
lg denotes the microscopic group cross section of nuclide l, group 

g, nuclear reaction type j, M is the total number of nuclides, G is the 
number of groups, and JJ is the number of types of nuclear data 

considered. The sensitivity coefficient vector, S
∼

(
r
∼
,E
)

given by Eq. (3) 

can be split into two parts as: 

S
(

r,E
)
= S Rσ(r) • S σp(r,E) (6)  

where S Rσ(r) is defined as the microscopic group cross section sensi

tivity vector and it is given by: 

S Rσ(r) =

[
σ1

11

R
•

dR
dσ1

11
,
σ1

12

R
•

dR
dσ1

12
,⋯,

σj
lg

R
•

dR
dσj

lg
,⋯,

σJJ
MG

R
•

dR
dσJJ

MG

]

(7)  

and S σp(r, E) is a matrix defined as: 

S
∼

σ
∼

p
∼

(
r
∼
,E

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1

σ11
1

⋅
dσ1

11

dp1
⋯

pj

σ11
1

⋅
dσ1

11

dpj
⋯

pJJ

σ1
11

⋅
dσ1

11

dpJJ

⋮ ⋱ ⋮

p1

σj
ig

⋅
dσj

ig

dp1
⋯

pj

σj
lg

⋅
dσj

lg

dpj
⋯

pJJ

σj
ig

⋅
dσj

ig

dpJJ

⋮ ⋱ ⋮
p1

σJJ
MG

⋅
dσJJ

MG

dp1
⋯

pJJ

σJJ
MG

⋅
dσJJ

MG

dpJJ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

Eq. (1), the quadratic form of the uncertainty of the response R(t), 

Fig. 1. 38U cross sections and ROLAIDS weighting flux as a function of neutron energy at 293 K.  
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can be written in terms of S Rσ
(

r
)

and S σp(r, E), given respectively by 

Eqs. (7) and (8), as: 
(σR

R

)2
=

∫

dV
∫

dV′S
∼

Rσ
(

r
∼

)
Θ
∼

(
r
∼
, r′
∼
, σ
∼

)
S
∼

T

Rσ
( r→′

) (9)  

where the matrix Θ
∼

(
r
∼
, r′
∼
, σ
∼

)
is given by: 

Θ
∼

(
r
∼
, r′
∼
, σ
∼

)
=

∫ d

E
∫ d

E′S
∼

σ
∼

p
∼

(
r
∼
,E

)
Q
∼

(E,E′)S
∼

T

σ
∼

p
∼

(
r′
∼
,E′

)
(10)  

and it is a square matrix whose elements are given by: 

Θkl
gg′

(
r
∼
, r′
∼
, σ
∼

)
=

∑

m

∑

n

∫ d

E
∫ d

E′Skm
σg

(
r
∼
,E

)
Qmn(E,E′)STnl

σg′

(
r
∼

′,E′
)

(11) 

Θ
∼

(
r
∼
, r′
∼
, σ
∼

)
represents the covariance matrix of the group cross section 

(σj
lg). The superscript kl in Eq. (11) refers, respectively, to nuclear re

action k and nuclide l. Sij
σg( r→,E) represents the elements of the matrix 

S σp(r, E) given in Eq. (8). The superscript ij in Sij

σg
( r→,E) refers to either 

the superscripts km or to nl both in Eq. (11). The sums ΣmΣn extend for all 
correlations among pieces of nuclear data of all nuclides present in the 
uncertainty analyses. 

The elements of the matrix Θkl
gg′

(
r
∼
, r′
∼
, σ
∼

)
represent the covariance of 

the group cross section for all possible neutron-nucleus interactions and 

for all nuclides presents in the analyses. It must be noted that Θkl
gg′( r→, r→′

,

σ) is reactor region dependent and the correlation among these regions is 
also taken into consideration. Thus, the two-phase procedure to extend 
the uncertainty analyses to the group formalism is completely estab
lished. 

2.2. Extension of the multigroup covariance formalism to the thermal and 
epithermal energy region 

The resolved resonance parameters for the actinide nuclides consti
tute one source of uncertainty in thermal reactor calculations. They are 
given in the ENDF FILE 2 under MT reaction number 151. The number of 
resolved resonances has increased significantly in the recent nuclear 
data libraries and the treatment of the effect of their uncertainties to the 
reactor responses is a major challenge in the field of reactor physics. In 
order to extend the uncertainty analysis in the multigroup formalism 
given by Eqs. (9) through (11) for thermal and epithermal energy region 
consider, for simplicity, just one single actinide nuclide and an infinite 
medium. Then, Qi,j given by Eq. (2) will depend only on the resolved 
resonance parameters and their corresponding covariance matrix for the 
actinide nuclide under consideration. Furthermore, the dependence of 
Qi,j on E, and E′ is taken in a discrete way for the same or different res
onances as Qi,j(E0i, E′

0j). Here, E0i and E′
0j represent, respectively, the 

resonance energies for the resonances i in group g, and for the reso
nances j in group g′. The groups g and g′ might contain a single, a set or 
parts of resonances. Consequently, the integrals involving E, and E′ in Eq. 
(11) are taking into consideration as a sum for all possible resonance 
contributions in groups g and g′. Considering all these simplifications Eq. 
(19) can be rewritten in a convenient form and in a consistent way to the 
formalism given in Leal and de Saint Jean (2018) as: 

Θk
g,g′ =

∑

i

∑

j

dσk
g

dpi
cov

(
pi, pj

) dσk
g′

dpj
(12)  

where the subscript l in σk
g and σk

g′ has been dropped since there is only 
one nuclide under consideration, the spatial dependence was omitted for 

simplicity, Θkl
g,g′( r→, r→′

, σ) was replaced by Θk
g,g′ and the superscript k 

represents the nuclear reaction under consideration in the resolved 
neutron energy region (total, elastic, (n,γ) or (n,f)). Θk

gg′ is referred as the 
elements of the multigroup cross section covariance matrix and is given 

in FILE 33 of ENDF and cov
(

pj, pj

)
is the resonance parameter covari

ance matrix given in FILE 32 of ENDF. 

Since cov
(

pj, pj

)
is a basic nuclear data set known a priori and pro

vided in FILE 32 of ENDF, the question to determine the elements of the 
multigroup cross section covariance matrix (Θk

g,g′) reduces to the one of 

determining the derivatives of the group cross section (σkg) with respect 
to the resonance parameter (pi) and (pj). 

The group cross section σk
g follows its standard definition (Bell and 

Glasstone, 1979) and is given by: 

σk
g =

∫ Eg+1
Eg

σk(E)Φ(E)dE
ϕg

, (13)  

where σk(E) and Φ(E) are, respectively the energy dependents, micro
scopic cross section for the nuclear reaction k and the neutron flux or 
spectrum in the reactor region under consideration, Eg and Eg+1 repre
sent, respectively, the lower and upper neutron energy bounds of group 
g, and ϕg is the neutron flux group defined as: 

ϕg =

∫ Eg+1

Eg

Φ(E)dE (14) 

The derivative dσkg

dpl
; l equal to either i or j in Eq. (12), can immediately 

be found from Eq. (13) as: 

dσk
g

dpl
=

1
Φg

∫ (
∂σk(E)

∂pl

)

Φ(E)dE+
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Direct Effect

1
Φg

∫

σk(E)
(

∂Φ(E)
∂pl

)

dE −
σkg

∫(∂Φ(E)
∂pl

)
dE

Φg
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Indirect Effect

(15) 

Similarly, to sensitivity analysis problems, the first term of Eq. (15) 

can be interpreted as the direct effect of the nuclear data pl on dσk
g

dql
. The 

second and third terms of this equation are the indirect effect, i.e., the 

effect of the neutron flux Φ(E) on dσk
g

dql
. The direct effect is easier to found 

because in the thermal and epithermal energy region σk(E) is an explicit 
function of pl. Contrary to that Φ(E) is an implicit function of pl since the 
effect of its uncertainty is propagated to the cross section σk(E) which by 
its turn is propagated to Φ(E) through the solution of the neutron 
transport equation which depends on σk(E). Eqs. (12) through (15) are 
the basic equations to obtain the multigroup cross section covariance 
matrix. 

The great difficult to apply Eq. (15) in thermal reactors fueled with 
slightly enriched uranium is the determination of Φ(E) and consequently 
its derivative ∂Φ(E)

∂pl
. The neutron flux or spectra (Φ(E)) is strongly appli

cation dependent and might impose severe restriction on the determi

nation of dσk
g

dpl
. 

3. The multigroup covariance methodologies applied to the 
IPEN/MB-01 reactor 

The following developments consider the methodologies for the 
determination of the multigroup covariance matrix only for 238U since 
this actinide nuclide is the main contributor to the resonance self- 
shielding phenomenon in the epithermal neutron energy region of 
light water reactors fueled with slightly enriched uranium. This nuclide 
possesses a huge amount of resolved resonances and due to that the 
analyses will be restricted to the neutron energy groups that contains its 
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most important resonances. The methodologies employed to analyze the 
effects of the self-shielding in the multigroup covariance matrices shown 
in Fig. 2 were based in the coupled systems NJOY/AMPX-II (Dos Santos 
et al., 2000) developed at the Nuclear Engineering Center of IPEN/ 
CNEN-SP. An epithermal neutron group energy structure of 54 groups 
(Barhen et al., 1978) is employed throughout of the analyses. However, 
only groups (11) and (15) of the NJOY 54 multigroup structure will be 
under consideration here. Group (11) spans the neutron energy interval 
from 6.4763 eV to 8.3012 eV while group (15) from 17.60 eV to 22.60 
eV. Groups (11) and (15) contain, respectively, the most important 238U 
s-wave resonances located at 6.67 eV and 20.871 eV. The applications of 
all methodologies to obtain the multigroup covariance matrix developed 
in this work will be applied to the IPEN/MB-01 research reactor facility. 
This reactor is a thermal critical facility which consists of a 28 × 26 array 
of UO2 fuel rods, 4.3% enriched and clad by stainless steel (type 304) 
inside of a light water tank. The IPEN/MB-01 reactor has been part of 
several benchmark activities in the NEA/OECD projects IRPhE (Inter
national Reactor Physics Experiments) and ICSBEP (International Crit
icality Safety Benchmark Evaluation Project.). A more detailed 
description of the IPEN/MB-01 reactor can be found in references (Dos 
Santos et al., 2004; Dos Santos et al., 2005). 

The calculation methodologies to obtain the multigroup covariance 
matrices shown in Fig. 2 exploits the capabilities of the NJOY system to 
get the linearized cross sections employing the Reich-Moore formalism 
(Arbanas et al., 2017) and to perform the cross-section Doppler 

Broadening at specific temperatures. The ROLAIDS module of AMPX-II 
(Green et al., 1976) is an epithermal cell code and employs a collision 
probability method in conjunction with pointwise cross sections from 
NJOY. It takes into account both space and energy self (and also mutual) 
shielding to get the neutron flux (Φ(E)). As will be shown the neutron 
flux from ROLAIDS will be of major importance to get the derivative 
∂Φ(E)

∂pl 
and consequently the indirect effects on the determination of de

rivatives dσk
g

dpi 
given by Eq. (15). 

All ROLAIDS runs employed the unit cell of the core of the IPEN/MB- 
01 reactor as shown in Fig. 3. The IPEN/MB-01 unit cell is composed of a 
fuel region containing UO2, a homogenized region composed of the fuel 
cladding (SS-304) and gap, and a third region filled with light water. The 
fuel region was further divided into 10 concentric equal area zones to get 
the resonance self-shielding effects inside of the fuel pellet. The 
ROLAIDS model is comprised of twelve zones which are numbered 
starting from the cylindrical cell center. Zones 1 through 10 refers to the 
UO2 region and R1 through R10 as shown Fig. 3 are their corresponding 
radius. Zones 11 and 12 correspond, respectively to the homogenized 
clad and the light water moderator. This unit cell employs the Wigner- 
Seitz approximation (Bell and Glasstone, 1979) and was run in the 
equivalent cylindrical geometric shown in Fig. 3 with white boundary 
condition at the outermost zone. The neutron flux Φ(E) and the average 
group cross sections in the epithermal neutron energy region are 
calculated for each one of the twelve IPEN/MB-01 zones. 

Four distinct methodologies were developed to obtain the multi

Fig. 2. The calculation methodology flowchart.  
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group cross section covariance matrices for 238U employing the flow
chart shown in Fig. 2. These methodologies will be applied to the IPEN/ 
MB-01 reactor. The first three methodologies can be applied to any one 
of the 10 zones of the IPEN/MB-01 unit cell shown in Fig. 3. The index i 
specifying the zone number was omitted for simplicity. This is a practical 
application, and it will show the difficulties to get the multigroup 
covariance matrices in a real situation. All methodologies use the 
covariance matrix from FILE 32 of JENDL3.3. This library provides 
covariance data for the parameters of twenty-six 238U resolved 
resonances. 

The first methodology employs the NJOY built-in approach to 
calculate the multigroup covariance matrices. The RECONR, BROADR, 
and UNRESR modules are used to reconstruct, to Doppler broaden the 
238U cross sections, and to calculate the self-shielding effects in the 
unresolved resonance region, respectively. The pointwise cross sections 
produced by BROADR are transferred to the ROLAIDS module of AMPX- 
II by the in-house interface module BRDROL (Dos Santos et al., 2000). 
The self-shielding treatment of the actinide resolved resonances in the 
neutron energy region from 0.625 eV to 5.53 keV is carried out by 
ROLAIDS thanks to the unit cell of the IPEN/MB-01 reactor shown in 
Fig. 3. The neutron flux (Φ(E)) as a function of the neutron energy and 
for a specific zone of the unit cell is used by the NJOY modules GROUPR 
and ERRORR as a weighting function. These NJOY modules transform 
pointwise cross section from UNRESR and the JENDL 3.3 FILE 32 into 
multigroup cross sections and multigroup cross section covariance 
matrices. 

The second methodology considers Eq. (12) and the derivative dσk
g

dpi 

calculated directly from Eq. (15). A numerical approach was adopted to 
get the derivatives ∂σk(E)

∂pl 
and ∂Φ(E)

∂pl 
considering two perturbed cases: The 

238U resonance parameters in groups (11) and (15) are individually 
perturbed (one group and one resonance parameter each time) by a 
small amount (+σ and − σ values). These perturbed 238U libraries were 
employed individually (one perturbation each time) for the subsequent 
NJOY and ROLAIDS runs. The derivatives ∂σk(E)

∂pl 
and ∂Φ(E)

∂pl 
are calculated 

numerically as: 

∂σk(E)
∂pi

=
Δσk(E)

2 • (Δpi)
=

σk+(E) − σk− (E)
2 • (p+

i − p−
i )

(16)  

and 

∂Φ(E)
∂pi

=
ΔΦ(E)

2 • (Δpi)
=

Φ+(E) − Φ− (E)
2 • (p+

i − p−
i )

(17)  

where the superscript + and − represents, respectively, the ( + σ and −

σ) values of the quantity under consideration in Eq.ś (16) and (17). 
Some other auxiliary programs were written to discretize σk(E), 

∂σk(E)
∂pl

, and ∂Φ(E)
∂pl 

in the same energy grid and to perform the integrals of 
Eq. (15) employing the Simpson’s rule (Velleman, 2005). The de

rivatives dσk
g

dpi 
were calculated for the capture, scattering and total cross 

sections for groups (11) and (15), and for the resonance parameters Γn 
(neutron width) and Γγ (capture width). The direct and the indirect ef

fects on the determination of dσk
g

dpi 
implicit in Eq. (15) are taking into 

consideration in a straightforward fashion. 
The third methodology considers Eq. (12) and the perturbed group 

cross sections given by Eq. (13) from the ROLAIDS output. The deriva

tive dσk
g

dpi 
as in the second methodology is calculated numerically consid

ering two perturbed cases for the resonance parameters. The net results 
after this sequence of calculations are perturbed values for the 238U 

group cross sections (σk
g) from ROLAIDS. dσk

g
dpi 

is calculated numerically as: 

dσk
g

dpi
=

Δσk
g

2 • (Δpi)
=

σk+
g − σk−

g

2 • (p+

i − p−
i )

(18)  

where the superscripts + and − have the same meaning as before. This 
derivative is calculated for the capture, scattering and total cross sec
tions for groups (11) and (15), and for the resonance parameters Γn and 

Γγ. This numerical procedure to calculate dσk
g

dpi 
already considers the direct 

and indirect effects since when the resonance parameter is altered, it 
directly changes the cross section σk(E) and the neutron flux Φ(E)
needed in Eq. (13). It changes σk(E) because this quantity is an explicit 
function of the resonance parameters, and it changes the neutron flux 
(Φ(E)) because this quantity is the result of the solution of the integral 
transport equation that depends on σk(E). 

The fourth methodology considers the utilization of the MCNP6 code 
(Werner et al., 2018) and the ACER module of the NJOY system as 
shown in Fig. 2. This NJOY module was employed to build the 238U li
brary from JENDL 3.3 for MCNP6. The remainder nuclides needed for 
the MCNP6 runs arose from its built-in library based on ENDF/B-VII.0 
(the isotopes in the ACER library have the suffix.70c). The tempera
ture considered was 293 K for all MCNP6 cases. The purpose of the 
fourth methodology is to provide independent and very accurate results 
to verify the validity of the derivative of the cross sections to the reso
nance parameters and the multigroup covariance matrices provided by 
the 2nd and 3rd methodologies. The MCNP6 model considers the 3-D 
benchmark model (Dos Santos et al., 2018) and models explicitly the 

Fig. 3. Unit cell of the IPEN/MB-01 reactor.  
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fuel rods and their internal parts (UO2, cladding and gap, alumina re
gion, and spacer tube), guide tubes as well as the control rods, the lower 
grid plate, the moderator and the radial and axial reflectors composed of 
light water. The control rods were all aligned and positioned to the 
measured axial critical position. Tallies were requested for the 238U 
capture and elastic reaction rates and for the neutron flux for the entire 
fuel region and for the neutron energy intervals corresponding to 
groups11and 15. These tallies were calculated for the whole IPEN/MB- 
01 core. The average group cross sections (capture and elastic) for 
groups 11 or 15 were obtained accordingly as: 

σk
g =

ReactionRateTallyforreactionkandgroupg
NeutronFluxTallyforgroupg

•
1

238UNumberDensity
(19) 

MCNP6 runs considered the (+σ and − σ) perturbations values in the 
238U resonance parameters as before and the derivatives dσkg

dpi 
were found 

as: 

dσk
g

dpi
=

(σk+
g − σk−

g )

2 • Δpl
(20)  

where now σk+
g and σk−

g are from Eq. (19). 
The MCNP group average cross section given by Eq. (19) and 

consequently the derivatives dσkg

dpi 
given by Eq. (20) are averaged for the 

whole fuel region. The third methodology (ROLAIDS) were compatibi
lized to that of MCNP6 by calculating its average 238U cross sections for 
the entire fuel pellet region and for each group as: 

σk
g =

∑10
i=1(σk

g)i•Φig • Vi
∑10

i=1Φig • Vi
(21)  

where σk
g is the average 238U cross sections for the entire fuel pellet 

(zones 1 through 10), k represents the 238U reaction rate, g is the neutron 
group, (σk

g)i, •Φig, and Vi are, respectively, the 238U group cross section, 
the neutron group flux, and the volume, all for pellet zone i. Subse
quently the cross sections σk

g calculated for the (+σ and − σ) perturba

tions are replaced in Eq. (20) to get the ROLAIDS estimate of dσk
g

dpi
. 

4. Numerical results applied to the IPEN/MB-01 reactor 

This section has five purposes. First to report the values of the de
rivatives of the 238U capture and elastic cross sections to the resonance 
parameters Γγ and Γn and the 238U multigroup covariance matrices for 
the same neutron reactions. Second to present the self-shielding factor 
for these derivatives and for the multigroup covariance matrices. Third 
to compare the NJOY covariance matrix to those of the 2nd methodol
ogy. Fourth, to compare these quantities derived by the developed 
methodologies to those derived by MCNP6. Fifth, to perform the keff 

uncertainty analyses of a critical configuration of the IPEN/MB-01 
reactor. The analyses are performed in the neutron energy groups that 
incorporate the most two important low-lying 238U resonances and 
located respectively at 6.67 and 20.8710 eV. Fig. 1 shows these reso
nances. The reason of the choice of these two 238U resonances is their 
crucial importance for the determination of the IPEN/MB-01 keff and its 
uncertainty. As mentioned previously in Section 3, group (11) spans the 
neutron energy interval from 6.4763 eV to 8.3012 eV while group (15) 
from 17.60 eV to 22.60 eV. Group (11) incorporates the first 238U 
resonance while group (15) the second one. The precisions employed by 
NJOY to reconstruct and to Doppler Broaden the 238U cross section were 
10-3 for 0 K and 293 K, 10-4 for 600 K and 900 K, and 5x10-5 for 1200 K. 
The precision employed by ROLAIDS to get the neutron flux and 
consequently the group average cross sections was 10-5 for all cases. The 
symbols DGN and DGG employed in this section represent that the de
rivatives in consideration were taken respectively to Γn and Γγ. 

All the numerical results from Sections 4.1 through 4.4.2 refer to the 

UO2 innermost zone (zone number 1) of the IPEN/MB-01 unit cell as 
shown in Fig. 3. This innermost zone has the strongest 238U resonance 
self-shielding effects. 

The MCNP6 models a 3-D model of the IPEN/MB-01 reactor and its 
cross section derivatives and multigroup covariance matrices refer to the 
whole UO2 fuel rods in the core. Equations (20) and (21) of Section 3.0 
are employed to make the results of the 3rd methodology compatible to 
those of MCNP6. This comparison is shown in Section 4.4.3 and Section 
4.5 shows the IPEN/MB-01 keff uncertainty analyses. 

The criterion for the choice of the size of the perturbation in the 
resonance parameters was the agreement between the calculated values 
of the derivatives of the group cross section dσkg

dpi 
arising from the 2nd and 

3rd methodologies. The goal was to find an agreement lower than 1% for 
all derivatives. As shown in Table 1, this goal was attended for a 
perturbation of 0.0625% in the resonance parameters and it was applied 
to 2nd and 3rd methodologies to get the derivative dσkg

dpi
. 

The resonance parameter covariance data of interest to this work 
extracted from FILE 32 of JENDL 3.3 are shown in Table 2. The only 
coupling allowed is from the first resonance to the second one and vice- 
versa. This simplified model allows the application of the developed 
methodologies because it considers just the two aforementioned 238U 
resonances, the interpretation of each term of the multigroup covariance 
matrix given by Eq. (12), and the intercomparison of all methodologies 
developed in this work. The data of Table 2 are absolute values, and the 
nominal values for the resonance parameters are given in Table 3. 
JENDL 3.3 does not report any uncertainty to the resonance energy E0 
and this resonance parameter was kept in Table 1 just for consistency to 
its FILE 32. Table 2 is a symmetric square matrix whose diagonal ele
ments represent the variance of the resonance parameters. The diagonal 
elements are necessarily positive because their square root represent the 
uncertainty of the corresponding resonance parameters given in Table 3. 
Furthermore, Table 2 shows that there are correlations between Γn and 
Γγ in the same group and between groups (11) and (15). The covariance 
between Γn and Γγ in group (11) is positive and consequently these 
parameters are classified as correlated. The same does not occur for 
group (15) since the covariance between Γn and Γγ is negative and 
consequently they are anti-correlated. The covariance between groups 
shows that Γn is correlated and Γγ is anti-correlated. Finally, Γn from 
group (11) and Γγ from group (15) are anti-correlated and conversely, 
they are correlated. These aspects will be important for the in
terpretations of the results of the multigroup covariance matrix. 

4.1. The determination of the derivatives ∂σk(E)
∂pl 

and∂Φ(E)
∂pl 

The derivatives ∂σk(E)
∂pl 

and ∂Φ(E)
∂pl 

were determined according to the 
numerical approach described for the 2nd methodology in Section 3.0. 
Eqs. (16) and (17) in conjunction with the flowchart shown in Fig. 2 

Table 1 
Relative difference between 2nd and 3rd methodologies (%).   

1-σ perturbation values 

1% 0.5% 0.25% 0.0625% 

dσγ
11

dΓγ  

− 14.53  − 28.16  1.71 − 3.20E-02 

dσs
11

dΓγ  

− 4.53  − 8.01  − 0.58 0.00E + 00 

dσt
11

dΓγ  

− 9.71  − 18.57  0.60 − 1.63E-02 

dσγ
11

dΓn  

− 0.939  − 2.75  2.26 1.32E-01 

dσs
11

dΓn  

− 2.834  − 7.29  − 2.80 − 1.24E-01 

dσt
11

dΓn   

− 1.647  − 1.90  3.09 1.51E-01  
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were extensively employed to obtain these derivatives. Initially, it has 
been found that the derivative ∂σk(E)

∂pl 
independently of the neutron reac

tion and resonance parameter considered has a symmetric shape 
centered in the resonance energy E0. Fig. 4 shows representative results 
for the derivative of the 238U (n,γ) cross section at 293 K and 600 K for 
the resonances located at 6.67 eV (Fig. 4(a)) and at 20.871 eV (Fig. 4 
(b)). Several details can be noted in this figure. The derivative shapes are 
not necessarily equal to that of the corresponding cross sections. ∂σ(n,γ)

∂Γn 

for both resonances and ∂σ(n,γ)
∂Γγ 

for the resonance located at 20.871 eV are 
always positive and have similar shapes to the corresponding cross 
section in their whole neutron energy domains. However, the same does 
not occur for ∂σ(n,γ)

∂Γγ 
for the resonance located at 6.67 eV shown in Fig. 4 

(a). This derivative shows a shape completely different from that of the 
σ(n, γ) cross section. It shows alternate signs (positive and negative) 
depending on the neutron energy intervals, and it has two additional 
small peaks and a pronounced dip. 

The Doppler Broadening of the derivatives ∂σ(n,γ)
∂Γn 

and ∂σ(n,γ)
∂Γγ 

shown in 
Fig. 4 has the same characteristics of the corresponding cross sections. 
The resonance width increases for both derivatives. The resonance peak 

decreases for ∂σ(n,γ)
∂Γn 

and increases for ∂σ(n,γ)
∂Γγ 

since this derivative is 

negative in the neutron energy close to E0. The two additional peaks of 
∂σ(n,γ)

∂Γγ 
decrease in magnitude but they extend their domain into a wider 

neutron energy region. 
Fig. 5 shows the derivatives of the 238U elastic and total cross sections 

relative to Γγ and Γn at 293 K for its resonances located at 6.67 eV (Fig. 5 
(a)) and 20.871 eV (Fig. 5(b)). It can be noted that the derivatives of the 
238U total relative to Γγ and the elastic cross sections relative to Γn are 
always positive. Also, it can be noted further that the derivative of the 
238U elastic cross section relative to Γγ is always negative. Contrary to 
that, the derivative of the 238U total cross section relative to Γγ similarly 
to ∂σ(n,γ)

∂Γγ 
in Fig. 4(a) shows alternate signs (positive and negative) 

depending on the neutron energy intervals, it has two additional small 
peaks and a pronounced dip. 

Fig. 6 shows ∂Φ(E)
∂Γγ 

and ∂Φ(E)
∂Γn 

for the resonances, respectively, located at 
6.67 eV (Fig. 6(a)) and at 20.871 eV (Fig. 6(b)). These derivatives were 
obtained employing Eq. (17). Contrary to the case of ∂σk(E)

∂pl 
these de

rivatives do not have a symmetric shape centered in the resonance en
ergy E0. The antisymmetric effect of the scattering cross section on ∂Φ(E)

∂Γγ 

for the resonance located at 6.67 eV can be observed on the left-hand 
side of Fig. 6(a). It can be noted a small peak due to the abrupt drop 
of the scattering cross section in this neutron energy region. As shown in 

Table 2 
Resonance parameter covariance matrix for the first and second 238U resonance. (eV2).   

Group (11) Group (15)  

First Resonance Second Resonance  
Resonance Energy 
(E0) 

Neutron Width 
(Γn)

Gamma Width 
(Γγ)

Resonance Energy 
(E0) 

Neutron Width 
(Γn)

Gamma Width 
(Γγ)

E0 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00 
Γn  9.21014E-10 1.68979E-08 0.00000E + 00 1.58580E-08 − 5.04550E-08 
Γγ   3.10649E-07 0.00000E + 00 2.88346E-07 − 9.11603E-07 
E0    0.00000E + 00 0.00000E + 00 0.00000E + 00 
Γn     2.99375E-06 − 7.39363E-06 
Γγ      2.01901E-05  

Table 3 
Resonance parameters for the first and second 238U resonance (eV).  

First Resonance Second Resonance 

Resonance Energy 
(E0)0 

Neutron Width 
(Γn)

Gamma Width 
(Γγ)

Resonance Energy 
(E0) 

Neutron Width 
(Γn)

Gamma Width 
(Γγ)

6.67000E + 00 1.49000E-03 2.30000E-02 2.08710E + 01 1.02600E-02 2.29100E-02  

Fig. 4. Derivatives of 238U (n, γ) cross section relative to Γγ(DGG) and Γn (DGN).  
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these figures, these two derivatives are always negative and becomes 
very close to zero in the neutron energy region close to E0. This will be 
the self-shielding effect on the cross sections in the second term of Eq. 
(15) but now the derivative ∂Φ(E)

∂pi 
(pi equal to Γγ or Γn) is the main agent of 

this phenomenon. Finally, ∂Φ(E)
∂Γγ 

and ∂Φ(E)
∂Γn 

have a constraint to go to zero 
when the neutron energy is far away from the resonance energy. Fig. 6 
shows this behavior clearly. 

4.2. The determination of the derivativesdσk
g

dpi 

The determination of the derivative of the group cross section to the 

resonance parameter dσk
g

dpi 
is carried out employing the 2nd and 3rd 

methodologies as described in Section 3.0. The 2nd methodology in
volves the substitution of ∂σk(E)

∂pl
, ∂Φ(E)

∂pl
, and Φ(E) in Eq. (15) and the per

formance of the integrals employing the Simpson rule. The 3rd 
methodology considers the group cross sections for groups (11) and (15) 

calculated by ROLAIDS and Eq. (13). In this case dσk
g

dpi 
is calculated in a 

straightforward fashion employing Eq. (18). 

Table 4 shows dσk
g

dpi 
for group (11) employing 2nd Methodology and 

3rd Methodology. Here this derivative was calculated at 293 K for the 
capture, elastic, and total cross sections relative to the resonance pa
rameters Γn or Γγ. Part 1, Part 2, and Part 3 refer, respectively to the first, 
second, and third terms of Eq. (15). The nomenclature TOTAL in the fifth 
column represents the sum of Part 1, Part 2 and Part 3. Initially, note 

that dσk
g

dpi 
is an additive quantity. The derivative of the total cross section to 

the resonance parameters is the sum of the corresponding derivatives of 
the capture and the elastic cross sections. Moreover, a good consistency 
between the 2nd and 3rd methodologies can be noted according to the 
small deviation between them shown in last column of Table 4. 

According to Eq. (15), Part 1 involves the integral of the product of 
the derivative ∂σk(E)

∂pl 
and the neutron flux Φ(E) in the group energy region 

under consideration. The neutron flux Φ(E) is always a positive quantity 
and consequently the sign of Part1 will depend on the sign of ∂σk(E)

∂pl
. Fig. 4 

(a) shows that the derivative for the 238U neutron capture cross section 
to Γn is always positive and consequently, its Part 1 is also positive. The 

Fig. 5. Derivatives of 238U elastic and total cross section relative to Γγ(DGG) and Γn (DGN).  

Fig. 6. Neutron flux derivatives relative to Γγ(DGG) and Γn (DGN).  
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same does not occur for the derivatives relative to Γγ. This derivative as 
shown in Fig. 4(a) for the neutron capture cross section can assume 
positive and negative values and the final sign of the integral in group 
(11) will depend on the competition between its positive and its negative 
parts. It has been found as shown in Table 4 that the Part 1 is negative 
only for derivative of the elastic cross section to Γγ. All other cross 
section derivatives relative to Γγ are positive. 

Part 2 has the integral involving the product of the neutron cross 
section (σk(E)) and the ∂Φ(E)

∂pl 
in the neutron group under consideration. 

The neutron cross section is always a positive quantity and the final 
value for the sign of Part 2 will depend on the sign of ∂Φ(E)

∂pl
. Fig. 5(a) 

shows that the sign of ∂Φ(E)
∂pl 

is always negative and consequently the sign 
of Part 2, as shown in Table 4, will be negative independently of the 
neutron reaction type and the resonance parameter under consideration. 
The same reasoning applies to Part 3 but in this case the integral involves 
only ∂Φ(E)

∂pl
. As stated, ∂Φ(E)

∂pl 
is always negative but there is a minus sign in 

the third term of Eq. (15) (Part 3) and therefore, as shown in Table 4, 
Part 3 will be always positive independently of the neutron reaction type 
and the resonance parameter considered since all other quantities that 

multiply the integral are positive. The final sign for dσk
g

dpi 
will depend on 

the competition of the sum of these three parts. The same reasoning 
applies to group (15). In this case the considerations previously made for 
the signs of ∂σk(E)

∂pl 
have to be taken into consideration. 

Table 5 shows show, respectively dσk
g

dΓn 
and dσk

g
dΓγ 

for groups (11) and (15) 

as a function of temperature. These data along with their uncertainties 
are shown in a graphical form in Figs. 7 and 8. These results were based 
on the 3rd Methodology; (ROLAIDS). The uncertainties in these de
rivatives due to the NJOY linearization and Doppler Broadening pre
cisions are estimated to be ~ 1.2%. Initially, according to Figs. 7 and 8 
for the same group and resonance parameter the capture and total cross 
section derivatives have a similar shape. Also, Figs. 7 and 8 show that 
with exception to the derivative of the scattering cross section relative to 
Γγ in group (15) all other derivatives are positive and increase from 0 to 
293 K. Particularly, the derivative of the scattering cross section relative 
to Γn in group (11) stays closely inside of the 1-σ range of the calculated 

uncertainty. dσk
11

dΓn 
for the capture and total cross sections stays nearly 

constant between 293 and 900 K and then shows a sharp increase. dσk
15

dΓγ 
for 

the capture and total cross section increases steadily up to 900 K and 
then decreases at 1200 K. Conversely, the derivative of the scattering 
cross section to Γγ in group (15) stays nearly inside of the 1-σ range of 
the calculated uncertainty from 293 K to 900 K and then decreases at 
1200 K. The data on Table 5 will be employed subsequently for the 
determination of the multigroup covariance matrix. 

4.3. The self-shielding factors fordσk
g

dpi 

The resonance self-shielding phenomenon is classic in thermal re
actors fueled with slightly enriched uranium and occurs due to the 
neutron flux depression in the neutron energies close to the thermal and 
epithermal energy region. Fig. 6 shows this phenomenon for the unit cell 
of the IPEN/MB-01 reactor in the first innermost zone of the UO2 fuel. It 
is clearly seen the “dips” of the neutron flux in the neutron energy re
gions close to the resonance energies E0. 

In the classical case of the determination of the multigroup cross 
sections as given by Eq. (13) the quantities involved: cross sections and 
neutron flux both as a function of the neutron energy are positive 
quantities and necessarily the multigroup cross section resulting from 
this equation will also be positive. The self-shielding effects on the cross 
sections are already implicit when the integrals are performed. 

The self-shielding phenomenon in the multigroup covariance 
matrices is much more complex. Consider the three Parts of Eq. (15). The 
first one involves the product of the derivative ∂σk(E)

∂pl 
and the neutron flux 

ϕ(E). The second term involves the product of the cross section σk(E) and 
the derivative of the neutron flux ∂Φ(E)

∂Γγ
. The third term just involves ∂Φ(E)

∂Γγ
. 

The resonance self-shielding effects occur in all these three terms when 
the integrals in the energy group under consideration are performed. 

Consider group (11) where the 238U resonance located at 6.67 eV 
plays a major role. Fig. 9 illustrates the self-shielding phenomenon 
occurring in Part 1 (Fig. 9 (a)) and Part 2 (Fig. 9 (b)) of Eq. (15). Fig. 9 
(a) shows the derivative of 238U (n, γ) cross section relative to Γγ(DGG) 
and the neutron flux Φ(E) at 293 K. In this case, the self-shielding effect 

Table 4 
dσk

g

dpi
; pi being equal to Γn or Γγ for groups (11) (293 K).  

Reactions Part 1  Part 2  Part 3  2nd Methodology 
TOTAL 

3rd Methodology 
ROLAIDS 
(Reference) 

Differences 
(ROLAIDS − TOTAL)

ROLAIDS   

(barn/eV) (%) 
Γn 

Capture 8106 − 6256 1274 3124 3125 − 3.20E-02 
Elastic 3553 − 1932 1407 3028 3028 0.00E + 00 
Total 11,659 − 8188 2681 6152 6153 − 1.63E-02 
Γγ 

Capture 463.14 –333.84 74.60 203.91 204.17 − 1.27E-01 
Elastic − 4.21 − 110.44 82.40 –32.25 –32.21 1.24E-01 
Total 458.94 − 444.27 157.00 171.67 171.93 1.51E-01  

Table 5 
dσk

g

dpi
; pi being equal to Γn or Γγ as a function of temperature for groups (11) and 

(15) (barn/eV).  

Group Reactions Temperature (K) 

0 293 600 900 1200 

11  Neutron Width (Γn)

Capture 2955 3158 3174 3231 3579  
Elastic 3063 3037 2995 2949 3034  
Total 6017 6195 6170 6180 6614   

Gamma Width (Γγ)

Capture 190.40 203.23 222.02 228.97 202.40  
Elastic –32.70 –33.25 − 34.12 –32.97 − 41.36  
Total 157.70 169.98 187.93 196.03 161.04   

15  Neutron Width (Γn)

Capture 514.39 537.47 532.83 521.79 482.33  
Elastic 427.76 422.53 437.58 429.63 407.80  
Total 942.14 960.00 970.37 951.35 890.06   

Gamma Width (Γγ)

Capture 223.27 225.61 223.95 219.83 214.80  
Elastic − 73.96 − 75.18 − 77.24 − 79.86 − 83.00  
Total 149.31 150.47 146.73 139.96 131.82  
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in this derivative is clearly seen for the neutron energy region where this 
quantity is negative. The magnitude of the neutron flux goes to zero 
sharply and the derivative of the 238U (n, γ) cross section relative to Γγ 

shows a sharp drop. When the integrals in the energy group (11) are 
performed these effects mostly cancel each other. However, for the 
positive region of DGG where the two peaks are present the self- 
shielding is not so evident. The net effect when the integral of Part 1 
of Eq. (23) is performed will depend on the competition between posi
tive and negative regions of this 238U (n, γ) derivative. 

Fig. 9 (b) shows the 238U total cross section and ∂Φ(E)
∂Γγ

, both as a 

function of neutron energy for group (11) at 293 K. ∂Φ(E)
∂Γγ 

is negative in 
the whole neutron energy interval of group (11) and goes to zero far 
away from the resonance energy. Here, the self-shielding in the total 
cross section is similar to the classical case but the weighting function is 
(∂Φ(E)

∂Γγ
) which is always negative. The self-shielding in the 238U total cross 

section is more pronounced and noticeable in the neutron energy region 

close to the resonance peak since ∂Φ(E)
∂Γγ 

although negative goes nearly to 
zero in this region. The others 238U neutron reactions (capture and 
elastic scattering) follow the same pattern. This is the self-shielding 
phenomenon occurring in Part 2 of Eq. (23). 

The third term of Eq. (23) considers only the integral of ∂Φ(E)
∂Γγ 

in the 

group under consideration. Here, the derivative ∂Φ(E)
∂Γγ 

was already 
affected by the presence of the resonance as discussed previously and the 
self-shielding affects affect only the integral of this quantity. 

The resonance self-shielding phenomenon is mathematically quan
tified defining the self-shielding factor FSF (Zhang et al., 2015). Like the 
classical case of the cross section, the self-shielding factor for the de

rivative dσk
g

dpi 
can be defined as: 

FSF =

dσk
g

dpi
calculatedatf initedilution

dσk
g

dpi
calculatedatinf initedilution

(22) 

Fig. 7. dσk
11

dΓn 
(a) and dσk

11
dΓγ 

(b) as a function of temperature.  

Fig. 8. dσk
15

dΓn 
(a) and dσk

15
dΓγ 

(b) as a function of temperature.  
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where the notation “ finitedilution” means that the derivative dσk
g

dpi 
was 

calculated by employing the neutron flux and its derivative at the 
nominal values of the nuclide density of the nuclide under consider
ation. In the case of the IPEN/MB-01 unit cell the nominal value of the 
238U nuclide density is the value specified in its benchmark model 
(2.1694E-02 atom/barn-cm). The notation “ infinitedilution” means that 
the nuclide density of the nuclide under consideration is so small that 
the solution for the neutron flux is C/E, where C is an arbitrary constant 
and E is the neutron energy. In this case all the neutron flux derivatives 
in Eq. (15) goes to zero. The self-shielding factor is a measure of the 
importance of the resonance self-shielding effects. The smaller this 
factor if positive and higher if negative the more important is the reso
nance self-shielding effects. 

Table 6 shows the derivative dσk
g

dpi 
and its self-shielding factors 

employing the 3rd methodology (ROLAIDS) at 293 K. This table shows 
dσk

g
dpi 

for group (11) at the nominal 238U atomic density and at the infinite 
dilution, and the corresponding self-shielding factor employing Eq. (22). 
In a general sense, Table 6 reveals that the self-shielding effects factor 
are considerable and need to be take into account in the uncertainty 
analyses. Also, the self-shielding factor for the total cross section is not 
the sum of the self-shielding factors of the capture and elastic cross 
sections. As shown in Table 6, all the derivatives relative to Γn (including 
the infinite dilution) are positive and so are their self-shielding factors. 
Here, the derivative of elastic cross section relative to Γn has the largest 

self-shielding factor due to its large infinite dilution value. The deriva
tive of the elastic cross section relative to Γγ both at the finite and infinite 
dilution is negative what makes its self-shielding factor positive. The 
same did not occur for the derivative of the total cross section relative do 
Γγ. Its finite dilution value is positive, but its infinite dilution value is 
negative making its self-shielding factor negative. This fact is very sur
prising and impossible to occur in the classical cross section self- 
shielding treatment. 

Figs. 10 and 11 show the self-shielding factors as a function of 
temperature, respectively for groups (11) and (15). The temperatures 
considered are 0 K, 293 K, 600 K, 900 K, and 1200 K and the self- 
shielding factors are shown for the derivatives of the capture, elastic, 
and total cross sections relative to either Γn or Γγ. These figures show 
that the self-shielding effects although not strongly are temperature 
dependent. The same conclusions reached in Table 6 can be extended to 
these figures but now the self-shielding factor for the derivative of the 
total cross section relative to Γγ for group (15) besides of being negative 
has its absolute value higher than 1. Also here, this fact is very surprising 
and can not be obtained with the classical cross section self-shielding. 

Figs. 10 and 11 reveals that the self-shielding factors have the same 

behavior as their corresponding derivative only for dσk
15

dΓn
. The self- 

shielding factor for dσk
11

dΓn 
has its largest value for the elastic cross sec

tion for the reasons already mentioned. This derivative decreases up to 

900 K and then increases. The dσk
11

dΓn 
self-shielding factor for the capture 

and total cross section increases slowly from 0 to 1200 K. The dσk
11

dΓγ 
self- 

shielding factor for the capture cross section shows similar trends in 
groups (11) and (15). It increases up to a maximum value and then 
decreases. The maximum value for group (11) occurs at 900 K while that 

for group (15) at 293 K. The dσk
11

dΓγ 
self-shielding for the elastic and total 

cross section in group (11) remain nearly close to the 1-σ range of the 

calculated uncertainty up to 900 K and then increases. The dσk
15

dΓγ 
self- 

shielding for the elastic cross section increases steadily form 0 to 
1200 K while that for the total cross section remains nearly close to the 
1-σ range of the calculated uncertainty up to 900 K and then increases. 

4.4. Numerical results for the multigroup cross section covariance matrix 

The elements of the multigroup cross section covariance matrix 

Fig. 9. Origin of the self-shielding effects on the multigroup covariance matrix.  

Table 6 
dσk

g

dpi 
and its self-shielding factors for group (11). (293 K).  

Reactions dσk
g

dpi
3rd Methodology 

Finite Dilution 

dσk
g

dpi
Infinite Dilution 

Self-Shielding Factor  

(barn/eV) (dimensionless) 
Γn 

Capture 3158 327,780  0.0095 
Elastic 3037 45,145  0.0673 
Total 6195 372,924  0.0165 
Γγ 

Capture 203.23 825.04  0.2457 
Elastic –33.25 − 1386.33  0.0239 
Total 169.98 − 561.39  − 0.3022  
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(ENDF FILE 33) are defined by Eq. (12). Since the matrix of the 
covariance of the resonance parameters given in Table 2 is diagonally 
symmetric the same will occur for the multigroup cross section covari
ance matrix. According to Eq. (12) and (Leal et al, 2005) the elements of 
the multigroup cross section covariance matrix for the groups (11) 
(Θk

11,11) and 15 (Θk
15,15) and their non-diagonal element (Θk

11,15) are 
given by: 

Θk
11,11 =

dσk
11

dΓ1
γ
< Γ1

γ ,Γ
1
γ >

dσk
11

dΓ1
γ
+ 2 •

dσk
11

dΓ1
γ
< Γ1

γ ,Γ
1
n >

dσk
11

d Γ1
n
+

dσk
11

d Γ1
n
< Γ1

n, Γ1
n

>
dσk

11

d Γ1
n

(23)  

Θk
15,15 =

dσk
15

dΓ2
γ
< Γ2

γ ,Γ
2
γ >

dσk
15

dΓ2
γ
+ 2 •

dσk
15

dΓ2
γ
< Γ2

γ ,Γ
2
n >

dσk
15

dΓ2
n
+

dσk
15

dΓ2
n
< Γ2

n,Γ2
n

>
dσk

15

dΓ2
n

(24)  

and 

Θk
11,15 = 2 •

dσk
11

dΓ1
γ
< Γ1

γ ,Γ
2
γ >

dσk
15

dΓ2
γ
+ 2 •

dσk
15

dΓ2
γ
< Γ2

γ ,Γ1
n >

dσk
11

dΓ1
γ
+

2 •
dσk

11

dΓ1
γ
< Γ1

γ ,Γ
2
γ >

dσk
15

dΓ2
γ
+ 2 •

dσk
15

dΓ2
γ
< Γ2

γ ,Γ1
γ >

dσk
11

dΓ1
γ

(25)  

where the Γ superscripts 1 and 2, refer respectively to the first and 
second 238U resonance located at 6.67 eV and 20.871 eV. 

The derivatives dσk
g

dpi 
needed to obtain Θk

11,11, Θk
15,15, and Θk

11,15 arises 
from Table 5 for groups (11) and (15) and the elements of the resonance 
parameter covariance matrix from Table 2. Eqs. (23) and (24) are the 
diagonal elements of the multigroup covariances, respectively, for 
groups (11) and (15). These diagonal elements are the variance of the 
corresponding group cross section and the uncertainties of them can be 
found as the square root of their variances. Consequently, Θk

11,11 and 
Θk

15,15 must assume positive values. 
Consider initially Eq. (23). This equation is made of three terms and 

each one of them contains a triple product involving two derivatives dσk
g

dpi 

and one element of the resonance parameter covariance matrix. The 
analyses of these terms are important to illustrate the impact of the 

Fig. 10. Self-shielding factors for dσk
11

dΓn 
(a) and dσk

11
dΓγ 

(b) as a function of temperature.  

(a) (b)

Fig. 11. Self-shielding factors for dσk
15

dΓn 
(a) and dσk

15
dΓγ 

(b) as a function of temperature.  
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correlated and uncorrelated elements of the resonance parameter 
covariance matrix on the elements of the multigroup covariance matrix. 
Table 7 shows these three terms for the capture, elastic, and total cross 
sections as a function of temperature for group (11). The components of 
the resonance parameter covariance matrix for group (11) as given in 
Table 2 are all positive and consequently, independently of the type of 
the cross section considered, the first and third term of Eq. (23) are 
necessarily positive because they are the result of the product of the 
square of the derivatives and the variance of the resonance parameter. 
The second term involves a crossed term which will depend on the sign 

of the product between dσk
11

dΓ1
γ 

and dσk
11

dΓ1
n
. According to Table 5, dσk

11
dΓ1

γ 
is always 

positive and dσk
11

dΓ1
n 

is negative only for the scattering cross section. 

Consequently, the second term of Eq. (23) will be positive for the capture 
and total cross sections and negative for the scattering cross section. 
Finally, it must be realized that the sum of the three terms for Θk

11,11 must 
be, independently of the cross section considered, positive since they 
represent, respectively, the variance of the corresponding group cross 
sections. 

The same analysis can be applied to group (15) given by Eq. (24) but 

note that in this case the sign of dσk
15

dΓ2
n 

and dσk
15

dΓ2
γ 

follows the same pattern of 

group (11), and that the covariance for the crossed term involving Γ2
n 

and Γ2
γ is negative (anti-correlated). Consequently, the second term of 

Eq. (24) will be negative for the capture and total cross sections and 
positive for the elastic. The final value of Θk

15,15 will depend on the 
competition between the three terms in Eq. (24) but its final value must 
be positive. 

The analyses of the non-diagonal element of the multigroup covari
ance matrix given by Eq. (25) is more complicated due to the correlation 
between the resonance parameters of the resonance present in groups 
(11) and (15). The final result is that their capture cross section elements 
are anti correlated and the elastic and total cross sections are correlated. 

Table 8 shows the temperature dependence of the multigroup 
covariance matrix for group (15) and the crossed element 11–15. In 
general, the elements of the multigroup cross section covariance matrix 
changes with the temperature and it can not be neglected in the un
certainty analyses of the integral responses of nuclear reactors. A good 
example of that is the determination of the uncertainties of the Doppler 
coefficients like that shown in (Otuka et al., 2008). The treatment of the 
temperature dependence of all kinds of sources of uncertainties is crucial 
in this case. 

Finally, it must be noted that the elements of the cross section cor
relation matrix for the total reaction rate is not equal to the sum to those 
of the capture and elastic reaction rates. 

4.4.1. Resonance self-Shielding factors for the elements of the multigroup 
covariance matrix 

The self-shielding factors for the elements of the multigroup 
covariance matrices as a function of temperature are shown in Table 9. 
This table shows that in a general sense the self-shielding effects in the 
multigroup covariance matrices are severe and they must be taken into 
consideration in the uncertainty analyses of reactor responses. The self- 
shielding-factors depends on the reaction type, but for the same reaction 
type they are weakly dependent on the temperature. It must be noted in 
Table 9 that the self-shielding factor for Θk

11,15 is negative for the capture 
cross section. This finding makes the impact of the self-shielding phe
nomenon on the determination of the uncertainties of integral responses 
even more complicated and difficult to interpret. 

4.4.2. Comparisons of the 1st methodology (NJOY) to the 2nd and 3rd 
methodologies 

There are two major differences between the 1st methodology 
(NJOY) and the methodologies developed in this work. First, the 
ERRORR module of NJOY employs the Breit-Wigner formalism (Breit 
and Wigner, 1936) at 0 K to calculate the derivative of the cross sections 
to the resonance parameters and second ERRORR considers only the 
direct effect (PART 1 of Eq. (15)) for the determinations of the de
rivatives of the multigroup cross section relative to the resonance pa
rameters and consequently the multigroup covariance matrix. 
Particularly, the second difference is by far the most important and it 
will impose severe restrictions to the multigroup covariance matrices 
generated by NJOY. 

Table 10 shows the comparison of the of the covariance matrix re
sults for group (11) at 0 K and 293 K between 1st methodology (NJOY) 
to those of the 2nd (PART 1) and 3rd methodologies. Initially, note that 
the NJOY result changes from 0 K to 293 K are due to the temperature 
changes of the ROLAIDS weighting flux. Table 10 reveals that the NJOY 
results at 0 K are very close to the ones of the PART1 of the 2nd meth
odology. The same does not occur at 293 K for the reasons already 
mentioned. The relatively high discrepancy between NJOY and PART1 

Table 7 
Multigroup covariance matrix components for group (11) (barn2).  

Reactions Partial Terms Temperature (K) 

0 293 600 900 1200 

Capture 1st Term  0.0080  0.0091  0.0092  0.0096  0.0117 
2nd Term  0.0190  0.0216  0.0238  0.0250  0.0244 
3rd Term  0.0112  0.0128  0.0153  0.0162  0.0127 
Θk

11,11  0.0382  0.0435  0.0483  0.0508  0.0478        

Elastic 1st Term  0.0086  0.0084  0.0082  0.0080  0.0084 
2nd Term  − 0.0033  − 0.0034  − 0.0034  − 0.0032  − 0.0042 
3rd Term  0.0003  0.0003  0.0003  0.0003  0.0005 
Θk

11,11  0.0055  0.0054  0.0051  0.0051  0.0047        

Total 1st Term  0.0333  0.0353  0.0350  0.0351  0.0402 
2nd Term  0.0320  0.0355  0.0391  0.0409  0.0359 
3rd Term  0.0077  0.0089  0.0109  0.0119  0.0080 
Θk

11,11  0.0730  0.0797  0.0850  0.0879  0.0841  

Table 8 
Elements of the multigroup covariance matrix (barn2).   

Reactions Temperature (K) 

0 293 600 900 1200 

Θk
15,15 Capture  0.1003  0.0995  0.0980  0.0946  0.0959 

Elastic  1.1259  1.1182  1.1934  1.1885  1.1373 
Total  1.0272  1.0802  1.1481  1.1361  0.9875     

Θk
11,15 Capture  − 0.0393  − 0.0386  − 0.0405  − 0.0410  − 0.0457 

Elastic  0.0519  0.0510  0.0515  0.0509  0.0486 
Total  0.1318  0.1420  0.1534  0.1567  0.1426  
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for the elastic cross section at 0 K may be due to the treatment of the anti- 
symmetric term in the Breit-Wigner model. It appears that NJOY neglect 
that. The differences between NJOY and 3nd methodology (ROLAIDS) 
results are severe and exceeding hundreds of percent. This occurred 
mainly for the non-treatment of the indirect effects due to the neutron 
flux in the multigroup cross section derivatives. 

Table 11 shows the comparison of the elements of the multigroup 
covariance matrices as a function of the temperature produced by NJOY 
and ROLAIDS. The comparison is expressed as 
(NJOY − ROLAIDS)/ROLAIDS in units of %. The differences between 
NJOY and ROLAIDS methodologies are severe and like that already 
discussed in Table 11. 

4.5. The results of the 4th methodology (MCNP6) and ROLAIDS 
comparisons 

All MCNP6 runs considered the kcode option with 3 million histories 
per cycle and a total of 4500 cycles. The first 50 cycles were skipped. The 
maximum relative standard deviation achieved was 0.0001 for all tallies 
and neutron group considered. In this case the perturbations in the 
resonance parameters had to be higher than that for the 2nd and 3rd 
methodologies A perturbation in the resonance parameters of 1% was 
found adequate to attend first order approximation and to get good es

timates for the derivative dσk
g

dpi
. This derivative was calculated employing 

Eq. (20) in conjunction with the group cross sections from Eq. (19). The 
procedure to get the multigroup covariance matrix is the same as that 
employed in the 3rd methodology. 

Consider initially the comparison of dσk
g

dpi
. Tables 13 and 14 show the 

comparison of the MCNP6 results to those of the 3rd methodology 
(ROLAIDS). The ROLAIDS results employed Eqs. (21) and (20) to be 
consistent to those of MCNP6. The comparison here also verifies if the 
infinite array of unit cell model employed by ROLAIDS against the 
explicit 3D model employed by MCNP6 is adequate. Tables 12 and 13 

show the comparison of ROLAIDS and MCNP6 for the derivative dσk
g

dpi 
and 

for the multigroup covariance matrix, respectively. Tables 12 and 13 
reveals that the agreement between the ROLAIDS and MCNP6 results 
can be considered very good and supports the whole developments 
performed and the conclusions reached in this work to obtain the 
multigroup covariance matrices. The maximum deviation was reached 

for 
d

dσs
g

dpi
dΓγ 

which shows a discrepancy of nearly 6% for group (15) but it does 
not compromise the main achievements of this work. 

4.6. The IPEN/MB-01 keff reactor uncertainty analyses 

The IPEN/MB-01 critical configuration described in Section 4.4.3 is 
employed as an example for the application of the multigroup covari
ance matrix methodologies developed in this paper. The aim here is 
performed the keff uncertainty analyses of this critical configuration. The 

Table 9 
Self-Shielding factors for Θk

11,11, Θk
11,15, Θk

15,15.  

Matrix Element Reaction Temperature (K) 

0 293 600 900 1200 

Θk
11,11 Capture  0.00036  0.00040  0.00046  0.00049  0.00048 

Elastic  0.01553  0.01511  0.01441  0.01415  0.01348 
Total  0.00062  0.00065  0.00073  0.00076  0.00074  

Θk
15,15 Capture  0.00036  0.00035  0.00035  0.00034  0.00034 

Elastic  0.00045  0.00045  0.00048  0.00048  0.00046 
Total  0.00024  0.00025  0.00027  0.00026  0.00023  

Θk
11,15 Capture  − 0.00056  − 0.00053  − 0.00058  − 0.00059  − 0.00066 

Elastic  0.00263  0.00257  0.00261  0.00259  0.00249 
Total  0.00032  0.00036  0.00037  0.00034  0.00032  

Table 10 
Covariance matrix values for groups (11) at 0 K and 293 K.   

Reaction NJOY  

(barn2) 

2nd Methodology 
(Part 1) 
(barn2) 

Difference 
(NJOY − Part 1)

Part 1
(%) 

3rd Methodology 
(ROLAIDS) 
(barn2) 

Difference 
(NJOY − ROLAIDS)

ROLAIDS
(%) 

0 K Capture 2.986E-01 2.988E-01 − 8.93E-02 3.831E-02 6.79E + 02 
Elastic 1.957E-02 1.164E-02 6.81E + 01 5.588E-03 2.50E + 02 
Total 3.935E-01 4.282E-01 − 8.11E + 00 7.315E-02 4.38E + 02 

293 K Capture 2.117E-01 2.539E-01 − 1.66E + 01 4.370E-02 3.84E + 02 
Elastic 1.882E-02 1.119E-02 6.82E + 01 5.426E-03 2.47E + 02 
Total 2.894E-01 3.717E-01 − 2.21E + 01 7.991E-02 2.62E + 02  

Table 11 
Comparison (NJOY – ROLAIDS in %) for Θk

11,11, Θk
15,15, and Θk

11,15(%).  

Matrix 
Element 

Reaction Temperature (K) 

0 293 600 900 1200 

Θk
11,11 Capture 6.79E 

+ 02 
3.84E 
+ 02 

2.31E 
+ 02 

1.59E 
+ 02 

1.36E 
+ 02 

Elastic 2.50E 
+ 02 

2.47E 
+ 02 

2.52E 
+ 02 

1.18E 
+ 02 

2.67E 
+ 02 

Total 4.38E 
+ 02 

2.62E 
+ 02 

1.66E 
+ 02 

1.18E 
+ 02 

1.02E 
+ 02 

Θk
15,15 Capture 2.61E 

+ 02 
1.57E 
+ 02 

1.07E 
+ 02 

8.00E 
+ 01 

5.31E 
+ 01 

Elastic 2.76E 
+ 01 

4.52E 
+ 00 

2.69E 
+ 01 

3.81E 
+ 01 

4.37E 
+ 01 

Total 4.03E 
+ 01 

2.53E 
+ 00 

1.95E 
+ 01 

3.02E 
+ 01 

2.91E 
+ 01 

Θk
11,15 Capture 1.69E 

+ 02 
8.61E 
+ 01 

3.41E 
+ 01 

7.50E 
+ 00 

1.80E 
+ 01 

Elastic 3.15E 
+ 02 

2.90E 
+ 02 

2.71E 
+ 02 

2.59E 
+ 02 

2.57E 
+ 02 

Total 1.16E 
+ 02 

1.19E 
+ 02 

1.21E 
+ 02 

1.21E 
+ 02 

1.24E 
+ 02  
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procedure employs mostly the fourth methodology based on MCNP6 and 
the 3-D IPEN/MB-01 benchmark model described in Sections 4.4.3 and 
3.0. The uncertainty analyses are restricted to the uncertainties of the 
first two 238U resonances already discussed. Two distinct approaches are 
developed to cope with this task. 

The first approach considers keff as the integral reactor response R in 
Eq. (1) and the parameter p(E) are the resonance parameters Γn and Γγ 

for the two 238U resonances. According to Eq. (1) and noting that the 
variance V(R) is equal to (σR)

2, the keff uncertainty can be found as: 
(
σkeff

)2
= V11

keff
+V22

keff
+ 2 • V12

keff
(26)  

where 

V11
keff

=
dkeff

d Γ1
n
< Γ1

n,Γ1
n >

dkeff

dΓ1
n
+

dkeff

d Γ1
n
< Γ1

γ ,Γ1
γ >

dkeff

dΓ1
γ
+ 2 •

dkeff

d Γ1
n
< δΓ1

n,Γ
1
γ

>
dkeff

dΓ1
γ

(27)  

V22
keff

=
dkeff

d Γ1
n
< Γ2

n,Γ2
n >

dkeff

dΓ2
n
+

dkeff

d Γ2
n
< Γ2

γ ,Γ2
γ >

dkeff

dΓ2
γ
+ 2 •

dkeff

d Γ2
n
< Γ2

n,Γ2
γ

>
dkeff

dΓ2
γ

(28)  

V12
keff

=
dkeff

d Γ1
n
< Γ1

n,Γ2
n >

dkeff

dΓ2
n
+

dkeff

d Γ1
n
< Γ1

n,Γ2
γ >

dkeff

dΓ2
γ
+

dkeff

d Γ1
γ
< Γ1

γ ,Γ2
n

>
dkeff

dΓ2
n
+

dkeff

d Γ1
γ
< Γ1

γ ,Γ2
γ >

dkeff

dΓ2
γ

(29)  

and dkeff

d Γ1
n 

represents the keff derivative to Γ1
n and so on, and the super

scripts “1″ and “2” in Γn and Γγ have the same meaning as before. 
The keff derivatives to the resonance parameters Γn and Γγ; here 

symbolized by pi, are calculated similarly to the numerical method 
employed in this paper as: 

dkeff

dpi
=

Δkeff

2 • (Δpi)
=

k+eff − k−eff

2 • (p+

i − p−
i )

(30)  

where keff is the effective multiplication factor from MCNP6 considering 
the +σ and − σ perturbations in the resonance parameters. 

This approach does not need the multigroup covariance matrices 

developed in this paper and gets 
(

σkeff

)2 
directly from Eqs, (26) through 

(30) and the resonance parameters covariance matrix given in Table 2. 
Eq. (30) treats the direct and indirect effects in a straightforward 
fashion. When a specific 238U resonance parameter is altered, the asso
ciated cross sections are altered (Direct effect), which by its turn changes 
the neutron fluxes in the whole neutron energy domain and conse
quently all possible reaction rates of all nuclides that constitute the 
IPEN/MB-01 core (Indirect effect). Due to these features the first 
approach will be referred to as reference to verify the precision of all 
other approaches to get the IPEN/MB-01 keff uncertainties. 

The second approach employs the multigroup covariance matrix 
methods developed in this paper to get the keff uncertainty. In this case 
(

σkeff

)2 
is obtained from Eq. (9) as: 

(
σkeff

)2
=

∑

g

∑

g′

∂keff

∂σγ
g

Θγ
g,g′

∂keff

∂σγ
g′
+
∑

g

∑

g′

∂keff

∂σs
g

Θs
g,g′

∂keff

∂σs
g

(31) 

Let equation (31) be written in terms of variances like equation (26) 
as: 
(
σkeff

)2
= V11,11

keff
+ V

15,15

keff
+V11,15

keff
(32)  

where: 

V11,11
keff

=
∂keff

∂σγ
11

Θγ
11,11

∂keff

∂σγ
11
+

∂keff

∂σs
11

Θs
11,11

∂keff

∂σs
11

(33)  

V15,15
keff

=
∂keff

∂σγ
15

Θγ
15,15

∂keff

∂σγ
15
+

∂keff

∂σs
15

Θs
15,15

∂keff

∂σs
15

(34)  

Table 12 

ROLAIDS and MCNP6 
dσk

g

dpi 
comparisons.  

Group Reaction Gamma Width (Γγ) Neutron Width (Γn)

MCNP6 ROLAIDS Difference MCNP6 ROLAIDS Difference   

(barn/eV) (%) (barn/eV) (%) 
11 Capture 434.61 445.85 2.52 6813.54  6658.03  2.33 

Elastic − 51.93 − 52.41 0.91 3956.79  3966.98  0.25         

15 Capture 370.18 370.30 − 0.03 774.38  769.39  0.65 
Elastic − 129.68 − 121.88 6.40 813.29  799.96  1.67  

Table 13 
ROLAIDS and MCNP6 comparison of the elements of the multigroup covariance 
matrix (barn2).  

Element Reaction MCNP5 ROLAIDS Difference (%) 

Θk
11,11 Capture  0.2015  0.2028  − 0.68 

Elastic  0.0083  0.0083  − 0.09 
Θk

15,15 Capture  0.3230  0.3277  − 1.43 
Elastic  3.8793  3.6573  6.07 

Θk
11,15 Capture  − 0.1864  − 0.1895  − 1.63 

Elastic  0.1172  0.1166  0.52  

Table 14 
keff and its derivative relative to Γn e Γγ – resonance “1″ and resonance “2”.  

Resonance keff Γn + σΓn
(*) keff Γn − σΓn keff Γγ + σΓγ

(*) keff Γγ − σΓγ dkeff

d Γn
(eV− 1) 

dkeff

d Γγ
(eV− 1) 

“1″  
0.998099  0.998931  0.998091  0.998947  − 27.8633  − 1.8609 

“2″  0.998351  0.998683  0.998335  0.998709  − 1.6179  − 0.8162  

(*) Here σΓn and σΓγ means the perturbations (1.0%) in the corresponding resonance parameter (either Γn or Γγ).  
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V11,15
keff

= 2 •
∂keff

∂σγ
11

Θγ
11,15

∂keff

∂σγ
15
+ 2 •

∂keff

∂σs
11

Θs
11,15

∂keff

∂σs
15

(35) 

The partial variances (V11
keff

, V11,11
keff

) and so on although they have 
different approaches for its determination, they refer to the same 
quantity. In this way, the comparison between both approaches can be 
made term a term. 

The indirect effect due to the perturbation of the neutron flux 
mentioned in the first approach is taken into consideration here only in 
an approximated way. The developments made in Section 3 to derive the 
covariance matrix neglects the contributions of the nuclides other than 
238U. The only indirect effect taken into consideration are those arising 
from 238U resonances in the specific group g where this resonance oc
curs. There is no coupling among groups. However, a perturbation in a 
resonance parameter of a resonance in a generic group g changes the 
neutron fluxes and the reaction rates at energies below this group. 
Therefore, there are couplings among neutron energy groups. The only 
coupling found relevant in the adopted model for the keff uncertainty 
analyses of the IPEN/MB-01 reactor is from group15 to group (11). 
Θγ

11,15 and Θs
11,15 in equation (35) have to be redefined by adding the 

coupling term defined as: 

couplingterm = 2 •
dσk

11

dΓ2
γ
< Γ2

γ ,Γ
2
γ >

dσk
15

dΓ2
γ
+ 2 •

dσk
11

dΓ2
n
< Γ2

n,Γ2
n >

dσk
15

dΓ2
n

(36)  

where k stands for γ or s. The coupling term was calculated employing 
the 3rd methodology (ROLAIDS) similarly to the other terms of Eq. (25). 

The set of equations (32) through (35) needs the derivative of keff to 
the group cross sections. These derivatives cannot be obtained directly 
from the numerical approach employed in Sections 3. The procedure 
adopted here to obtain these derivatives is to write dkeff

d Γγ 
and dkeff

d Γn 
from Eq. 

(30) approximately as: 

dkeff

d Γ1
γ
≈

∂keff

∂σγ
11
•

∂σγ
11

∂Γ1
γ
+

∂keff

∂σs
11
•

∂σs
11

∂Γ1
γ

(37)  

dkeff

d Γ1
n
≈

∂keff

∂σγ
11
•

∂σγ
11

∂Γ1
n
+

∂keff

∂σs
11
•

∂σs
11

∂Γ1
n

(38)  

for group (11), and 

dkeff

d Γ2
γ
≈

∂keff

∂σγ
15
•

∂σγ
15

∂Γ2
γ
+

∂keff

∂σs
15
•

∂σs
15

∂Γ2
γ
+

∂keff

∂σγ
11
•

∂σγ
11

∂Γ2
γ
+

d∂keff

∂σs
11

•
∂σs

11

∂Γ2
γ

(39)  

dkeff

d Γ2
n
≈

∂keff

∂σγ
15
•

∂σγ
15

∂Γ2
n
+

∂keff

∂σs
15
•

∂σs
15

∂Γ2
n
+

∂keff

∂σγ
11
•

∂σγ
11

∂Γ2
n
+

d∂keff

∂σs
11

•
∂σs

11

∂Γ2
n

(40)  

for group (15). The word “approximately” means that the contributions 
of the nuclides other than 238U in Eq́s (37) through (40) are neglected. 
The only coupling taken into consideration is from group15 to group 
(11). The last two terms of Eq’s (39) and (40) accounts for this coupling. 
The unknowns in this set of equations are the derivatives of keff to the 
group cross sections in each group. The derivatives of keff and the group 
cross sections to the resonance parameters are given, respectively, in 
Tables 15 and 5. Consequently, the set of equation (37) through (40) can 
be solved in a straightforward fashion. 

4.7. Numerical results for the uncertainty analyses 

Starting from the first approach Table 14 shows keff calculated by 
MCNP6 considering the +σ and − σ perturbations (1.0 %) in the reso
nance parameters and the derivative of keff relative to either Γn or Γγ 

from Eq. (30). 
Table 14 shows that the keff derivatives independently of the reso

nance and the resonance parameter considered are always negative. 
Consequently, the product between any two keff derivatives in Eqs. (26) 
through (28) is always positive and the sign of each term of these 
equations will depend if Γn and Γγ are correlated or anti-correlated. 
Table 2 shows that Γn and Γγ are anti-correlated only for resonance 
“2″. In this way, considering the correlation between resonance Γn and 
Γγ for the same resonance, the keff uncertainty increases for resonance 
“1” and decreases for resonance “2”. 

The effect of the correlation between resonances is more complicated 
due to the relative contribution of the terms of Eq. (29). Table 15 shows 
the contributions of each resonance and that of the correlation between 
them in the determination of the keff uncertainty. This table shows that 
the contribution of the correlation between resonances is negative, and 
due to that the total keff uncertainty decreases relatively to the case of 
neglecting this correlation. Also, it can be noted that the keff total un
certainty is even lower than that of the resonance “1″ contribution. These 
properties of the of the resonance parameter covariance matrix for the 
238U resonances under consideration here are of fundamental impor
tance for the determination and the interpretation of the keff uncertainty 
of the IPEN/MB-01 reactor. 

The second approach employed the multigroup covariance matrix 
shown in Table 16. There are four distinct sets: namely MCNP, NJOY, 
Direct Effect, and Infinite Dilution. The coupled model modifies only the 
MCNP set and redefines Θγ

11,15 and Θs
11,15 by adding the coupling term 

given by Eq. (36) only. The uncoupled model does not consider Eq. (36). 
The MCNP values are from Table 13 but the coupling term given by Eq. 
(36) was from ROLAIDS; the deterministic method. The NJOY values 
were generated employing the flowchart shown in Fig. 2 and the average 
weighting flux of all 10 zones from ROLAIDS. The direct approach 
values were generated by MCNP6. The procedure is like the one 
employed in Section 4.4.3. Here, MCNP6 runs were made for the un
perturbed cases and the reaction rate tallies were requested employing 
the perturbed cross sections (+σ and − σ). The derivative of the cross 
sections to the resonance were performed employing Eqs. (19) and (20). 
The Infinite Dilution values were calculated considering the weighting 
flux equal to C/E for the determination of dσkg

dpi 
as in Table 5 of Section 

0.4.3. The elements of the multigroup covariance matrix for the Direct 
Effect and the Infinite Dilution cases were calculated employing Eqs. 
(23) through (25). 

The keff derivatives to the group cross sections from the solution of 
the set of equations (37) through (40) are shown in Table 17. 

The derivatives of keff relative to the group cross section is in 
accordance with the physics of thermal reactors. This derivative is 
negative for the (n, γ) events and positive for scattering events. 

The IPEN/MB-01 keff uncertainty analyses are shown in Tables 19 
and 20. The uncertainty analyses shown in Tables 19 and 20 employs the 
keff derivatives to the group cross sections from MCNP6 coupled case 
showing in Table 17. The reason for that was to compare the keff un
certainty analyses arising from different methos in the same basis. The 

Table 15 
keff Uncertainty and the impact of the resonance contribution.  

V11
keff 

V22
keff 

V11
keff

+ V22
keff 

V12
keff 

TOTAL 

3.54309E-06 1.75997E-06 5.30306E-06 − 1.89822E-06 3.40483E-06 
keff Uncertainty Contribution (pcm) keff Uncertainty Contribution (pcm) keff Uncertainty Contribution (pcm) − keff Total 

Uncertainty (pcm) 
188 133 231 − 185  
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quantity that changes from method to method is the multigroup 
covariance matrix and the quality of this matrix can be analyzed in a 
straightforward fashion. Particularly the indirect effect contribution can 

be noted by comparing to the keff uncertainty from these methods either 
to the reference case or to the coupled MCNP6 case of Table 17. 

Table 18 shows the individual variances for each set of multigroup 
covariance matrix. The reference case is also shown for easy comparison. 
This Table shows that the coupled case among all cases has an excellent 
agreement to the reference case for all individual variances. The 
uncoupled case reproduces well V11,11

keff 
and V11,11

keff
+ V12,12

keff
, but it does 

not show the nearly cancellation of V22
keff 

and V12
keff 

observed in the refer
ence and in the coupled cases. Surprisingly, NJOY has a good agreement 
for V22

keff 
but this agreement is not observed for the other individual 

variances. Particularly, its total variance is well overpredicted. This 
finding demonstrates that the coupling among resonance in different 
groups may have an important bearing in the determination of the keff 

uncertainty. The effect of neglecting the Indirect Effect can be noted by 
comparing the Direct Effect results to those of the MCNP6 coupled case. 
With exception to V12

keff
, the Direct Effect systematically overpredicts its 

results for all other individual variance. V12
keff 

is negative and in this case 
the Direct Effect underestimate this variance. 

Table 19 shows the keff uncertainty analyses for each set of multi
group covariance matrix. The reference keff uncertainties are also 
repeated in this table for easy comparison. Here, the comparison follows 
closely that already discussed for the variances. The coupled model 
shows the best performance. Contrary to that, the uncoupled model does 
not show the same performance and underestimates the total keff un
certainty. All other models overpredict the total keff uncertainty in a 

large extent. NJOY, also here, has only a good agreement to 
̅̅̅̅̅̅̅̅̅
V22

keff

√
. Its 

total uncertainty shows a large discrepancy to the reference value. The 
Direct Effect comparison to the coupled model shows the impact of 
neglecting the indirect effect. The indirect effect may account for nearly 
44% of the total keff uncertainty. The Infinite Dilution values are shown 
here just to illustrate the importance of considering the self-shielding 
effects in the multigroup covariance matrix. 

Table 20 shows the relative contribution of the capture and elastic 
cross sections to the total keff uncertainty. This table shows, as expected, 
that the elastic has very little bearing on the total keff uncertainty. 

5. Conclusions 

Numerical approaches have been successfully developed to propa
gate the resonance parameter uncertainties to the multigroup covari
ance matrices and, either directly from the resonance parameters or 
indirectly from multigroup covariance matrices, to the keff of a critical 
configuration of the IPEN/MB-01 reactor. The approaches were devel
oped for the groups containing the two most important 238U resonances. 
The keff uncertainty analyses performed in the critical configuration of 
the IPEN/MB-01 reactor reveal that the self-shielding effects as well as 
the indirect effect in the multigroup covariance matrix are severe and 
must be taken into consideration in the uncertainty analyses of integral 
responses of nuclear reactors. The differences for considering and not 
considering the indirect effects are observed in the magnitude of the 
components of the covariance matrix, in their sign as well and in the keff 

uncertainty analyses. Particularly in this last item the analyses per
formed to the critical configuration of the IPEN/MB-01 reveal that the 
indirect effect is responsible for around 45% of the total keff uncertainty. 
The comparison between ROLAIDS and MCNP6 results for dσkg

dpi 
come into 

a good agreement and supports the developments performed and the 
conclusions reached in this work. There are two major differences be
tween the NJOY approach and those of this work. First, the ERRORR 
module of NJOY employs the Breit-Wigner formalism always at 0 K to 
calculate the derivative of the cross sections to the resonance parameters 
and second ERRORR takes into account only the direct effect on the 
multigroup covariance matrix. Particularly, the second difference is by 

Table 16 
The elements of the multigroup covariance matrix at 293 K (barn2).  

Element Reaction MCNP NJOY Direct 
Effect 

Infinite 
Dilution 

Element Reaction MCNP NJOY Direct 
Effect 

Infinite 
Dilution 

Θk
11,11       

Capture  0.2015  0.5956  0.8046 1.0875E + 02  
Elastic  0.0083  0.0217  0.0165 2.8788E + 00 

Θk
15,15       

Capture  0.3230  0.4324  0.5699 2.8429E + 02  
Elastic  3.8793  3.0943  5.0461 3.1949E + 03 

Θk
11,15      

Uncoupled Capture  − 0.1864  − 0.1303  − 0.2785 7.2830E + 01  
Elastic  0.1172  − 0.1572  0.1812 1.9844E + 01 

Θk
11,15      

Coupled Capture  − 0.0805  -  - -  
Elastic  0.1172  -  - - 

Θk
11,11       

Capture  0.2015  0.5956  0.8046 1.0875E + 02  
Elastic  0.0083  0.0217  0.0165 2.8788E + 00 

Θk
15,15       

Capture  0.3230  0.4324  0.5699 2.8429E + 02  
Elastic  3.8793  3.0943  5.0461 3.1949E + 03 

Θk
11,15      

Uncoupled Capture  − 0.1864  − 0.1303  − 0.2785 7.2830E + 01  
Elastic  0.1172  − 0.1572  0.1812 1.9844E + 01 

Θk
11,15      

Coupled Capture  − 0.0805  -  - -  
Elastic  0.1172  -  - -  

Table 17 
keff derivatives to the group cross sections (barn/eV).  

Group (11) Group (15) Coupled Group (15) Uncoupled 

∂keff

∂σγ
11  

∂keff

∂σs
11  

∂keff

∂σγ
15  

∂keff

∂σs
15  

∂keff

∂σγ
15  

∂keff

∂σs
15  

− 4.2674E- 
03 

1.1949E- 
04 

− 2.1053E- 
03 

5.1188E- 
05 

− 2.1760E- 
03 

8.2575E- 
05  

Table 18 
Individual and total keff variances for each set. (dimensionless).  

Reference 

V11
keff 

V22
keff 

V11
keff

+ V22
keff 

V12
keff 

V11
keff

+ V22
keff

+ V12
keff 

3.54309E- 
06 

1.75997E- 
06 

5.30306E-06 − 1.89822E- 
06 

3.40483E-06 

V11.11
keff 

V15.15
keff V11.11

keff
+ V15.15

keff 

V11.15
keff V11.11

keff
+ V15.15

keff
+

V11.15
keff 

MCNP6 Uncoupled 
3.66983E- 

06 
1.55612E- 
06 

5.22595E-06 − 3.45979E- 
06 

1.76616E-06 

MCNP6 Coupled 
3.66983E- 

06 
1.44201E- 
06 

5.11184E-06 − 1.44660E- 
06 

3.66596E-06 

NJOY 
1.0247E- 

05 
1.8916E- 
06 

1.2139E-05 − 2.25895E- 
06 

9.8798E-06 

Direct Effect 
1.38433E- 

05 
2.4948E- 
06 

1.6338E-05 − 4.82634E- 
06 

1.1512E-05 

Infinite Dilution 
1.8709E- 

03 
1.2452E- 
03 

3.1161E-03 1.26249E-03 4.3785E-03  
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far the most important and it will impose severe restrictions to the 
multigroup covariance matrices generated by the ERROR module of 
NJOY. Finally, the ENDF FILE 33 can not be interpreted as application 
independent. Its content must be corrected due to the resonance self- 
shielding effects and also to the indirect effects and methods must be 
developed to take this effect into consideration mainly for thermal 
reactor applications. 
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Table 20 
The Partial contributions of the capture and elastic cross section to the keff un
certainty (%).  

Reaction MCNP6 Coupled MCNP6 Uncoupled NJOY Direct Effect 

Capture  99.86  97.96  99.96  99.94 
Elastic  0.14  2.04  0.04  0.06  
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