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ABSTRACT 
 
Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. 
Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on “loss of 
pump power” or “plant shutdown” accidents. The accuracy of heat transfer estimation has been improved based 
on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital 
images acquired on natural circulation flow instabilities. This technique will allow the selection of the more 
important characteristics associated with each flow pattern, enabling a better comprehension of each observed 
instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made 
tubes transparency. The Natural Circulation Facility (Circuito de Circulação Natural – CCN ) installed at Instituto 
de Pesquisas Enérgeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal 
hydraulic data related to one and two phase flow under natural circulation conditions. 
 
 

1. INTRODUCTION 
 
Periodic two-phase flow oscillations have been studied through the Natural Circulation Facility 
(Circuito de Circulação Natural – CCN) installed at Instituto de Pesquisas Enérgeticas e 
Nucleares, IPEN/CNEN [1-3]. This facility is an experimental circuit designed to provide 
thermal hydraulic data related to one and two phase flow under natural circulation conditions, 
and enables extensive visualization due its glass-made tubes transparency. 
 
Natural circulation has been used in new generation power plant projects as a removal 
mechanism for "loss of pump power" or "plant shutdown" accidents [4]. 
 
Instabilities of two-phase flow patterns associated with natural circulation have been used as 
established by Delhaye in 1981 [1,5,6]. “Chugging” is the usual term to denominate the 
characteristic periodic expulsion of coolant from a flow channel [7]. This phenomena 
comprehension has been recently improved by new image processing and acquisition 
technology developments. Estimation of flow parameters and phase transition features are 
currently being investigated through artificial intelligence techniques.  
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Seleghim Jr and Hervieu [8] proposed a relation between flow type transitions and time-
frequency covariances of void fraction signals and neural networks have been used to detect 
phase transitions based on signal changes by Crivelaro et al. [9]. 
 
The association of new image processing techniques and qualitative image analysis with flow 
related parameters has been studied [3,10-13]. Flow-type transitions, void fraction, dry angles 
are among many two-phase flow heat transfer examples [19-22]. 
 
This work proposes the use of Self-Organized Maps (SOM) to develop a flow pattern 
recognition algorithm able to identify chugging instability flow types observed on CCN 
experimental circuit. This neural network based algorithm is applied to digital images acquired 
through a visualization section.  Instability phase denominations are based on classical Bour´e 
classification [7]. 
 
 

2. METHODOLOGY 
 
Self-organizing Maps are trained based on these image features in order to observe how each 
of these features are important to classify each instability phase. The SOM will work as a pure 
clustering technique. The obtained map is used to classify different flow types. 
 

2.1. Natural Circulation Facility 

 
Natural Circulation Facility (NCF) (Figure 1) is an experimental circuit designed to provide 
thermal hydraulic data related to one and two phase flow under natural circulation conditions. 
 
NCF is a rectangular loop of borosilicate glass tubes that are temperature resistant. The 
heated section (Figure 1(a)) has two Ni-Cr alloy electric heaters in U form and stainless steel 
cladded that can deliver up to 8000W. The cooling section (Figure 1(c)) consists of a heat 
exchanger/condenser, also made of glass, with two internal spiral coils where tap water flows.   
Circuit has an expansion tank opened to atmosphere in order to accommodate fluid level 
changes due to the temperature and void fraction changes. This tank is connected to the 
circuit through a flexible tube at its lower region in order to prevent steam entrance [1].  
 
Visualization is possible in all regions of the circuit, and a visualization section with CCD 
(charge-coupled device) camera was adjusted with backlight illumination (Figure 3(b)). 
Temperature measurements and image acquisition were concomitantly done in order to 
characterize phase transition patterns and correlate them with the periodic static instability 
(chugging) measured cyclic period.  Chugging instability cycles are usually divided in three 
different phases called incubation, expulsion and refill periods [1,5,6]. They are considered 
relaxation instabilities characterized by periodic expulsion of coolant from the channel. The 
experiments were adjusted to sustain a cyclic and periodic behavior of this instability. 
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Figure 1: Schematics of natural circulation loop facility with:  electrical heating section 

(a), visualization section (b) and cooling section(c). 
 
 
 
The incubation phase has no net flow at the loop when vapor bubbles grow in number and 
size and vapor remains at upper horizontal leg. At this phase, the circuit pressure grows 
slightly expulsing the liquid from the cold leg to the expansion tank. The slug flow is 
replaced by churn flow at the called expulsion phase, when liquid entrained by vapor is 
expulsed from hot leg. The expansion tank level arises to its maximum value. The final phase 
is characterized by the inversion of flow rate direction caused by the difference of hydrostatic 
head, replacing the hot water at the heater by cold water coming from coil cooler. The vapor 
production at the heater decreases and the horizontal part of the hot leg is filled with water 
again, beginning the overall cycle once more [1]. This periodic flow oscillation behavior can 
be observed thoroughly in this facility due its glass-made tubes transparency. 
 

2.2. Overall Classification System 

 
The methodology used to apply SOM to flow images is represented on Figure 2. Images were 
acquired as is described in section 2.3 and were organized in proper folders in order to enable 
appropriate neural network training.  
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Figure 2: Instability Flow-type Classification System (IFCS) based on SOM clustering. 

 

2.3. Image Acquisition Setup 

 
Image acquisition was done simultaneously with temperature measurements using high 
resolution digital camera with 250 µs shutter speed. Lens mount was configured to enable 
macro focus and image acquisition was done at one frame per second rate during different 
cycles of 1000 to 1500 s long. Typical acquisition modes generated 3888x2592 pixels frames 
at longitudinal tube section with a resolution of approximately 0.03 mm/pixel.  Backlight 
illumination technique showed to be the optimal condition to obtain image borders best 
definition.  Images were acquired at an approximate 120 mm longitudinal section of the 
cylindrical hot leg tube (46.3mm external diameter) shown on Figure 1(b). 
 
Image Database was organized based on three main chugging subtypes, Expulsion (E), 
Incubation (I), and Refill(R) (Figure 3).  Pattern images were acquired simultaneously with 
circuit temperature measurements synchronized in time. The heating power was estimated to 
be raised up to 7270W with an ambient temperature of 25oC. Cooling flow rates of 140 l/h 
were kept constant during the approximate 9500s experiment.  Periodic behavior was 
confirmed by the detection of the refill-to-incubation phase transition image pattern. This 
detection is described with more detail elsewhere [2,3]. 
 
The instability two-phase flow cyclic behavior can be observed through temperature 
measurements and by cyclic flow pattern detection time interval. A regular T period of 49 
seconds for a complete chugging cycle is estimated after stabilization occurs. The cycle is 
composed of an Incubation phase (T to (T+30)s), an Expulsion  phase ((T+30)s to (T+35)s) 
and a Refill phase which lasts for the remaining 14 seconds of the cycle period. 
 
The image database was composed of selected images related to each subtype phase of 
chugging cycle. Images corresponding to periods near to instability flow subtype transitions 
were not considered on this work in order to best estimate the fuzzy classification ability. 
From 2530 images, 32 sample images were selected to characterize each flow subtype. 
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Figure 3: Typical images used to classification scheme. The three types are represented 

from left to right: Expulsion (E), Incubation (I) and Refill (R). 
 
 
 
The images on Figure 3 show one example for each chugging subtype. From these images is 
possible to note that there are visual similarities and differences among the same subtype.  
  

2.4. Digital Image Processing 

 
Image database was composed of 96 full-sized 107 pixels “rgb” images (red-green-blue 
pattern) in compressed file format organized in three subtype classes in order to adjust FIS 
parameters.  The image processing algorithm (Figure 2) was composed of a consecutive set of 
Matlab [18] functions. An interpolating gray-level transforming function (rgb2gray) produces 
a grayscale image as output. The following function is a histogram equalization function 
(imadjust) which maps the values in intensity image to new values in such that 1% of data is 
saturated at low and high intensities of this image. This increases the contrast of the output 
image. After these two steps a line extraction algorithm is applied in order to obtain grayscale 
profiles. From each sample, four longitudinal (top-down) and equidistant (inside tube) lines 
of 3888 pixels (Figure 4) were extracted. Acquired images originally included (inside the 
visual field frame) a focus calibration pattern beside the tube. This pattern was used to 
measure the field depth and the distance from the camera to the glass tube surface 
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Figure 4:  Typical expulsion phase with traced lines indicating cropping limits and 
profile lines extracted. 

 
 

2.5. Self-organizing Maps (SOM) 

 
The Self-Organizing Maps (SOM), initially inspired on human cerebral cortex, activate their 
neurons proportionally to the increasing distance from initial activation [14]. 
 
SOM is a neural network that produces high-dimensional visual maps which preserve 
topology distribution over input and output data space. These algorithms can be used to 
analyze and explore multidimensional structures and patterns. It has been considered a non- 
supervised neural network as it does not need to have a target vector to be trained. Most of its 
application is clustering data problems [15] like feature extraction, image and acoustic 
patterns classification, robots adaptive control, equalization, and others. 
 
Basic functioning is supported by competitive learning, where neurons compete among 
themselves in order to better adapt to established goal, such as representing data distribution 
over input space. The winner-takes-it-all strategy was broadened to include a neighborhood 
influence during training phase. 
 
SOM neurons are distributed and ordered in lattice bi-dimensional graphics preserving 
proximity between similar prototype vectors. Each neuron has its prototype vector that was 
trained to best represent corresponding variables on input data. This topographic map 
localizations  are  indications  of  implicit  statistical  characteristics  contained  on  input data 
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patterns. They can be also considered as a non-linear generalization of principal component 
analysis heuristic [16]. 
 
The basic algorithm is constituted of three main stages: competitive, cooperative and 
adaptive. In first one, the Best Matching Unit (BMU) is searched by net training. The criteria 
used to choose the best correspondence between input vector and neural network weight 
vector (neuron prototype) is the shorter distance (usually Euclidean), and is represented by: 
 

݅ሺݔሻ ൌ ݉݅݊ฮݔ െ ,௝ฮݓ ݆	ݎ݋݂ ൌ 1,2, … , ݊, (1) 

 

where i(x) is the general criteria for correspondence, x is the input vector, and wj the weight 
vector. 

Among the different distance types the most used is the Euclidean distance which can be 
stated as: 

ிܦ ൌ ඥሺݔଵ െ ଵሻݕ
ଶ ൅ ሺݔଶ െ ଶሻݕ

ଶ ൅ ⋯൅ ሺݔ௡ െ ௡ሻݕ
ଶ (2) 

 
where xn are input coordinates and yn are prototype-weight vectors. Other metrics are used to 
measure distance as Minkowski, Manhattan and others [15]. 
 
During the second training stage, Cooperative phase, the BMU neighborhood weight vectors 
are trained using pre-determined parameters as learning rate dependent upon distance, 
optimizing net neurons distance. And finally, after convergence criteria are satisfied, the 
resulting map can be evaluated through quality parameters, as quantization error and 
topographic error. Quantization error averages the distance between each data vector and its 
BMU. Topographic error measures the topology preservation by measuring map resolution by 
making a proportion of all data vectors for which first and second BMUs are not adjacent 
units on final map. The SOM algorithm was implemented using Som Toolbox 2.0 [17]. 

 
 

3. PRELIMINARY RESULTS  
 
The SOM is being trained using one or two grayscale profiles as input. Typical obtained 
prototypes by the neural network are presented on Figure 5. The corresponding SOM map 
with Best Match Units and its corresponding subtype's classification are presented on Figure 
6. This map corresponds to a 8x6 map trained with a 50% of all database, 5000 iterations 
(initial radius of 4) for initial training phase and 3750 iterations (initial radius of 2) for fine-
tune training phase. 
The initial classification results are unstable, depending on SOM initial parameters, although 
promising Incubation and Refill subtypes classification rates are good. Quantization Error 
(Qe) was 874 and Topographic Error (Te) was 0.21 for this case example where the right 
classification rates were: Incubation (87.5%), Refill (100%), Expulsion (31.25%), and Global 
Rate (72.92%). 
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Figure 5:  Typical SOM prototype map obtained using one vertical grayscale profile as 
input. 

 
 

 
 

Figure 6:  Typical SOM maps with Best Match Units and its corresponding subtype's 
classification. 

 
 
 

4. CONCLUSIONS  
 
 
The proposed classification system presents satisfactory results for this pattern classification 
problem. Further experiments using other features as inputs to SOM neural networks are 
being implemented to improve Expulsion subtype classification.   
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