BR 88.16 SOZ INIS - BR -- 942

× •

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

UMA INTRODUÇÃO À ANÁLISE DE VASOS DE PRESSÃO EM CONCRETO PROTENDIDO MULTICAVIDADE

MARIA CECILIA AMORIM TEIXEIRA DA SILVA

Disertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Tecnologia Nuclear.

,

Orientador: Dr. José Messias de Oliveira Neto

2

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

COMISSÃO MACIONAL DE ENERGIA MONCHARISP I. P. E. N.

• .

UMA INTRODUÇÃO À ANÁLISE DE VASOS DE PRESSÃO EM CONCRETO PROTENDIDO MULTICAVIDADE

MARIA CECILIA AMORIM TEIXEIRA DA SILVA

Disertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Tecnologia Nuclear.

LIVRO Nº J8355 DE LOTECT

Orientador: Dr. José Messias de Oliveira Neto

SÃO PAULO 1986

فليقط والاعتماد ومناجع والمراجع والمناجع والمراجع والمناجع والمناجع

AGRADECIMENTOS

Um agradecimento especial a Miguel Mattar Neto pela valiosa colaboração, sem a qual não teria sido possível a elaboração deste trabalho.

A rientador José Messias de Oliveira Neto.

de Instituto de Pesquisas Energéticas e Nucleares.

الوارية الداريس والدراسة الدارد الدانية فرزونه مسرد مسرد مترامعا المرامعة الالمرامية

+ Universidade Estadual de Campinas.

اربي المحمدين رامينا محاد

A todos que de alguma forma nos auxiliaram e nos incentivaram no desenvolvimento deste trabalho. .

UMA INTRODUÇÃO À ANALISE DE VASOS DE PRESSÃO EM CONCRETO PROTENDIDO MULTICAVIDADE

Maria Cecilia Amorim Teixeira da Silva

RESUMO

Este trabalho apresenta um estudo sobre vasos de pressão em concreto protendido multicavidade para reator nuclear.

Inicialmente, são citados projetos, análises e modelos de vasos multicavidade,obtidos por meio de uma revisão bibliográfica.

Em seguida, é feita uma investigação preliminar da aplicação do programa NONSAP no cálculo de estruturas tridimensionais. Nessa etapa, adota-se como modelo analítico um va~ so de pressão monocavidade.

Finalmente, é feita a análise tridimensional de um vaso de pressão multicavidade em regime elástico, com o auxílio do programa NONSAP. O modelo analítico é baseado no vaso de pressão do reator refrigerado a gás para altas temperaturas (HTGR) de 1000 MW(e) projetado pela Companhia Gulf General Atomic. Os resultados obtidos são comparados com os dados experimentais.

AN INTRODUCTION TO THE ANALYSIS OF MULTI-CAVITY PRESTRESSED CONCRETE PRESSURE VESSELS

Maria Cecilia Amorim Teixeira da Silva

ABSTRACT

The present work is a study of multi-cavity prestressed concrete pressure vessels (PCRV) for nuclear reactors.

A review is made of the designs, analises and models of multi-cavity concrete pressure vessels.

A preliminary evaluation of the NONSAP program for applications in complex three-dimensional structures such as a multi-cavity pressure vessel is also made.

A model of a FCRV of a 1000 MW(e) high-temperature gas cooled reactor was selected for a three-dimensional analysis with the NONSAF program. The results obtained are compared with experimental data.

INDICE GERAL

PAG.

CAPÍTULO 1	- INTRO	DUÇÃO	1
1.1	Uma vi	5ão geral	i
1.2	Justif	icativas	3
1.3	Objet i	V05	4
i.4	Organ i:	zação da dissertação	5
CAPÍTULO 2	- REVIS	AD BIBLIOGRAFICA	7
2.1	Projet	DS	7
	2.1.1	Normas para projeto e construção de VPCPs	7
	2.i.2	Alguns critérios de norma	7
	2.1.3	Critérios de projeto segundo alguns autores	. 9
	2.1.4	Linhas de projeto	10
	2.1.5	Projetos existentes	13
2.2	Analis	85	17
	2.2.1	Considerações gerais	17
· ·	2.2.2	Formas de análise segundo alguns autores	18
	2.2.3	Técnicas de análise	20
	2.2.4	Algumas análises desenvolvidas	22
	2.2.5	Componentes objetos de análise	30
	2.2.6	Comentários	30
2.3	Modelo	s utilizados em testes	32
	2.3.1	Considerações gerais	32
	2.3.2	Modelo Hartlepool	33
	2.3.3	Modelo Gulf General Atomic (GGA)	35
	2.3.4	Modelo Ohbayashi-Gumi	37
	2.3.5	Modelo Shimizu Construction	39

	2.3.6	Modelos de HTGR ciclo-direto	40
2.4	Consid do vas	erações a respeito da utilização o multicavidade	44
	2.4.1	Causas imediatas do aparecimento do VPCP multicavidade	44
	2.4.2	Vantagens e desvantagens	45
	2.4.3	O VPCP em escala comercial	46
	2.4.4	Tendências	46
	2.4.5	Contribuições para a análise dos VPCPs multicavidade	47
ÍTULO 3	- ESTUD GRAMA TRIDI	O PRELIMINAR DA UTILIZAÇÃO DO PRO- NONSAP NO CÁLCULO DE ESTRUTURAS MENSIONAIS	60
3.1	Consid	erações gerais	60
3.2	Partic	ularidades do NONSAP	62
	3.2.1	Entrada de dados relativa às condições de contorno	62
	3.2.2	A definição dos elementos	62
	3.2.3	Distribuição dos nós	63
	3.2.4	Carregamento consistente e não consistente	63
	3.2.5	Capacidade de memória e tempo de computador	65
	3.2.6	Dados obtidos no elemento	66
3.3	O NONS estudo	AP na análise tridimensional: os e soluções adotadas	66
	3.3.1	Modelo A - a utilização dos elementos de treliça	67
	3.3.2	Modelo C - análise tridimensional em um setor de 90°	68
	3.3.3	Modelos E e F: VPCPs mono- cavidade	69
	3.3.4	O modelo E	70
	3.3.5	Conclusőes	72

CAP

PÁG.

.

CAPITULO 4	- ANALI	SE DE UM MODELO DE VPCP	
	MULTI	CAVIDADE	89
4.1	Consid	erações gerais	89
4.2	0 mode	lo experimental	89
	4.2.1	Introdução	89
	4.2.2	Critérios de projeto	90
	4.2.3	O modelo	91
•	4.2.4	Propriedades dos materiais	92
	4.2.5	Carregamentos	94
	4.2.6	Sensores utilizados	97
	4.2.7	Tipos de testes desenvolvidos	97
	4.2.8	O teste utilizado para comparação	99
4.3	0 mode numéri	lo utilizado no cálculo co	100
· ·	4.3.1	A estrutura adotada	100
	4.3.2	Condições de contorno	101
	4.3.3	A malha de elementos finitos	102
	4.3.4	Seleção das propriedades dos materiais	102
	4.3.5	Carregamentos	103
	4.3.6	Análise de sensibilidade	104
	4.3.7	Alterações na capacidade de memória	106
4.4	Aprese	ntação e análise dos resultados	107
	4.4.1	Introdução	107
	4.4.2	Resultados disponíveis	108
	4.4.3	Formas de comparação e locali~ zação dos sensores	109
	4.4.4	Deslocamentos	110
	4.4.5	Deformações radiais e verticais	116

•

. .

· . .

•			
	4.4.6	Deformações circunferenciais	122
	4.4.7	Uma análise geral dos dois	
	4.4.8	modelos Análise dos resultados obtidos	127
		pelo NONSAP	128
CAPITULO 5	- CONCL	USÕES E PROPOSTAS PARA TRABALHOS	
	FUTUR	0S	190
5.1	Conclu	sőes	190
5.2	Propos	tas para trabalhos futuros	191
REFERÊNCIAS	BIBLIO	GRÁFICAS	193
APÊNDICE A		·	206
A.1	Progra	ma DESVIO.FORT	206
A.2	Progra	ma DES.C.FORT	208
A.3	Transf X, y e	ormação das tensões nas direções e z em tensões principais	209
	A.3.1	Teoria	209
	A.3.2	Programa TENSÃO2.FORT	211

.

•

•

. .

PAG.

•

.

-

ÍNDICE DE TABELAS

. .

DESCRIÇÃO

TABELA

2.1	Modelos: dimensões e características	48
3.1	Análise da placa circular vazada (mode- lo C) carregada com pressão interna	74
3.2	Análise do modelo E com carregamento não consistente	75
4.1	Sensores	134
4.2	Desvios dos resultados obtidos nas malhas M16, M12 e M08 em relação à malha M20	135
4.3	Parâmetros das malhas do VPCP multi- cavidade	136
4.4	Variáveis para a capacidade de memória do NONSAP	136
4.5.1	Posição dos sensores: deslocamentos	137
4.5.2	Posição dos sensores: deformações radiais	137
4.5.3	Posição dos sensores: deformações verticais	138
4.5.4	Posição dos sensores: deformações circunferenciais	138
4.6.1	Comparação de resultados: deslocamentos	139
4.6.2	Comparação de resultados: deformações radiais	141
4.6.3	Comparação de resultados: deformações verticals	143
4.6.4	Comparação de resultados: deformações circunferenciais	144
4.7	Comportamento da laje de topo - valores de E o	145

.

.

PAG.

INDICE DE FIGURAS

FIGURA	DESCRIÇÃO	PÁC.
2.1	VPCP do AGR Hartlepool	49
2.2	VPCP do HTGR 1000 MW(e) da Gulf General Atomic	49
2.3	VPCP "ciclo-direto" da HRB West Germany	50
2.4	VPCP assimétrico da Gulf General Atomic	50
2.5	VPCP do GCFR versão multicavidade	50
2.6	VPCP do GCFR versão satélite	51
2.7	Modelo escala 1/10 do VPCP Hartlepool	52
2.8	Malha de elementos finitos para o modelo Hartlepool	
2.9	Modelo Ohbayashi-Gumi escala 1/20	52
2.10	Malha de elementos finitos para um VPCP multicavidade	53
2.11	Malha de elementos finitos do VPCP do HTGR Gulf General Atomic	53
2.12	Malha de elementos finitos para o modelo HHT "ciclo-direto"	54
2.13	Elementos finitos isoparamétricos	54
2.14	Elementos finitos utilizados no - programa ISOPAR	54
2.15	VPCP THTR alemão	55
2.16	Análise de VPCP pelo método 'Sliced- Structures'	55
2.17	Malha de elementos finitos para análise final do modelo Hartlepool	55
2.18	Modelo do VPCP Gulf General Atomic escala 1/20	56
2.19	Malha para análise não linear do modelo 664	56

FIGURAS	DESCRIÇÃO	PÁG.
2.20	Primeira análise do modelo Ohbayashi- Gumi: elementos de 20 nós e programa NONSAP	57
2.21	Segunda análise do modelo Okbayashi-Gumi: elementos de 8 nós e programa NONSAP	57
2.22	Terceira análise do modelo Ohbayashi- Gumi: elementos de 20 nós e programa STATIC-SAP	57
2.23	Idealizações do modelo Ohbayashi_Gumi para análise inelástica	58
2.24	Modelo Shimizu Construction escala 1/30	58
2.25	Malha de elementos finitos para o modelo Shimizu	58
2.26	Modelo do VPCP "ciclo-direto" suiço- alemão escala 1/20	59
2.27	Malha de elementos finitos para análise do modelo suico-alemão	59
3.1	Elemento tridimensional utilizado no NONSAP	77
3.2	Forças nodais equivalentes a uma força de campo uniformemente distribuida em elemento plano	77
3.3	Forças nodais equivalentes a um carre- gamento superficial uniformemente dis- tribuido em uma face de um elemento tri- dimensional	77
3.4	Tensões em elemento tridimensional fornecidas pelo NONSAP	78
3.5	Elemento de treliça simulando vínculo numa direção qualquer	78
3.6	Cilindro infinito de parede espessa	79
3.7	Malha para análise estrutural de cilin- dro infinito de parede espessa em estado plano de deformação usando elemento de treliça	79
3.8	Análise de cilindro infinito - Sr × raio	80
3.9	Análise de cilindro infinito - Gexraio	80

FIGURA

•

¢

• •

DESCRIÇÃO

3.10	Análise do cilindro infinito -	
	dr x raio	81
3.11	Análise do cilindro infinito - dr x nó	81
3.12	Análise do cilindro infinito - do x nó	81
3.13	Placa vazada (moeda furada)	82
3.14	Malha para análise estrutural da moeda furada usando elementos tridimensionais de 20 nós com o NONSAP	32
3.15	Modelo de VPCP monocavidade	83
3.16	Malha para análise estrutural axissimé- trica do modelo de VPCP monocavidade com o FEAST	23
3.17	Parcela da estrutura do modelo E adotada para malha de elementos finitos	84
3.18	Malha de elementos finitos do modelo Ei	84
3.19	Elemento "fatia de queijo"	84
3.20	Não conformidade	85
3.21	Não simetria na definição dos elementos "fatia de queijo"	85
3.22	Definição do elemento "fatia de queijo" para modelos E2 e E3	85
3.23	Não conformidade entre elementos contíguos	85
3.24	Modelo E2 × FEAST: deslocamentos dv, de e dr :	86
3.25	Modelos E × FEAST: deslocamento radial × raio	87
3.26	Modelos E x FEAST: deslocamento vertical x raio	88
4.1	Dimensões dos modelos experimental e calculado	146
4.2	Alterações geométricas feitas no modelo GGA	146
4.3	Diagrama do sistema hidráulico do Modelo GGA	147
4.4	Posíção dos sensor es de deslocamento	148

F	FIGURA	DESCRIÇÃO	P4G.
	4.5	Posição dos sensores de deformação	148
	4.6	Posição das células de carga nos tendões verticais e dos sensores nos cabos cir- cunferenciais	149
•	4.7	Malha de elementos finitos baseada no modelo multicavidade GGA	150
	4.8	Malha de elementos finitos: seção 1	150
	4.9	Malha de elementos finitos: seção 2	151
	4.10	Malha de elementos finitos: seção 3	151
	4.11	Malha de elementos finitos: seção 4	152
	4.12	Malha de elementos finitos: seção 5	152
	4.13	Malha de elementos finitos: seção 6	i53
	4.14	Malha de elementos finitos: seção 7	153
	4.15	Malha de elementos finitos: seção 8	154
	4.16	Malha de elementos finitos: seção 9	154
•	4.17	Malha de elementos finitos: seção 10	155
	4.18	Malha de elementos finitos: seção 11	155
	4.19	Malha de elementos finitos: seção 12	156
•	4.20	Malha de elementos finitos: seção 13	156
•	4.21	Malha de elementos finitos: seção 14	157
	4.22	Malha de elementos finitos: seção 15	157
	4.23	Malha de elementos finitos: seção 16	158
•	4.24	Malha de elementos finitos: seção 17	158
	4.25	Malha de elementos finitos: seção 18	159
	4.26	Malha de elementos finitos: seção 19	159
	4.27	Definição do elemento-padrão para as malhas M08, M12, M16 e M20	160
	4.28	Sistemas de coordenadas cartesiano e cilíndrico e seu posicionamento relativo	160

,

FIGURA

DESCRIÇÃO

PÁG.

.

4.29	Análise de sensibilidade: nós de coordenadas cartesianas y=51,09cm e z=9,51cm	161
4.30	Análise de sensibilidade: nós de coordenadas cartesianas y=52,64cm e z=14,27cm	162
4.31	Análise de sensibilidade: nós de coordenadas cartesianas y=15,59cm e z=9,0cm	163
4.32	Deslocamento da laje x pressão interna - sensor dí	164
4.33	Deslocamento da laje x pressão interna - sensor d2	164
4.34	Deslocamento da laje x pressão interna - sensor d3	165
4.35	Deslocamento da laje x pressão interna - sensor d4	165
4.36	Deslocamento da laje x pressão interna - sensor d5	166
4.37	Deslocamento da laje x pressão interna - sensor d6	166
4.38	Levantamento da laje x pressão interna - sensor Ai	167
4.39	Levantamento da laje x pressão Interna - sensor 42	167
4.40	Movimento relativo entre laje e barril × pressão interna - sensor A3	168
5 - 4 .41	Movimento relativo entre laje e barril x pressão interna - sensor 44	168
4.42	Deslocamento do barril x pressão interna - sensor dii	169
4.40	Deslocamento do barril x pressão interna - sensor d12	169
4.44	Forma de deslocamento da laje ao longo de um diâmetro para cada nível de pressão	170
4.45	Deslocamento vertical da laje: compara- ção entre valores calculados analítica- mente e valores medidos	170

FIGURA	DESCRIÇÃO	PÁG
4.46	Distorção da laje: comparação entre valores calculados analiticamente e valores medidos	171
4-47	Deslocamento do barril: comparação entre valores calculados analitica- mente e valores medidos	171
4.48	Deslocamentos: resultados experimentais (GGA) x calculados (MULT20)	172
4.49	Deformação da laje x pressão interna - sensor E1	172
4.50	Deformação da laje x pressão interna - sensor E2	173
4.51	Deformação da laje x pressão interna - sensor E3	173
, 4.52	Deformação da laje x pressão interna - sensor E4	174
4.53	Deformações radiais no centro da laje (E1 a E4):resultados experi- mentais (GGA) x calculados (MULT20)	1 7 4
4.54	Deformação da laje x pressão interna - sensor E5	175
4.55	Deformação da laje x pressão interna - sensor E6	175
4.56	Deformação da laje x pressão interna - sensor £7	176
4.57	Deformações radiais da laje (E5, E6 e E7): resultados experimentais (GGA) x calculados (MULT20)	176
4.58	Deformações radiais: comparação entre os valores calculados (MULT20) apre- sentados nas tabelas 4.6.2 (a e b)	177
4.59	Deformação da laje x pressão interna - sensor E8	177
4.60	Deformação do barril × pressão interna - sensor E 17	178
4.61	Deformação da laje x pressão Interna - sensor 69	178

FIGURA

DESCRIÇÃO

PAG.

4.63	Deformação da laje x pressão interna - sensor Eii	179
4.64	Deformação do barril x pressão interna - sensor £12	180
4.65	Deformação do barril x pressão interna - sensor E13	i 80
4.66	Deformação do barril x pressão interna - sensor E14	18 1
4.67	Deformação do barril x pressão interna - sensor E15	181
4.68	Deformação do barril x pressão interna - sensor E16	182
4.69	Deformações circunferenciais: resul- tados experimentais (GGA) x calcula- dos (MULT20)	182
4.70	Valores do NONSAP - deslocamentos radiais	183
4.71	Valores do NONSAP - deslocamentos verticaís	185
4.72	Valores do NONSAP - deslocamentos circunferenciais e radiais compos- tos em seções horizontais	187

,

NOTAÇÕES

Ec	:	módulo de elasticidade do concreto
Es	:	módulo de elasticidade do aço
fct	:	resistência à tração do concreto
fcc	:	resistência à compressão do concreto
MPC	:	máxima pressão de cavidade
S	:	superfície
0 <	:	ângulo
đn	:	sensor de deslocamento nº n
Δi	:	incremento na direção i
۰ ۵.	:	sensor de deslocamento n≅ n
É i	:	deformação na direção i
, En	:	sensor de deformação nº n
2	:	coeficiente de Poisson
£i	:	tensão normal na direção i
ſi	:	tensão principal máxima no centróide do elemento
f 3	:	tensão principal mínima no centróide do elemento
r	:	tensão de cisalhamento
	:	indica tensor
t t	:	indica determinante
۲. ک	:	indica vetor
נ כ	:	indica matriz

. .

. .

CAPITULO UM

1.1 Uma visão geral

Um dos objetivos principais que tem norteado o desenvolvimento da tecnologia de reatores nucleares para a geração de energia elétrica é o aperfeiçoamento de seus ciclos térmicos, de modo a permitir que eficiências cada vez maiores sejam obtidas. Um fator que interfere diretamente na eficiência térmica é a temperatura do fluido refrigerante na saida do sistema que depende, por sua vez, do tipo de fluido utilizado. Sob esse ponto de vista, os reatores refrigerados a gás apresentam um aspecto positivo:permitem que temperaturas elevadas sejam atingidas sem que ocorram problemas de mudança de fase, contrariamente ao que acontece nos reatores refrigerados a água.

A tecnologia dos reatores refrigerados a gás teve início na Europa, mais precisamente em dois países, Inglaterra e França, no começo dos anos 50.

A princípio, foi o aço utilizado para a construção do vaso de pressão. Porém, com a evolução tecnológica, as pressões de projeto foram atingindo valores que tornavam impraticável o uso desse material.

Surgiu, então, o conceito de vaso de pressão em Concreto protendido (VPCP) que, em sua primeira forma, era um cilindro monocavidade dentro do qual colocava-se apenas o núcleo do reator. Num segundo estágio, também os geradores de vapor e dutos auxiliares foram colocados no interior da cavidade, o que deu origem ao chamado "circuito integrado".

Tal solução apresentou como vantagem a blindagem de todo o circuito pelo vaso,o ganho de um espaço adicional em torno do circuito principal de refrigeração, além de influir no aspecto econômico. Por outro lado, trouxe grandes dificuldades para a inspeção dos geradores de vapor e o risco de paralização do sistema de geração de energia no caso de haver a necessidade de algum reparo.

Em função desses aspectos, surgiu o conceito de vaso multicavidade: o vaso de concreto passou a ser constituído de um cilindro com uma cavidade central, em torno da qual cavidades secundárias abrigam geradores de vapor e seus respectivos circuladores.

Essa inovação aumentou consideravelmente a comple-*Xidade da análise estrutural, exigindo a utilização de técni-Cas de cálculo mais elaboradas.

Os métodos númericos passaram, então, a desempenhar um importante papel no projeto de VPCPs e vários programas, desenvolvidos para computadores de grande porte, foram especialmente adaptados para esse tipo de estrutura e tornaram-se indispensáveis ferramentas de trabalho.

No presente trabalho, é comentado o desenvolvimento

das pesquisas relativas ao VPCP multicavidade. Em seguida, é apresentada a aplicação do programa NONSAP na análise de estruturas tridimensionais. Finalmente o modelo de um VPCP multicavidade é analisado utilizando o programa NONSAP e os resultados obtidos são comparados com dados experimentais encontrados na literatura corrente.

1.2 Justificativas

A análise de VPCPs teve início no Instituto de Pesquisas Energéticas e Nucleares (IPEN) em 1973 e fazia parte de uma proposta de trabalho mais ampla : a construção de uma Usina de Demonstração de 300 MW(e) tipo GCFR (Gas-cooled Fast Breeder Reactor), cujo projeto incluia a utilização do vaso de pressão multicavidade.

Contando com a colaboração da companhia norte-americana Gulf General Atomic, cabia ao IPEN projetar, construir e ensaiar modelos de VPCPs, baseados no GCFR em questão. Numa primeira etapa, frente às dificuldades encontradas na execução de modelos multicavidade, optou-se por um programa de testes em modelos monocavidade, e assim, três deles foram construidos. No entanto, esse trabalho de pesquisa foi em seguida iterrompido, devido a dois fatos ocorridos em meados da década de 70 :

~ a Gulf General Atomic paralisou as pesquisas que vinha desenvolvendo sobre reatores refrigerados a gás;

foi assinado o Acordo Nuclear Brasil-Alemanha, que priorizou
 estudo de reatores refrigerados a água, tipo PWR (Pression)

Water Reactor).

Com a escassez de verbas, tornou-se inviável a construção de novos modelos experimentais. Verificou-se, contudo que era possível dar continuidade ao estudo de VPCPs, apesar das limitações, tomando como base trabalhos que haviam sido concluidos no IPEN(33,50,52), na primeira fase da pesquisa.

1.3 Objetivos

Os objetivos deste trabalho foram :

- apresentar os diversos estágios de desenvolvimento de VPCPs
 multicavidade quanto a projetos, análises e modelos obtidos
 Por meio de ampla revisão na literatura corrente;

- fazer um estudo preliminar sobre a viabilidade de utilização do programa NONSAP na análise tridimensional de VPCPs, utilizando a versão do programa implantada no sistema IBM/370-155 do IPEN;

analisar um modelo VPCP multicavidade, em sua fase elástica,
 solicitado por pressão interna, usando o programa NONSAP como
 ferramenta de cálculo. Fazer um estudo comparativo utilizando,
 para isso, dados experimentais previamente selecionados.

Os dados experimentais utilizados para comparação foram extraidos de um modelo de HTGR construido pela Gulf General Atomic(14).

O programa NONSAP foi adotado porque, quando este trabalho teve inícic, ele era a única ferramenta de cálculo existente no IPEN que comportava uma análise tridimensional.

1.4 Organização da dissertação

Neste primeiro capítulo, o trabalho é situado dentro de um contexto geral e são apresentadas as justificativas e os objetivos que levaram à sua realização.

O capítulo 2 contém uma revisão bibliográfica relativa ao desenvolvimento dos VPCPs multicavidade e está dividida em três partes: projetos, análises e modelos utilizados em testes.

No capítulo 3 são apresentadas as particularidades do programa NUNSAP e é feito um estudo preliminar de sua utilização na análise de estruturas tridimensionais. A estrutura adotada, nessa etapa, é o vaso de pressão monocavidade.

Do capítulo 4 consta o modelo experimental adotado Para servir como base de comparação. Em seguida, é formulado o modelo de elementos finitos a ser calculado pelo programa NON-SAP. São indicadas suas características materiais e o carregamento a que está sujeito.Os resultados calculados são comparados com os resultados experimentais e, em alguns casos, com valores analíticos.

C

No capítlo 5 são relacionadas as conclusões obtidas do estudo preliminar do NONSA? e da análise do modelo multicavidade. São apresentadas propostas para trabalhos futuros.

Os programas auxiliares, criados no decorrer da análise, são apresentados no Apêndice A.

CAPITULO DOIS

REVISÃO BIBLIOGRÁFICA

2.1 Projetos

2.1.1 Normas para projeto e construção de VPCPs

Para que um VPCP seja projetado, construido e licenciado, é necessário seguir alguns requisitos que normalmente constituem códigos ou normas de licenciamento e que, embora tenham sua validade restrita ao país unde foram desenvolvidos, têm sido utilizados, de forma generalizada, como critérios básicos para projeto e construção de VPCPs.

Segundo Hannah(25), vários países já têm suas próprias normas tais como Estados Unidos da América(1), Grã-Bretanha(6) e França, estando em fase de preparação as Normas da Alemanha, Escandinávia e Austrália. Também algumas organizações tais como a "Federation Internacionale de la Precontrainte " (FIP) e "The International Standards Organization" têm se preocupado em estabelecer padrões para o estudo e construção de VPCPs.

2.1.2 Alguns critérios de norma

Para o desenvolvimento do projeto de um VPCP, vários aspectos devem ser verificados, tais como: geometria, material utilizado, cargas a que está sujeito, comportamento estrutural e critérios limites(42).

Goodpasture e outros(23) relacionaram alguns critérios, que são citados no Código ASME(1) e nas Especificações Britânicas(6), a saber:

8

a) ASME

- a pressão de colapso deve ser igual a duas vezes a pressão máxima de cavidade (PMC). Não especifica onde e que tipo de falha deve resultar, mas observa que deve ser gradual, observável e previsível;

quanto às caryas, o Código identifica seis categorias e relaciona numerosas combinações de carga para cada uma delas;
para assegurar a integridade do VPCP, após a conclusão da construção requer um teste de pressão igual a 1,15 vezes o valor de projeto;

b) Especificações Britânicas

 os limites de tensão devem ser mantidos de maneira a garantir um comportamento essencialmente elástico do VPCP, mesmo quando sujeito a pressões superiores ao valor de projeto;
 o teste de pressão deve ser realizado com um valor igual a

1,15 vezes a pressão de projeto;

- a análise de carga de colapso deve ser verificada para um valor de 2,5 vezes a pressão de projeto;

- considera 8 estágios de combinação de carga e mais uma condição adicional de carga de colapso.

O autor observa, no Código ASME, requerimentos um ^{tan}to vagos no que se refere às áreas específicas do VPCP, is-^{to} é, aquelas que não fazem parte de estruturas convencionais. 2.1.3 Critérios de projeto segundo alguns autores

Vários autores se preocuparam com critérios de projeto de VPCPs.

Segundo Goodpasture e outros(23), duas condições de projeto e análise devem ser consideradas:

- o VPCP deve ser projetado de maneira a apresentar um comportamento elástico para pressões acima das utilizadas em operação normal;

- o YPCP deve ter um fator adequado de segurança contra a ruína mesmo que os níveis de pressão não possam ser acrescidos até o nível de ruína postulado.

Hannah(25) diz que os requerimentos para projetos de VPCP podem ser considerados sob dois principais estados limites: utilização e segurança.

Utilização: requer que o VPCP permaneça essencialmente elástico sob todos os modos de operação e falhas previstas, de maneira que distorções e movimentos dos componentes do vaso, particularmente na região das perfurações, permaneçam suficientemente pequenos durante toda a vida operacional, isto é, a operação dos reatores, geradores de vapor, isolamento e ref: igeração do vaso e todos os outros sistemas não sofram paralizações.

Seguranca: requer que o VPCP tenha uma margem ade-^{quadz} de resistência estrutural para a sobrepressão (tipica-^{mente} 2,5 vezes), que o modo de ruína induzida pela pressão 9

não seja frágil e seja percebido por meio de deformação e de outros sinais de desgate estrutural.

Stefanou(48) estudou o VPCP a partir de dois tipos de análise: elástica e de carga de colapso. Na primeira, considerou que a estrutura deve ter um comportamento elástico para todas as combinações de carga de projeto e pode ser considerada segura se as tensões são mantidas abaixo das permitidas pelo Código Britânico. Sob pressões crescentes, a estrutura deve apresentar deformações grandes e visíveis antes que qualquer ruína estrutural venha a ocorrer. Na análise da carga de colapso, o autor se baseou na determinação do fator de carga.

Bangash(3) verificou que a maioria dos projetistas de VPCP multicavidade concorda na definição de critérios de projetos a que são os seguintes:

- o vaso deve ser projetado de maneira a ter comportamento elástico em todas as combinações possíveis de carga durante operação;

- deve haver um modo progressivo de ruína e, para altos valores de pressão, devem ser constatadas grandes deformações a fim de se evitar ruptura iminente;

- o vaso deve ter uma aceitável margem de segurança contra a ruína.

2.1.4 Linhas de projeto

Inicialmente, os vasos de pressão para reatores refrigerados a gás eram construidos em aço especial com uma envoltória em concreto armado chamada de blindagem biológica. Porén, para obter reatores mais potentes e mais econômicos, tornava-se necessária a construção de reatores de maior porte, que permitissem pressões mais elevadas e melhor eficiência.

A aplicação desses novos aspectos de projeto foi tornando inviável a utilização do aço na construção dos vasos desse tipo de reator, devido à impossibilidade de serem usinadas peças de grande espessura de parede e às dificuldades no trabalho de solgagem.

Surgiu, então, o VPCP com o objetivo de superar tais obstáculos e dar continuidade a tecnologia dos reatores refrigerados a gás(10).

A partir do conceito de VPCP, novas linhas de rea-

A classificação dos tipos de reatores não se deu de maneira uniforme, pois cada autor a fez a partir de um determi mado enfoque. Alguns deles referiram-se aos tipos de reatores segundo "gerações". Assim, Pieroni(38) relacionoù as linhas de reatores na seguinte ordem:

. 1± geração: reatores térmicos refrigerados a água

(Pression Water Reactor - PWR); *

2º geração: reatores térmicos refrigerados a gás

(High Temperaiure Gas-cooled Reactor - HTGR); 3º geração: reatores rápidos refrigerados a metal líquido

(Liquid Metal Fast Breeder Reactor - LMFBR); 4) geração: reatores rápidos refrigerados a gás 11

•,•

(Gas Cooled Fast-breeder Reactor - GCFR).

Já Costa(10) fez sua divisão especificamente dentro da linha de reatores refrigerados a gás, apresentando a seguinte classificação:

1º geração: reator refrigerado a gás com urânio natural (Gas Cooled Reactor - GCR);

2º geração: reator refrigerado a gás com urânio enriquecido (Advenced Gas-cooled Reactor - AGR);

3º geração: reator para alta temperatura refrigerado a gás (High Temperature Gas-cooled Reactor - HTGR);

4= geração: reator rápido regenerador refrigerado a gás (Gas Cooled Fast-breeder Reactor - GCFR).

Kasten(29) foi ainda mais específico em sua classificação, referindo-se apenas a tipos de HTGR. Não a fez em gerações mas em função de critérios específicos de projeto: - reator para alta temperatura refrigerado a gás com ciclo de vapor (Steam-Cycle High Temperature Gas-cooled Reactor -GC-HTGR);

- reator para alta temperatura refrigerado a gás com o sistema de turbina integrado ao vaso (Gas Turbine High Temperature Gas-cooled Reactor - GT-HTGR);

ř.

-reator para alta temperatura refrigerado a gás empregado em Processos que utilizam calor (Process-Heat High Temperature Gas-cooled Reactor - PH-HTGR);

reator rápido regenerador refrigerado a gás (Bas Cooled Fast-breeder Reactor - GCFR).

Hannah (24) se referiu ao vaso de pressão propria-

1:

mente dito e destacou quatro tipos, em função da forma geométrica:

- vaso monocavidade contendo apenas o núcleo do reatori 🚬

- vaso monocavidade com circuito integrado (núcleo + geradores de vapor);

- vaso multicavidade com circuito integrado;

- vaso multicavidade com ciclo direto.

Alguns projetos encontrados na literatura corrente são apresentados a seguir.

2.1.5 Projetos existentes

O primeiro projeto de VPCP utilizando o conceito de vaso multicavidade foi desenvolvido pela Grã- Bretanha (Taylor Woodrow Construcion Ltd.- 1969) para ser utilizado nos reatores AGR Hertlepool e Heysham(23,32). O VPCP se constitui de um cilindro vertical com uma cavidade central e oito cavidades secundárias distribuidas simetricamente em torno da primeira. A construção desses reatores foi comissionada em 1978 e são os únicos reatores multicavidade trabalhando em escala comercial (fig. 2.1).

Nos Estados Unidos, os estudos sobre VPCP multicavidade foram iniciados por volta de 1970, pela Gulf General Atomic, dentro de um plano de pesquisa que visava o desenvolvimento dos reatores de HTGR e GCFR(36). O projeto americano do HTGR teve como base um reator de 1000 MW(e)(14). O vaso apresenta uma cavidade central para abrigar o núcleo do reator, circundado por outras 6 cavidades, distribuidas simetricamente e que abrigam os geradores de vapor e os circuladores de gás hélio (fig. 2.2). Esse projeto não chegou a passar para a fase de construção devido a diversos problemas enfrentados pela General Atomic(38), que são comentados mais adiante.

Os projetos britânico e americano fazem parte da linha de reatores refrigerados a gás com "circuito integrado", onde os geradores de vapor são colocados no interior do vaso de pressão, juntamente com o núcleo.

Um outro conceito de projeto surgiu quando, em 1974, a HR8 West Germany iniciou o estudo da contenção primária de um sistema reator-turbina totalmente integrado e que foi denominado "ciclo-direto"(22). O sistema utiliza o gás hélio como fluido refrigerante e é constituído de um reator e três circuitos de gás completos. Cada circuito engloba trocadores de calor, circuladores, turbina e duto de gás. Todo o sistema é colocado no interior de um único vaso e as turbinas são abrigadas em dutos horizontais na região da laje inferior (fig. 2.3). Essa configuração exigiu um arranjo complexo de cavidades e perfurações que resultou na criação de um novo estilo de projeto. Seu modelo é apresentado no item 2.3.6.

Ainda em 1974 teve início, por meio de um convênio entre Alemanha e Suiça, um estudo sobre usinas nucleares equipadas com reatores de alta temperatura e turbinas movidas a gás hélio, funcionando em ciclo direto(19). O trabalho foi desenvolvido pela Companhia Brow Bovery e pelo Instituto Federal Suíço para Pesquisa de Reatores, Juntamente com várias companhias alemãs e suiças. O projeto se constitui de um vaso de 48m de diâmetro e 39m de altura, contendo 25 cavidades verticais (reator, trocadores de calor, recuperadores de calor) e 3 cavidades horizontais (turbinas de gás de 500 KW). O modelo deste projeto é citado no item 2.3.6.

D projeto do VPCP multicavidade denominado "HHT-DEMO-Plant-PCRV"(43), apresentado em 1979, mostra uma configuração não simétrica. As cavidades são de diferentes alturas e têm diâmetros variados, sujeitos a diferentes cargas de pressão. Além das cavidades verticais, há também cavidades horizontais na laje inferior do vaso, onde são localizados o conjunto de turbinas e o gerador; apenas as ravidades para as turbinas são pressurizadas. Observou-se que os autores desse trabalho são vinculados a HRB alemã, o que faz crer, faça; tal projeto parte do estudo iniciado em 1974 por essa firma, citado acima(22).

Ainda na linha dos HTGR, um novo conceito de VPCP, desenvolvido pela Gulf General Atomic, foi apresentado por Cheung e Koploy(7) em 1981. Trata-se de um arranjo assimétrico das cavidades principais, com o centro do núcleo fora do centro geométrico do vaso (fig. 2.4). Essa distribuição, segundo os autores, permite uma utilização mais efetiva do espaço, agrupando todas as cavidades dos trocadores de calor numa só parte do VPCP, reduzindo o tamanho do vaso e facilitando a separação entre os tubos de segurança e os tubos principais de vapor. O projeto baseou-se em um ST-HTGR de 900 MW(e) e sua análise é mencionada no item 2.2.4. Kumpf e outros(31) apresentaram, em 1979, dois tipos de VPCP para GCFR: uma versão do vaso multicavidade com distribuição simétrica das cavidades, e outra versão com o vaso central do reator circundado por vasos satélites.

O primeiro projeto (fig. 2.5) se constitui de uma cavidade central, circundada por 10 cavidades menores: 6 para geradores de vapor e circuladores e 4 contendo trocadores de calor auxiliares. O vaso central tem 8,2m de diâmetro e os geradores de vapor 3,5m de diâmetro. O diâmetro total do vaso é de 30,0m e sua altura de 27,0m. Essa distribuição é semelhante a de um HTGR multicavidade.

O segundo projeto traz uma nova concepção de estrutura: vasos satélites conectados ao vaso central (fig. 2.6). Segundo os autores, tal configuração gera uma utilização mais uniforme do material, permite tolerâncias menores e consequentemente pressões mais altas, fornecendo ainda condições adequadas para circulação natural no sistema primário. O projeto se constitui de 6 vasos satélites, com 3,5m de diâmetro, conectados ao vaso central, que tem 8,2m de diâmetro.

Na literatura, outros conceitos de projeto foram encontrados, tais como VPCP para BWR(20) ou ainda os vasos protendidos de ferro fundido(25), que fogem porém ao escopo do presente trabalho e portanto não são aqui apresentados.

3

2.2 Análises

2.2.1 Considerações gerais

Para que as formas de análise que envolvem VPCPs sejam relatadas, é conveniente primeiramente agrupar os aspectos de projeto, mencionados nos itens 2.1.2 e 2.1.3, em três critérios gerais(3,10):

- o VPCP deve ser projetado para responder elasticamente a to-· das as combinações de carga, sob quaisquer condições de traba-· lho;

- quando submetido a sobrepressões, o modo de ruptura do VPCP deve ser progressivo:

- deve ser sempre prevista uma boa margem de segurança para os casos de acidente.

É importante lembrar que um VPCP sujeito à pressão u de projeto (pressão de trabalho) deve ter um comportamento elástico linear durante toda a vida útil do vaso. Assim, num primeiro momento, a análise elástica é suficiente para a verificação estrutural. Porém, deve-se levar em conta a possibilidade de acidentes que gerem solicitações acima das previstas Para o funcionamento do vaso, fazendo com que a estrutura apresente comportamentos em regime não linear e não elástico.

Dois tipos de análise se fazem necessários: análise elástica e análise no regime de ruptura. As teorias adotadas nessas análises são aquelas aplicadas às estruturas convencionais e, em função do alto grau de complexidade que envolve os cálculos de um VPCP, lança-se mão de métodos numéricos desenvolvidos a partir dessas teorias.

São relacionadas a seguir as diversas formas de análise encontradas na literatura.

2.2.2 Formas de análise ségundo alguns autores

Davidson(12) verificou a existência de três fases de comportamento do VPCP quando submetido à pressão hidráulica crescente, até atingir a ruptura:

- a primeira fase é a elástica linear, que abrange toda a operação normal e testes de carga;

- na segunda fase, fissuras se propagam e produzem um comportamento não linear, mas ainda elástico;

- a terceira fase envolve grandes deslocamentos com pequenos aumentos de pressão.

Costa(10) citou três métodos de análise como sendo

(12) análise baseada na Teoría Convencional de Placas Planas e Curvas:

b)-Método da Relaxação Dinâmica;

Port .

...c) Método dos Elementos Finitos.

Estes dois últimos também foram mencionados por Hannah (25), que acrescentou ainda o Método das Diferenças Finitas no rol das técnicas utilizadas nas análises desenvolvidas com base na Teoria das Placas.
Bangash(3) apresentou uma classificação de análise de tensões baseada na interpretação de vários autores e compilada por Jaeger. A classificação foi feita em dois grupos: a) as análises que consideram a estrutura continua; b) as análises que são baseadas em sistemas discretos equivalentes a estrutura dada.

O primeiro grupo baseia-se principalmente na teoria de placas finas, alterada por termos de correção que levam em conta os efeitos devido às grandes espessuras nas paredes de VPCPs. São consideradas de aplicação limitada em função da complexidade da forma dos VPCPs. O segundo grupo se refere às análises feitas por meio de métodos numéricos. Entre eles estão o Método dos Elementos Finitos, o Método da Relaxação Dinâmica, o Método dos Parâmetros Conjuntos e o Método das Subestruturas.

Goodpasture e outros(23) agruparam os métodos de análise em análise elástica e análise inelástica. O primeiro

 it categoria: métodos simplificados auxiliares que englobam ábacos para a análise de cargas de colapso em crlindro monocavidade; equações que regem a análise axissimétrica para vaso
 multicavidade; e métodos empíricos para projetar a laje de topo;

2* categoria: programas de elementos finitos bidimensionais e
 ^{aná}lise axissimétrica;

3º categoria: programas de elementos finitos tridimensionais.

Quanto a análise inelástica, segundo os autores.

existem vários pogramas desenvolvidos para esse tipo de cálculo, porém, em sua maioria, destinados a vasos metálicos. Citaram o programa SAFE-CRACK como a melhor opção para a análise inclástica, já que foi desenvolvido especificamente para aplicação em VPCPs.

2.2.3 Técnicas de análise

Em vista da complexidade estrutural do vaso multicavidade, qualquer análise deve ser feita com base em um estudo tridimensional, o que praticamente inviabiliza cálculos analíticos. As ferramentas utilizadas são os métodos numéricos que, de maneira geral, foram desenvolvidos com base na Teoria das Placas(25).

A seguir, são descritos os métodos mais utilizados na análise de VPCPs.

O Método da Relaxação Dinâmica (MRD) fundamenta-se na Teoria da Elasticidade. Nele, a estrutura é dividida em blocos que assume-se serem instantaneamente carregados. O método considera a estrutura em estado de amortecimento viscoso, e o cálculo das equações, que envolvem tensões e deslocamentos, é feito utilizando-se Diferenças Finitas. É um método iterativo que atinge a solução (aproximada) quando as velocidades envolvidas nas equações apresentam valores baixos (estado residual de velocidade). Admite-se, então, que o campo de tensões coincide com a solução elástica da estrutura em equilíbrio(13,25). O Método dos Elementos Finitos (MEF) assume que o VPCP pode ser representado por uma série de elementos arranjados sobre a estrutura e definidos por nós. A rigidez da estrutura é expressa pela rigidez dos elementos e forma-se um conjunto de equações de equilíbrio relacionando cargas e deslocamentos. A solução desse conjunto apresenta como resultado tensões e deslocamentos nodais(25,26).

Varios autores se preocuparam em desenvolver calculos de VPCPs utilizando o MEF.

Um estudo feito por Rashid(39) foi tomado como base de análise por diversos outros autores, embora tenha se limitado a estados bidimensionais de tensão. O artigo apresentou um método de análise para VPCP solicitado por pressão interna, desenvolvido a partir do MEF.

Zienckiewicz e outros(56) apresentaram um estudo sobre a aplicação do MEF em problemas lineares e não lineares, na tecnologia do vaso de pressão.

Também Argyris e outros(2) estudaram VPCPs por meio do MEF, enfocando análises de deformação não linear e de carga de colapso.

. . .

Wade e Henrywood(53) publicaram um trabalho onde relatam a análise que fizeram de um VPCP multicavidade utilizando o MEF por meio de um programa de nome ASAS (Atkins Stress Analysis System). Consideraram o material com propriedades dependentes do tempo e, como resultados da pesquisa,foram obtidas as tensões nos nós da malha.

2.2.4 Algumas análises desenvolvidas

a) Estados Unidos da América

Gallix e outros(21), em 1975, apresentaram um método prático para analisar o comportamento estrutural de um VPCP multicavidade guando solicitado por sobrepressões hipotéticas. Utilizaram o programa SAFE-CRACK, que é baseado no MEF e desenvolvido especificamente para análise axissimétrica, bidimensional e não linear de estruturas.

Segundo os autores, um VPCP multicavidade, devido à natureza sua configuração geométrica, não pode ser tratado como uma estrutura axissimétrica. Exige sim, uma análise tridimensional, para que seu estado de tensão seja avaliado corretamente. Portanto, uma série de modificações se tornaram necessárias, para que a análise axissimétrica fosse aplicada a um VPCP multicavidade.

A verificação da validade do método foi feita sobre ^{dois} modelos multicavidade: modelo Hartlepool escala 1/10 (figs. 2.7 e 2.8) e modelo Ohbayashi-Gumi escala 1/20 (fig. 2.9).

Os autores concluiram que é possível fazer uma análise simplificada de VPCPs, levando em conta o estado de fis-^{sura}ção do concreto e o escoamento da armadura de protensão, ^{das} membranas metálicas e das armaduras frouxas. Afirmaram, ainda, que o método constitui uma ferramenta prática para investigar o comportamento do vaso além do domínio elástico, e verificar se um dado projeto satisfaz o critério de segurança previsto.

Reich e Connor(41), em 1977, desenvolveram um método para cálculo de estruturas de concreto armado ou protendido, baseado em elementos finitos e empregado em análise que leva em conta o material em função do tempo e o comportamento não linear da estrutura. Apresentaram, ainda, um programa para cálculo de VPCPs e os diversos problemas-padrões que utilizaram na sua verificação.

Smith e outros(46), em 1977, discutiram o desenvolvimento de um programa baseado em elementos finitos, apropriado pare a análise de segurança de VECPs. A proposta foi modificar um programa já existente que lidasse especificamente com estruturas de concreto armado. A escolha recaiu sobre o NONSAP devido à facilidade com que ele pode ser modificado para resolver problemas peculiares a reatores nucleares.

A maior modificação no programa foi a inclusão de modelos constitutivos para concreto armado. O primeiro deles foi a formulação de um elemento contínuo de concreto e aço para cargas de curta duração, onde os dois materiais foram tratados como uma composição. O segundo modelo constitutivo foi um modelo viscoelástico para concreto envelhecido.

Os autores apresentaram, ainda, uma análise de sen-*ibilidade relativa ao programa NGNSAP, onde mostraram que refinar a malha de elementos finitos não significa obter solução acurada. Citaram como solução mais adequada a utilização do-Método das Subestruturas, onde regiões de altos gradientes de tensão são separadamente refinadas e analisadas.

E. E.

£...

đ

. Co Li Like

THE COLORISAN

i.

A malha de elementos finitos adotada nesse trabalho está na fig. 2.10.

Dodge e outros(15), em 1977, fizeram uma revisão sobre como analisar um VPCP utilizando o MEF como técnica de cálculo. Consideraram esse método como o único que traduz de forma real o modelo de um VPCP, embora, segundo eles, apresente dificuldades no caso de análises que requerem repetição de soluções, tais como análise não linear ou análise com dependência do tempo, pois isso implica em altos custos computacionais.

Os autores dividiram a análise de um VPCP em três grupos: análise elástica linear, análise não linear, e efeitos dependentes do tempo (retração e deformação lenta).

Concluiram que, para baixas tensões, o concreto pode ser analisado como material linear viscoelástico. Ressaltaram que a análise elástica linear serve como análise primeira do VPCP para condições básicas de projeto, tendo em vista que o vaso, durante a vida útil, deve apresentar sempre comportaento elástico.

Dodge e Fanning(16), em 1978, investigaram o com-^{« Portamento} não linear do VPCP utilizando quatro modelos constitutivos não lineares: dois deles contidos nas versões 1976 e 1977 do programa de elementos finitos ADINA e dois outros baseados na teoria endocrônica. Concluiram que, com o modelo endocrônico, obtém-se boa precisão, enquanto que o modelo do programa ADINA apresenta restrições.

Cheung e Koploy(7), em 1981, fizeram uma investigacão dos efeitos de deformação lenta de um modelo assimétrico cujo projeto já foi citado no item 2.1.5 (fig. 2.4). Foi utilizado o MEF e, para módulo elástico, foi adotado o efetivo (45). O trabalho concluiu que os cálculos preliminares para esse modelo não divergem significativamente dos estudos preliminares de vasos com arranjos simétricos.

Naus(37), em 1982, citou o MEF como um dos melhores 🗤 procedimentos para cálculo de estruturas complexas tais como er os VPC**Ps. Afirmou que tal método está suficientemente** desen-🖉 volvido para análise de deformação elástica tridimensional e 👓 de curta duração, mas que necessita de estudos 🛛 adicionais 👘 no 😳 CASO de comportamento da estrutura sob efeito de cargas de longa duração e cargas inelásticas. Para esses casos, o Labo-🚘 📭 ratório Nacional de Oak Ridge (ORNL), do qual o autor faz par-🚰 🐛 vem desenvolvendo modelos constitutivos baseados na 🛛 plas-💭 ticidade, hiperelasticidade e análise endocrônica, sendo 🛛 esta 🌤 última citada como uma poderosa ferramenta em 🏾 potencial 👘 para analise de VPCPs.

b) Reino Unido

Davidson(11), em 1975, descreveu métodos capazes de

realizar análises de tensão e deformação em estruturas tridimensionais, onde leva-se em consideração a existência de fissuras. Esses métodos, segundo o autor, têm aplicação direta no estudo de VPCPs quando solicitado por cargas que causam a ruína da estrutura, pois, permitem dar continuidade à análise do vaso além do limite elástico linear.

: 1

Enfatizou-se, nesse artigo, a simplicidade dos métodos, que foram baseados nas leis fundamentais da Elasticidade, a Lei de Newton e a lógica simples. Mencionou-se a impossibilidade de usar o MEF nesse tipo de cálculo, devido a forma adotada para representar a fissura, feita pela introdução de um par de novos contornos na estrutura. A técnica numérica utilizada foi a Relaxação Ginâmica.

O cálculo tridimensional de um modelo VPCP multicavidade em escala 1/20, construido pela Companhia General Atomic(14), foi desenvolvido a partir desses métodos e os resultados obtidos foram considerados bons, comparativamente aos dados do modelo. A seção adotada para o cálculo pode ser vista

Wade e Henrywood(53), em 1975, apresentaram um estudo de vaso multicavidade onde utilizaram o programa "Atkins Stress Analysis Systems" (ASAS), baseado no MEF.

Nesse artigo, os autores se referiram ao MRD como uma técnica, satisfatória para cálculo de vasos com geometria ^{regular}. Porém, para modelos mais complexos como o HHT alemão ou o HTR britânico, que possuem cavidades verticais e horizontais **de tamanhos variaveis, citaram o MEF como mais indicado,** por s**er possível obter com ele maior precisão nos result**ados.

O trabalho se preocupou com a escolha e a numeração da malha (figs. 2.12 e 2.13) e considerou para carregamento a pressão, a protensão e a temperatura. O modelo tomado como base foi o HHT alemão.

Os autores concluiram que uma poderosa ferramenta de cálculo, para o desenvolvimento de projetos, foi obtida e que, embora tenha apresentado um alto custo, torna-se economicamente viável diante do nível de detalhes que oferece para o estudo analítico do vaso.

A partir de uma análise tridimensional não linear, Bangasia), em 1981, estudou o comportamento da fissuração em Vasos de pressão de concreto. Utilizou o programa ISOPAR como ferramenta de trabalho e dividiu a estrutura em elementos finitos isoparamétricos, planos e lineares (fig. 2.14) representando o concreto, a membrana metálica,e os tendões de proten-

A análise levou em conta o início, o fechamento e a reabertura de fissuras na estrutura, sob condições de sobrepercesão. O método desenvolvido foi aplicado em três vasos existentes e os resultados obtidos, segundo o autor, apresentaram valores próximos aos dados disponíveis.

ØF.;

c) República Federal da Alemanha

Em 1974, Zerna e outros(55) apresentaram um trabalho onde citaram o VPCP como sendo o objeto principal das investigações conduzidas pela República Federal da Alemanha, nesse campo. Como métodos de análise desenvolveram programas baseados na Relaxação Dinâmica, considerando o comportamento não linear do material e o comportamento de carga de colapso. Tomaram como base para análise o vaso THTR, apresentado na fig. 2.15.

Speidel(47), em 1979, fez um estudo analítico das tensões de ligação existentes em um VPCP multicavidade em funcão de sua geometria, variando, dentro de limites razoáveis, o diâmetro do núcleo, do vaso, da cavidade secundária bem como a posição desta última. O estudo teve como objetivo auxiliar no dimensionamento das larguras de ligamento, otimizando os cálculos analíticos.

d) Japão

Ĵ.

2

Kawawata e outros(30), em 1975, desenvolveram um método chamado "Sliced Substructures " para análise tridimensional simplificada de vaso multicavidade, baseado na hipótese de que as distribuições tridimensionais de tensão não fogem muito do padrão axissimétrico para as componenetes axial (*Cz*) e de cisalhamento (Trz), embora as componentes horizontais l(r, Go, Tro) sejam severamente pertubadas pelas cavidades verticais. Concluiram que, na análise elástica, obteve-se boa aproximação na distribuição de tensões, embora tenha havido alguma discrepância nos deslocamentos.

A estrutura foi dividida em porções (fig. 2.16) e a essência do método foi considerar que as tensões tridimensionais podem ser divididas em componentes bidimensionais no plano horizontal, enquanto as demais componentes são distribuidas de forma axissimétrica, como num sólido de revolução.

Imoto(27), em 1981, desenvolveu um método para analisar o comportamento não linear de estruturas tridimensionais de concreto, tais como VPCPs solicitados por pressão interna crescente.

A partir de um modelo matemático previamente proposto, o autor criou um programa utilizando elementos finitos não lineares. Três exemplos foram analisados: o comportamento bidimensional de uma placa de concreto, um modelo axissimétrico de um VPCP e um modelo tridimensional de VPCP.

Comparando os resultados obtidos com os dados experimentais, o artigo concluiu que o método traduz de maneira satisfatória o comportamento não linear de estruturas macicas de concreto armado podendo, portanto, ser utilizado na análise de VPCPs solicitados por pressão interna crescente.

Análises que enfocam efeitos de temperatura foram ^{também} objeto de estudo de vários autores, porém não serão ^{Real t}ratadas no presente trabalho. 2.2.5 Componentes objetos de análise

Além do vaso de pressão propriamente dito, alguns componentes que constituem sua estrutura são objetos de análiį. se. Bangash(3) cita como componentes principais do vaso a serem analisados: 💱 - con**creto;** - tendões de protensão; Membrana metálica e cavidades; - armaduras primárias e secundárias. Goodpasture e outros(23) citam como ítens de análise: 🚉 - laje de topo; - membranas metálicas; argas térmicas; 🚟 = Perfurações; sistemas de protensão. Hannah (25) faz reférencia a membranas metálicas, ^{rcavida}des, sistemas de isolamento e refrigeração. 2.2.6 Comentários

Das análises apresentadas, nota-se a utilização ^{Prepon}derante de dois métodos numéricos: Elementos Finitos e ^(x Re)a×ação Dinâmica, As discussões e conclusões desses estudos são por vezes convergentes e por vezes contraditórias.

Por exemplo, para análise de VPCPs em fase de fissuração, Davidson(11) mencionou o Método da Relaxação Dinâmica como o único método viável para esse estudo e descartou qualquer possibilidade de ser utilizado o MEF.

Já Bangash(4) apresentou um estudo de fissuração utilizando o MEF por meio de processo iterativo.

Também Gallix(21) lançou mão do MEF para estudo de fissuração, por meio do programa SAFE-CRACK, embora em um es-

Alguns autores colocaram os dois métodos num mesmo m nível em termos de capacidade de análise, tal como Zerna(55).

Já Wade(53) considerou o MRD apropriado para vasos de geometria regular e indicou o MEF para estudo de modelos

Também restrições foram feitas ao MEF: segundo Naus(37), ele é uma ótima ferramenta para análise elástica e Para cargas de curta duração. Porém, para condições distintas, colocou a necessidade de uma melhor adaptação do método.

Apesar das diferenças, notou-se uma preocupação geral em se obter técnicas de análise que, além de eficientes, fossem economicamente viáveis. Foi com esses dois objetivos

1.1

que Smith e outros(46) adaptaram o programa NONSAP para a análise específica de VPCPs.

A obtenção de melhor precisão nos resultados foi o que norteou o trabalho de Dodge(16) na tentativa de enxertar a análise endocrônica no programa ADINA.

Speidel(47) propôs um estudo de tensões de ligamen~ to com o objetivo de minimizar as dimensões do vaso.

Kawamata(30) desenvolveu um método para substituir a análise tridimensional de VPCPs, a fim de obter resultados precisos de forma mais rápida e consequentemente mais econômisa ca.

Em vista do que foi descrito, observa-se que não há Para VPCPs uma forma definitiva de análise. É necessário, portanto, que dentro dessa gama de possibilidades apresentadas, uma escolha criteriosa seja feita em função dos objetivos que se quer alcançar.

2.3 Modelos utilizados em testes

2.3.1 Considerações gerais

. .

 $\{M_i\}_{i=1}^{n}$

A construção de modelos para a análise de VPCPs é necessária, segundo o Código ASME(1), sempre que procedimentos análiticos precisos que determinem o limite de carga de colapnão tenham sido estabelecidos, ou quando modelos com características similares ao protótipo não tenham sido testados.

Também na Grã-Bretanha constroem-se modelos para verificar critérios de projeto fixados pelas especificações inglesas "British Standart 4975"(6).

Em função desses requisitos, o aparecimento do VPCP multicavidade exigiu, para sua análise, a construção de modelos de testes, tendo em vista a peculiaridade e complexidade de sua forma estrutural.

A seguir são apresentados alguns modelos experimentais, com suas respectivas análises, que foram utilizados em testes.

2.3.2 Modelo Hartlepool

a) O modelo

O primeiro modelo multicavidade a ser construido foi o "British Hartlepool VPCP"(23,32) em escala 1/10, visando a construção do reator a ser utilizado na usina de mesmo nome, no Reino Unido.

Este modelo foi construido em 1966. É constituido de nove cavidades: oito para os trocadores de calor e uma para O núcleo (fig. 2.7). Seus dados principais estão relacionados na tabela 2.1. A pressão de projeto foi de 4,4 MPa e apresentou comportamento linear até a pressão de 6,9 MPa. O agregado máximo utilizado no concreto foi de 9 mm e a resistência à compressão obtida foi de 60,7 MPa. Na laje de topo, na região das perfurações, o tamanho do agregado foi de 6 mm.

O objetivo principal do teste sobre o modelo foi observar o comportamento da estrutura quanto ao desenvolvimento de fissuras, demonstrar o modo de ruptura e estabelecer o fator de segurança mínimo em relação à carga de colapso.

b) As **analises(32)**

Service Service

ŝ.

Dois tipos de análise foram enfocados no estudo desse vaso: análise elástica e análise de carga de colapso. O principal método utilizado nas análises foi baseado na Relaxação Dinâmica.

Para a fase elástica, considerou-se inviável uma análise tridimensional completa devido à grande quantidade de dados a serem preparados e ao alto custo que consequentemente acarretaria. Por isso, somente alguns aspectos foram observados e deram origem às seguintes etapas:

- análise dos efeitos que o gerador de vapor causa na seção horizontal à meia altura do vaso e na laje de topo, estando a estrutura solicitada por pressão interna e protensão;

- análise axissimétrica e tridimensional: a análise axissimé-S trica é utilizada no fase inicial do projeto, quando os parâmetros básicos estão sujeitos a rápidas mudanças. A análise final foi feita por meio de um estudo tridimensional, considerando uma parte de 1/16 da estrutura (fig. 2.17).

O efeito da deformação lenta também foi analisado.

Em relação à análise de carga de colapso, o objetivo foi verificar o comportamento contínuo do vaso sob pressão, desde a formação das primeiras fissuras até o colapso. Duas hipóteses fundamentais foram adotadas:

- a formação de duas rótulas plásticas: uma na face interna do vaso em sua meia altura e outra na junção entre parede cilíndrica e laje;

- a consideração de deslocamentos rígido-plásticos após à fissura. As variações elásticas de deformação foram ignoradas nessa fase.

Os autores concluiram que o grau de correlação entre modelo e análise é significativo, tanto no intervalo elástico quanto no intervalo relativo à sobrepressão, o que permite que as várias etapas de análise descritas sejam aplicadas tono projeto do vaso propriamente dito.

% 2.3.3 Modelo Gulf General Atomic(GGA)

a) O modelo

O único modelo multicavidade porte-americano foi ^{-- Construido} pela Companhia Gulf General Atomic[®] e baseado no prótotipo do HTGR 1000 MW(e)(14), cujo projeto apresentou uma peculiaridade: a inclusão de um mecanismo de articulação entre as lajes de fechamento e a parede cilíndrica do vaso de pressão, com o intuito de permitir movimentos diferenciais nessas regiões, e minimizar o cisalhamento radial transmitido para as lajes pela dilatação da parede cilíndrica. Esse mecanismo foi denominado de "plano de escorregamento".

O modelo (fig. 2.18) teve como objetivos principais demonstrar o funcionamento do plano de escorregamento e deter-minar a capacidade da laje superior do vaso. Foi solicitado Ç, por pressões que variaram em média de zero a 11 MPa, e apresentou comportamento linear até o limite de pré-compressão, determinado pela protensão, e que ficou entre 4 a 6,9 MPa. Α resistência média à compressão do concreto foi de 55 MPa a 90 dias e a resistência mínima foi de 44,8 MPa. Os dados princi-(CET pais do modelo estão na tabela 2.1.

Segundo Davidson(11) e Goodpasture(23), esse modelo não apresentou configuração representativa de um VPCP, devido 🔆 à presença do plano de escorregamento. Davidson, contudo, considerou viável utilizá-lo em comparações com estudos analíti-Т÷ cos.

b) As análises

• •]

Ζ.,

194

Connor e Sarne(9) desenvolveram um trabalho onde \mathcal{A}_{ij} utilizaram o modelo norte-americano como base para o modelo numérico. Nele, os autores apresentaram um procedimento de inni 15 i ve 1 análise que envolveu dependência do tempo, não linearidade material e elementos finitos tridimensionais. A malha utilizada foi um setor de 30⁰ graus (fig. 2.19).

D estudo exposto no capítulo 4 do presente trabalho também foi desenvolvido a partir do modelo GGA, utilizando o programa NDNSAP como ferramenta de cálculo.

2.3.4 Modelo Ohbayashi-Gumi

(a) 0 modelo

D modelo multicavidade de um HTGR 1000 MW(e), construido em escala 1/20 e que recebeu o nome de Vaso de Teste Ohbayashi-Gumi, foi utilizado como base de comparação nas análises desenvolvidas por Fanning(17) e Takeda(49). Ambos o citaram como sendo um modelo representativo do VPCP multicavidade do HTGR. Infelizmente, poucas informações puderam ser obtidas a respeito de sua construção e testes. Os dados encontrados são referentes às características do material utilizado e a valores de deslocamento e tensão. São apresentados na tabela 2.1.

O modelo (fig. 2.9) é constituido de ó cavidades arranjadas simetricamente em torno da cavidade central, e está ^{Conectado} rigidamente a uma estrutura suporte de concreto, que fica sob a laje inferior do vaso. ्रतः

経済

and a second

O trabalho de Fanning(17) teve como objetivo investigar o comportamento típico do vaso multicavidade de um HTGR em sua fase elástica.

A fim de definir qual o melhor programa a ser adotado como ferramenta de cálculo, o autor estudou três modelos analíticos tridimensionais, baseados no modelo Ohbayashi-Gumi: - o primeiro foi definido sobre um setor de 30[°] graus da estrutura e meia altura (fig. 2.20). Foram utilizados elementos de 20 nós e o programa adotado foi o NONSAP;

- o segundo, também definido sobre um setor de 30° graus e meia altura, apresentou maiores detalhes geométricos (fig. 2.21). Os elementos foram definidos por 8 nós e o programa utilizado foi o NONSAP;

- o terceiro foi definido sobre um setor de 30º graus e toda - altura da estrutura (fig. 2.22). Foram utilizados elementos de - 20 nús e o programa adotado foi o STATIC-SAP.

O último modelo foi o escolhido para servir de base de comparação na análise do vaso de um HTGR 2000⁻MW(t). Desse trabalho, o autor concluiu ser viável a utilização de técnicas numéricas no estudo de VPCPs multicavidade e enfatizou a eficiência do programa STATIC-SAP para esse tipo de análise.

Outro trabalho que utilizou o modelo de teste Ohba-Sashi-Gumi é de autoria de Takeda e outros(49). Foi feita uma análise inelástica do VPCP multicavidade solicitado por pres-São interna. Dois procedimentos foram adotados: análise bidimensional utilizando o MEF: o modelo analítico é axissimétrico (fig. 2.23a) e adota constantes elásticas efetivas(45). Na verdade, trata-se de uma análise simplificada já que o vaso multicavidade exige análise tridimensional;
 análise tridimensional utilizando o MEF (fig. 2.23b).

Nesse trabalho, os autores concluiram que a análise bidimensional modificada de um modelo idealizado numa estrutura axissimétrica é válida e segura para a avaliação do comportamento tanto elástico quanto inelástico do VPCP multicavidade.Quanto à análise tridimensional, referiram-se a ela como capaz de prever corretamente os comportamentos elástico e inelástico até o escoamento do aço, porém com desvantagens sob o ponto de vista econômico.

2.3.5 Modelo Shimizu Construction

(a) Os modelos

é

A Shimizu Construction Co. Ltd. construiu uma série de modelos monocavidade baseados nos VPCPs das usinas nucleares de Hinkley Point e Hunterston (Inglaterra) e uma série multicavidade baseada no VPCP do HTGR 1000 MW(e) planejado pela Gulf General Atomic(28).

Dos três modelos multicavidade construidos, dois foram em concreto gesso e um em micro-concreto. Embora este último trabalhe com resistência mais próxima aos valores de Protétipos, só foi possível dispor de dados referentes a um dos modelos em concreto-gesso (fig. 2.24), que são apresentados na tabela 2.1.

b) A análise

CALL ROOM

Isobata(28) estudou esses modelos com o objetivo de verificar a segurança estrutural em relação à pressão interna. Para tanto, utilizou o fator de carga de colapso, que é a relação entre pressão de colapso e pressão de projeto.

Para tanto, utilizou o fator de carga de colapso, que é a relação entre pressão de colapso e pressão de projeto. Numa primeira etapa, o autor discutiu os resultados obtidos nos modelos experimentais, comparando a pressão de colapso e a pressão de fissuração da superfície com a pressão de projeto, a fim de determinar o fator de carga de colapso e a margem de segurança existente entre o aparecimento das primei-

Em seguida, fez uma análise não linear de tensões Musando um modelo anisotrópico, a fim de analisar o mecanismo de ruína de um VPCP. Desenvolveu, para isso, um programa utilizando o MEF, cuja malha de elementos finitos pode ser vista na fig. 2.25.

2.3.6 Modelos de HTGR ciclo-direto

Além dos modelos de VPCP envolvendo o chamado "circuito integrado" do HTGR, outra linha de projeto utilizou VPCPs multicavidade: o HTGR-ciclo direto, que apresenta como características principais a utilização do fluido refrigerante como fluido de trabalho e a localização da turbina no interior do vaso(10).

Dentro dessa linha, dois modelos foram encontrados: um desenvolvido pela HRB West Germany(22) e outro desenvolvido pela Escola Politécnica Federal de Laussana-Suiça(19), cujos projetos já foram mencionados no item 2.1.5.

Em relação a esse tipo de vaso, observou-se que são necessárias novas considerações em relação ao que foi discutido até então. Como técnicas utilizadas permanecem o MRD e o • MEF.

(a) O modelo da HRB West Germany

a.1) O modelo Ref

14

Para o projeto da HRB West Germany(22), dois modelos foram construidos em escala 1/30 e, a partir deles, buscou-se investigar o comportamento do vaso sujeito a sobrecarga e determinar o modo de ruína e o fator de carga.

Cada modelo contém 19 cavidades. A pressão de pro-Jeto foi de 7 MPa e o agregado máximo utilizado foi de 10mm. O comportamento linear foi verificado até uma pressão de 14,7 MPa e a pressão máxima alcançada foi de 22,5 MPa. O aparecimento de fissuras se deu para uma pressão de 8,8 MPa. O fator de carga encontrado ficou em torno de 3,0.

Dados sobre escala, dimensões e material utilizado

2.0 no modelo se encontram na tabela 2.1. O modelo foi baseado no projeto do vaso HHT (fig. 2.3). Sugar

a.2) A análise

ira-

A análise não linear da estrutura foi feita por meio do Método da Relaxação Dinâmica. É importante observar que os autores desenvolveram esse estudo utilizando uma versão bidimensional, tornando necessárias algumas simplificações, para que o modelo pudesse ser tratado como axissimétrico.

A análise linear foi feita utiliando-se o MEF, εø versão tridimensional.

O trabalho concluiu que há uma correlação aceitável μ_{-} da análise teórica com os valores obtidos experimentalmente.

🐜 b) 0 modelo suico-alemão

🖓 b.i) O modelo

O modelo suico-alemão(19) (fig. 2.26) foi construi-🕼 do em escala 1/20 e teve como objetivo principal analisar o 🌤 comportamento do vaso solicitado por pressão interna, 👘 distriand buida uniformemente no interior das cavidades e aplicada em 🐢 Vários cíclos. Para tanto, apontou-se como necessário:

🗧 determinar a pressão e o mecanismo de ruína bem como 🛛 garantir a segurança total do vaso;

determinar o limite do comportamento elástico;

🔅 🖜 observar o comportamento do vaso sob pressão de trabalho

sem, entretanto, considerar o efeito da deformação lenta e retração.

O modelo foi costituido de um vaso de pressão cilíndrico com 28 cavidades principais, 12 cavidades menores e a pressão de trabalho foi de 6,4 MPa. Foi utiizado micro-concreto para sua construção, com agregados de tamanho não maior a ónm. A resistência à compressão do concreto foi de 64 MPa. Apresentou comportamento elástico até cerca de 12 MPa e a pressão de ruptura foi de 235 MPa, que resultou num fator de carga de colapso igual a 3,5. Outros dados do modelo se encontram na tabela 2.1.

b.2) A análise

Para esse modelo, uma análise não linear foi estudada por Rebora e outros(40). O objetivo da análise foi: determinar o comportamento no estado de serviço e a evolução de comportamento não linear;

determinar o mecanismo de ruína e a carga de colapso da estrutura;

🔁 adaptar o modelo matemático, tendo em vista o vaso real. 2.

O modelo numérico usou elementos finitos isoparamétricos de 20 nós (fig. 2.27). O comportamento não linear dos materiais foi considerado por meio de um ciclo de iterações do modelo pseudo-elástico, sem modificar a matriz de rigidez. As leis constitutivas introduzidas no cálculo levaram em conta

todos os tipos de não linearidade do concreto e do aço. O com-Portamento dos materiais foi considerado independente do tem-

PO.

K

Ł

÷.

A malha de elementos finitos escolhida representa uma parte de 1/12 do modelo, embora o número de planos radiais de simetria sejam sejs. Isso foi feito devido a limitação da não causou memória do computador mas, segundo os autores, 19-egrandes alterações nos resultados.

O trabalho concluiu que o modelo matemático usado 弛 🛶 permite uma análise não linear tridimensional do vaso, obtendo boas aproximações dos valores calculados com os dados experi--mentais.

🚈 2.4 Considerações a respeito da utilização do vaso multicavidade

O VPCP multicavidade, como pôde-se constatar, é uma alternativa de projeto polêmica. Por isso, parece ser conveniente concluir este levantamento bibliográfico com uma revisão crítica da utilização deste tipo de vaso.

.4.1 Causas imediatas do aparecimento do VPCP multicavidade

Frente aos problemas encontrados na aplicação do Conceito de circuito integrado, tais como as dificuldades de inspecão dos geradores de vapor devido às limitações de acesso 🕶 à presença de maior irradiação, a utilização do VPCP - multi**ca**vidade foi vista, num primeiro momento, como uma proposta Viável. Afinal, mesmo considerando que os efeitos do gás nos

reatores nucleares fossem menos corrosivos e menos severos que 1. os efeitos do combustível fóssil numa usina convencional, ì., 3 necessidade de inspeção, embora pudesse ser relaxada, não deveria ser abandonada.

Além disso, com o desenvolvimento tecnológico, 05 Alem disso, com o desenvolvimento techologico, sistemas nucleares mais avançados poderiam vir acarretar au-mentos significativos de temperatura, exigindo inspeções ceriódicas e eventuais trocas de geradores(24).

2.4.2 Vantagens e desvantagens

7

O VPCP multicavidade, isolando os geradores de vapor em cavidades verticais independentes, teve como objetivo eliminar as dificuldades de acesso, oferecendo simplificações 🌬 ignificativas no trabalho de inspeção e manutenção dos 🛛 gera-🐎 dores e eliminar o risco de paralização do sistema.

Porém, junto com as soluções, essa alternativa trouxe consigo uma série de desvantagens. A forma do reator, Com uma cavidade central e várias cavidades secundárias conectadas à primeira através de dutos, aumentou consideravelmente 🕈 área sujeita a isolamento, onde é necessária a utilização de Emembrana metálica, de sistemas de isolamento e de refrigeração. Também a complexidade estrutural trouxe dificuldades para *• projeto e a construção do vaso. Verificou-se ainda dite Ø inevitável desenvolvimento da tecnologia de reatores tornou а remoção dos geradores, causa imediata do surgimento do VPCP

Pulticavidade, mais complexa do que originalmente prevista.

2.4.3 O VPCP en escala comercial

and the second states of the second states and the

O VPCP multicavidade foi estudado em diversos países tais come Estados Unidos, Grã-Bretanha, Alemanha e Japão. Forém, o único país que o coloccu em escala comercial foi a Grã-Bretanha, nas guatro unidades Hartlepool/Heysham(25).

Os Estados Unidos, por meio da Companhia General Atomic, tinham em projeto, na década de 70, dois tipos de reatores que utilizavam o vaso multicavidade: o HTGR 770 MW(e) e o HTGR 1100 MW(e), e chegaram a fazer alguns contratos de venda(38). Todavia, devido a problemas econômicos adivindos da crise do petróleo, vários desses contratos foram cancelados pelas firmas compradoras, e que levou a General Atomic a cancelar os restantes e tirar o HTGR do mercado.

2.4.4 Tendências

Tanto os fatores econômicos quanto os tecnológicos trouxeram preocupações a respeito do futuro dessa alternativa de projeto, como demonstraram Hannah(24,25) e Moore e outros(36).

O desenvolvimento tecnológico mostrou, entretanto, •ue se o VPCP multicavidade não se apresenta como solução estrutural para os tipos de reatores a que foi inicialmente pro-•osto, o mesmo não se pode dizer em relação aos sistemas mais •vancados, onde são utilizados altíssimos valores de temperatura e pressão.

Assim. o VPCP multicavidade surge como alternativa de projeto para os reatores de ciclo direto, reatores BWR COR VPCPs, reatores utilizados em processos industriais que trabadesenvolvimento lham com altas temperaturas, e mesmo no dos HTGRs mais avançados e dos GCFRs.

Ę.

÷.,

Ľ,

2.4.5 Contribuições para a análise dos VPCPs multicavidade

Das análises, estudos e discussões a que se TEVP acesso ne**ste levantamento bibliogr**áfico, são relacionadas а seguir as conclusões apresentadas pelos diversos autores:

- é possível utilizar numa análise simplificada modelos axissimétricos no cálculo de vasos multicavidade. Nesse caso, ha-🙀 verá maior economia em prejuízo de maior precisão. Esse tipo R de cálculo poderá ser adotado dependendo do estágio de - análi-Se(21,22,30,46);

🖘 Pestudo de um VPCP em regime elástico linear serve como uma Primeira análise, onde são consideradas as condições básicas de projeto(15);

Possível, no caso de vasos multicavidades assimétricos, 🖗 utilizar nos cálculos preliminares modelos simétricos de 👘 configuração similar(7);

🕈 Possível estudar o VPCP multicavidade, quando sujeito a Cargas de curta duração, utilizando como material uma composi-⁶Cão de concreto e aço(46);

" tanto o MEF como o MRD são considerados ferramentas viáveis no cálculo de VPCPs multicavidade(4,11,21,37,53,55).

l Tipo I de I Reator I	l Escala I do I Modelo I	ln= dei lcavi-	l Dimensões do Vaso (cm) l						Características do Concreto		
		1	н	D	h	ď	e(1)	د (p) 	f (MPa)	E (MPa)	
AGR (32)	1/10	9	293	263	183	135	55	####################################	60;7	425x10	0,21
HTGR(14)	1/20	171	125	136	68	54	28,5	····· 1	44,8	310×10 ²	
HTGR (17/49)	1/20	7	198	150	69	62	28	44 1	44,6	309×102	0,167
HTGR (28)	1 1/30	7	92	98	46	38	i8,5	8,5!	8,2		
HHT(22)	1/30	1 19 1		····	·•• ·••	**** ***		· 1		-	·····
HHT(19)	1 1/20	1 28 1	195	240	75	64	ran lagat		64,0	372×10	
[]	 	1 						ا ا			

. 5

H - altura total do vaso h - altura da cavidade do núcleo D - diâmetro total do vaso d - diâmetro da cavidade do núcleo e(l) - espessura da laje e(p) - espessura da parede cilíndrica

Tabela 2.1 Modelos: dimensões e características

 1.MENBRANA ELÁSTICA AQUECIDA
 5.PROTENSÃO DO CONTRAFORTE

 2.BARREIRA TÉRMICA
 6.TENTÕES AXIAIS

 3.LIMITE DE FUGA
 7.PROTENSÃO CIRCUMFERENCIAL

 4.CONCRETO PROTENDIDO COM
 8.TAMPA GIRATÓRIA

 SISTEMA DE CONTROLE DE
 9.CONEÇÃO DO VASO

 TEMPERATURA
 10.ISOLAMENTO DEDMONTÁVEL

(a) seção horizontal

מכ

(b) seção vertical

Fig. 2.6 VPCP do GCFR versão satélite/fonte: Kumpf et al.

Fig. 2.7 Modelo escala i/10 do VPCP Hartlepool/fonte: Lagan et al.

*Fig. 2.11 Malha de elementos finitos do VPCP do HTGR Gulf General Atomic/fonte: Davidson

.

_

Fig. 2.15 VPCP THIR alemão/fonte: Zerna et al.

Fig. 2.16 Análise de VPCP pelo método "Sliced Structures'/fonte: Kawamata et al.

.

Fig. 2.17 Malha de elementos finitos para análise final do modelo flartlepool/fonte: Lagan et al.

Primeira análise do modelo Ohbayashi-Gumi:elementos de 29 nós e programa NONSAP/ fonte: Fanning

Fig. 2.21 Segunda análise do modelo Ohbayashi-Gumi:elementos de 8 nós e programa NONSAP/ fonte: Fanning

2.22 Terceira análise do modelo Ohbayashi-Gumi: elementos de 20 nés e programa STATIC-SAP/fónte: Fanning

ť.

a 1

(b) análise tridimensional

Flg. 2.23 Idealização do modelo Ohbayashi-Gumi para análise inelästica/fonte: Takeda et al-

2 ZONA TRANSVERSALMENTE ISOTRÓPICA

ZONA NÃO PRESSURIZADA

C ZONA PRESSURIZADA

hodelo da Shimizu Construction escala 1/30 /fonte: Isobata

÷.,

ij.

:

CAPÍTULO TRÊS

ESTUDO PRELIMINAR DA UTILIZAÇÃO DO PROGRAMA NONSAP NO CÁLCULO DE ESTRUTURAS TRIDIMENSIONAIS

3.1 Considerações gerais

O vaso multicavidade, como visto no capítulo anterior, apresenta forma complexa que exige uma análise tridimensional da estrutura. Seu cálculo analítico, devido ao alto grau de dificuldade, é substituido por técnicas numéricas de análise. Uma dessas técnicas, e bastante utilizada no cálculo estruturas de concreto, é o Método dos Elementos Finitos. HBaseado nele, vários programas foram desenvolvidos e utilizados no cálculo estrutural de VPCPs. Entre eles estão: ADINA(16), STATIC-SAP(17), NONSAP(17,46), ASAS(53), ISOPAR(4) e.SAFE-CRACK(21).

Para dar continuidade ao presente trabalho, era preciso dispor de uma ferramenta de cálculo tal como uma das acima mencionadas. O programa NONSAP não foi propriamente escolhido já que, no início desta pesquisa, ele era o único programa disponível no IPEN com capacidade para analisar estruturas tridimensionais.

Na literatura foram encontrados trabalhos desenvolvidos com o NONSAP onde foi verificada a viabilidade 'e sua utilização para VPCPs, tanto em análise elástica(17) quanto no tstudo do comportamento do vaso sujeito a cargas de curta duração ou sob consideração de deformação lenta(46). No primeiro artigo(17), o NONSAP foi mencionado como um programa de aplicação restrita em função das limitações impostas pela sua rotina principal. Por exemplo, para que fosse possível utilizar elementos de 20 nós foi necessário omitir detalhes construtivos, o que impediu que o modelo numérico Estraduzisse com precisão o modelo experimental.

Já o artigo de Smith e outros(46) justificou a opcão pelo programa NDNSAP em função da facilidade com que o mesmo pode ser modificado, a fim de ser adaptado a problemas relativos a reatores nucleares. Ressaltou ainda que sua estrutura modular permite incluir, de maneira fácil, modelos materiais específicos. Nesse trabalho, o NDNSAP sofreu modificacões a fim de prover um meio analítico de calcular a segurança de vasos de pressão e de contenção em concreto. Essas modifitacões foram incorporadas ao programa por meio de memórias auxiliares.

Para adotar o NONSAP como método de cálculo, era necessário primeiramente conhecê-lo em detalhes e, em seguida, buscar adaptações que tornassem sua utilização viável para as Condições de trabalho existentes,

Nos itens seguintes são apresentadas as particularidades do NONSAP e os estudos e soluções adotadas na análise tridimensional. 8 3.2.1 Entrada de dados relativa às condições de contorno

As condições de contorno impostas à estrutura a ser analisad**a são descritas, no NONSAP, em função dos eixos carte**sianos x, y e z, embora os nós internos possam ser definidos também em coordenadas cilíndricas.

Para estruturas cilíndricas, isso restringe a escolha da malha de elementos finitos, tornando necessária a utilização de um setor de no mínimo 90°, mesmo que os eixos de simetria da estrutura permitam que ela seja representada por setores menores, o que tornaria a análise mais econômica.

\$3.2.2 A definição dos elementos

O elemento finito tridimensional, utilizado no NONSAP, tem formato hexaédrico (fig. 3.1) e pode ser isopara-

O número de nós que define o elemento pode variar ¹de 8 a 21, sendo que necessariamente os 8 nós relativos aos ¹vértices do hexaedro devem constar da definição. Os demais são ¹opcionais,

A definição do elemento por meio de seus nós é feita com a utilização de um vetor de 21 posições, denominado NOD: Os nós opcionais que não forem utilizados na definição do elemento devem constar do vetor com valor nulo, isto é, o vetor deve sempre conter as 21 posições, independentemente do número de nós adotados para definir o elemento.

3.2.3 Distribuição dos nós

É importante que os nós da estrutura sejam numerados a de maneira a minimizar a diferença entre os números mais alto e mais baixo dos nós, dentro de qualquer elemento. Esta diferença exerce forte influência na largura de banda da matriz de rigidez da estrutura e, por sua vez, no tempo dispendido na solução do problema, o que afeta diretamente a viabilidade econômica do programa.

3.2.4 Carregamento consistente e não consistente

Os dados relativos ao carregamento que solicita a estrutura devem ser inseridos no NONSAP sob a forma de forças nodais.

A transformação de cargas distribuidas em forças concentradas nos nós pode se dar ou por meio de uma distribuição intuitiva de carga distribuida, baseada nas áreas de influência de cada nó, ou por meio de alocação consistente de forças nodais equivalentes,que se dá segundo a equação(34):

$$\{F\} = -\int [N] \{p\} dv$$
 (3.2)

- onde

(F) é o vetor de forças nodais equivalentes; [N] é a matriz das funções de interpolação; (P) é o vetor dos componentes do carregamento distribuido; [Novovo é a diferencial do volume.

A primeira alternativa é aproximada e só deve ser pusada em elementos mais simples, como triângulos no estado plano de tensões ou na axissimetria, onde os valores obtidos para as forças nodais equivalentes não diferem muito dos forpnecidos pela equação 3.2.

No caso de análise estrutural de VPCPs feita com Programas como o NONSAP, os elementos envolvidos apresentam maior complexidade, não sendo mais aconselhável a distribuição Intuitiva.

Algumas comparações entre as duas alternativas estão mostradas nas figs. 3.2 e 3.3.

Para cálculo de carregamentos consistentes a partir ^{de c}argas distribuidas, o Laboratório de Oak Ridge desenvolveu ^{o prog}rama SAP3PR(18) com saídas específicas para os programas ^{NONSAP}, ADINA e STATIC-SAP. Na análise do VPCP multicavidade utilizando o NONSAP, onde são empregados elementos isoparamétricos tridimensionais com 8 a 21 nós e cujos carregamentos principais, a pressão interna e a protensão, são geralmente modelados como cargas distribuidas, a utilização do SAP3PR é indispensável para que se possa obter uma correta alocação das cargas.

💏 3.2.5 Capacidade de memória e tempo de computador

O NONSAP foi originalmente desenvolvido para um computador CDC/6400. Quando sua implantação foi feita no sistema IBM/370-155 do IPEN, algumas adaptações foram introduziidas de maneira a tornar possível a ampliação da capacidade de memória.

Três valores definem a capacidade interna do programa. São eles: "NUMEST", "A" e "MTOT". O primeiro é inserido como dado de entrada, permitindo que o usuário tenha acesso direto a ele. Sua função é delimitar o tamanho de cada variável envolvida no cálculo. Os outros dois valores são definidos no corpo do programa NONSAP e só podem ser alterados acessando-se a rotina principal. "A" é um campo de trabalho relativo a um vetor, e "MTOT" registra o espaço de memória a ser ocupado por cada vetor definido no "COMMON A".

O objetivo desses três valores é permitir que o Programa avalie, antes da execução, se a área reservada para o Seu processamento é suficiente. Caso haja necessidade de am-Pliá-la, o próprio programa indica por meio de mensagens de erro.

O tempo gasto depende apenas da complexidade do problema a ser resolvido e não há para ele restrições ou variáveis de controle.

3.2.6 Dados obtidos no elemento

Os deslocamentos do elemento podem ser obtidos em quaisquer dos 21 nós da fig. 3.1, nas direções x, y e z dos reixos cartesianos.

As tensões em cada elemento podem ser obtidas em até 16 dos 27 pontos mostrados na fig. 3.4. O programa fornece as tensões normais e as tensões de cisalhamento em todas as faces do elemento, em relação aos eixos cartesianos.

3.3 O NONSAP na análise tridimensional: estudos

O grupo de estudo de VPCPs da Área de Análise de Centrais Nucleares do Centro de Engenharia Nuclear (AACN/CEN) do IPEN, em função das particularidades do NONSAP, decidiu faezer uma análise tridimensional preliminar com alguns modelos mais simples, a fim de conhecer as limitações do programa para

Sels modelos foram estudados(35) entre os quals um

deles , o modelo E, foi detalhado(44) ja como parte do presente trabalho. São eles:

- modelo A: tubo infinito de parede espessa analisado em estado plano de deformação com elementos de treliça simulando vinculações em relação aos graus de liberdade de translação, na direção tangencial;
- modelo B: tubo infinito de parede espessa analisado em trêm dimensões;
- modelo C: placa circular vazada (moeda furada) analisada em três dimensões (setor de 90°);
- --modelo D: placa circular analisada em três dimensões (setor de 15°);
 - modelo E: VPCP monocavidade analisado em três dimensões (setor de 90°);

s = modelo F: VPCP monocavidade analisado em três dimensães (setor de 15º).

Dos modelos B e D não foram obtidos resultados. Em relação ao modelo B, isso se deu devido à utilização de malha não apropriada e, em relação ao modelo D, concluiu-se que sua análise traria pouca contribuição.

3.3.1 Modelo A: a utilização dos elementos de treliça

Para contornar a restrição imposta pelo NONSAP na definição das condições de contorno que obriga, num primeiro momento, a utilizar um setor de no mínimo 90° da seção cilíndrica para estabelecer a malha de elementos finitos, lançou-se aão de recursos que o próprio programa oferece. O NONSAP permite que se calcule estruturas que possam ser discretizadas em elementos de treliça, planos e tridimensionais.

Para que fosse possível reduzir o setor cilíndrico a um ângulo inferior a 90⁰, pensou-se em um elemento de trelica com rigidez muito grande para simular o vínculo numa direcão qualquer (fig. 3.5).

Assim, o modelo A (fig. 3.6), carregado com pressão interna, foi analisado em estado plano de deformação. A walha utilizada foi um setor de 30[°] (fig. 3.7), onde os vínculos na direção tangencial foram simulados por elementos de treliça de salta rigidez.

Comparando os resultados assim obtidos com os calculados pela Teoria da Elasticidade, pôde-se concluir que é viável e também vantajosa a utilização deste artifício, já que permite uma considerável redução no número de nós e de elementos a serem utilizados numa estrutura cilíndrica, com planos de simetria geométrica e de carregamento que formam ângulos inferiores a 90°. Os resultados são mostrados nas figs. 3.8 a 3.12.

3.3.2 Modelo C: análise tridimensional em um setor de 90

Para uma primeira análise tridimensional, utilizou-^{se} uma placa circular vaźada,carregada com pressão interna (fig. 3.13). A malha utilizada está mostrada na fig. 3.14. Desse estudo, concluiu-se que o elemento tridimensional dá bons resultados em termos de deslocamentos. Para as tensões, os resultados são ruins próximo à zona carregada e se tornam de razoáveis a bons à medida que se distanciam dessa região. Os resultados obtidos dessa análise estão mostrados na tabela 3.1.

3.3.3 Modelos E e F: VPCPs monocavidade

Nesse estudo foi adotado o VPCP monocavidade (fig. 3.15), já modelado matematicamente como estrutura axissimétrica e calculado pelo programa FEAST em trabalhos anteriormente realizados no IPEN(50,52), utilizando a malha da fig. 3.16. Tais resultados foram utilizados posteriormente para comparacão.

Cada um desses modelos (E e F) foi subdividido em seis estudos: três utilizando carregamento não consistente e três com carregamento consistente.

O modelo E utilizou, para malha de elementos finitos, um setor de 90º e o modelo F teve sua malha definida sobre um setor de 15º.

O modelo E, com estudos relativos a carregamentos ^{ASO consistentes, foi analisado mais detalhadamente(44) e um «resumo desse estudo é apresentado a seguir.} 3.3.4 0 modelo E(44)

A primeira malha de elementos finitos (figs. 3.17 e 3.18), relativa ao modelo E1, é constituida de dois tipos de elemento: o prismático de base triangular ("fatia de queijo") definidos por 15 nós, e o hexaédrico definido por 20 nós.

Segundo o manual do NONSAP(5), cada elemento rode apresentar até 21 nós com a orientação apresentada na fig. 3.1. Para os elementos hexaédricos tal orientação foi seguida. Porém, para os elementos "fatia de gueijo", tornou-se necessário recorrer a um artíficio: para um elemento genérico, os nós 4 e 8 (fig. 3.19) foram definidos como vértices de forma a simular um hexaedro, e os nós intermediários 11, 12, 15, 16 e 20 não foram considerados.

Assim o vetor NDDEIJ, mencionado no item 3.2.2, patera o elemento "fatia de queijo" fica definido da seguinte ma-

NOD [I] = [X1 X2...X10 0 0 X13 X14 0 0 X17 X18 X19 0 0 J.

As condições de contorno impostas, considerando-se Asimetria axial, vertical e horizontal foram:

nós distribuidos sobre o plano xy (z≈0) impedidos de se des-

nús distribuidos sobre o plano xz (y=o) impedidos de se des-

- πώs distribuídos sobre o plano yz (x=0) impedidos de se des-

O modelo foi solicitado por uma pressão de 8,8 MPa, distribuida por toda a superfície da cavidade central e transformada em cargas nodais de forma não consistente.

Devido à simetria axial, todas as tensões e deslocamentos nas direções vertical e radial devem ser invariantes para todos os nós de uma mesma seção e mesmo raio. As tensões cisalhantes com dependência angular (Tro, Tzo) devem ser nu-

Os deslocamentos fornecidos pelo NONSAP, em coordenadas cartesianas, foram transformados em coordenadas cilíndricas.

Para a malha relativa ao modelo E1 (figs. 3.17 e 3.18) os resultados não foram satisfatórios e dois motivos fogram encontrados:

Tencentes a uns e não pertencentes a outros (fig. 3.20); tencentes a uns e não pertencentes a outros (fig. 3.20); definidos de forma não simétrica demorelação à estrutura (fig. 3.21).

A fim de eliminar tais imprecisões, foi necessário Fetirar os nós excedentes que causavam a não conformidade entre elementos contíguos, e impor simetria na definição dos elementos "fatia de queijo". Duas soluções foram propostas:

O modelo E2, no entanto, apresentou ainda não conformidade pois as faces do elemento triangular se comportaram segundo uma equação linear enquanto que, no elemento hexaédrico, esse comportamento se deu segundo uma equação quadrática (fig. 3.23).

Os resultados obtidos do modelo E com carregamento não consistente estão relacionados nas tabelas 3.2a e 3.2b, e são também comparados com os resultados obtidos pelo programa FEAST nos gráficos das figs. 3.24 a 3.26.

Os três estudos descritos (E1,E2 e E3) foram repertidos pelo grupo de projeto, construção e ensaios de modelos PAVPCPs da AACN/CEN com cargas consistentes e, por sua vez, esses seis estudos foram também desenvolvidos no modelo F (setor ade 15°). Os resultados não são aqui apresentados. Apenas as com lusões, que deles foram tiradas juntamente com as demais málises, são a seguir relatadas.

3.3.5 Conclusões

As conclusões tiradas do estudo apresentado foram:

sultados em análises tridimensionais. Assim, para diminuir o tamanho das malhas de estruturas com eixo de simetria, pode-se utilizar tal artifício, gualquer que seja a direção desejada;

^{r)} ^para os deslocamentos, os resultados dos modelos. E e F

apresentaram boa aderência com os calculados pelo programa FEAST. A precisão aumenta usando malhas mais refinadas e conformes. Independem do fato do carregamento ser ou não consistente:

pi: 3º) para as tensões, os resultados dos modelos E e F apresente taram aderência razoável com os calculados pelo FEAST. Entre eles, os melhores resultados foram os relativos ao modelo F conforme, com malha mais refinada e com carregamento consistente;

4º) foi significativo o aumento de memória e tempo de computador utilizados nos casos tridimensionais em comparação aos casos planos e axissimétricos. Dos 320 kbytes de memória e 1 minuto de CPU necessários para uma análise plana com 200 graus de liberdade , passou-se para 3000 kbytes de memória e 30 minutos de CPU na análise dos modelos F com 1400 graus de liberdade. Para a análise de um modelo VPCP multicavidade, foram estimados 4000 graus de liberdade, o que levaria à utilização de 4000 a 5000 kbytes de memória e em torno de 100 minutos de CPU, o que é possível ser feito no IBM/370-155 do IPEN;

5°) é bastante preciso o elemento tridimensional isoparamétrico de 21 nós. Apresenta boa convergência e torna as análises tridimensionais perfeitamente confiáveis;

% 6:) deve-se usar, quando necessário, o elemento "fatia de " queijo" completamente degenerado e o carregamento consistente.

- F 🔾

l Raio I (cm)	Deslocamentos (cm x 10 ⁹)				
1	teóricos l	calculados i			
10	0,6556	0,7541			
1 11	9,6108	0,6456			
1 12	0,5748	0,5472			
1 13	0,5456 I	0,5355 i			
1 14	0,5216	0,5295			
1 15	0,5019	0,5047			
1 16 I	0,4956	0,4835			
1 17	0,4721	0,4714 (
1 18	0,4610	0.4616			
! 17 17	e,4519	0,4520			
1 20 1	0,4444, 1	0,4443 1			

Tensões (MPa) l Ralo i 1 (cm) |----teóricas (calculadas Gr 1 Ge I Gr I Ge 11 | -7,53 | 14,07 | 5,04 | 20,14 1 1 1 1 13 | -4,47 | 11,0 | -8,35 | 9,08 | 15 | -2,54 | 9,08 | -1,60 | 9,51 | 17 1 -1,26 1 7,79 1 -1,59 1 7,64 1 19 | -0.35 | 6,89 | -0,29 | 6,91 |

(b) Tensões x raio

(a) Deslocamento radial x raio

Tabela 3.1 Análise da placa circular vazada (modelo C) carregada com pressão interna/ fonte: Mattar et al.

	-	I SEÇÃO 1	1 SEÇÃO 2	I SEÇÃO 3 I	SEÇÃO 4 1	SEÇÃO 5 I
й . А.	lraio(cm)	ldr (cm/100)) {r(cm/100)	ldr (cm/100)	dr (cm/100)	dr (cm/100)
ř	1 0,0000	1 0,0000	1 0,0000	0,0000 1		
FIF	1 7,2000	0,1289	1	I -0,0426 I		1
E E	114,4000	1 0,2269	1 0,1213	-0,0622 1	1	
ίι A	121,9000	1 0,2821	1	I -0,0351		
i S_	129,4000	10,2882	I 0,1881	0,2139	! € 7858 I	0,9075 1
h) T	136,9000	0,2625		0,2690		0,7314
21	144,4000	1 0,2287	1 0,18/5	0,2/48	0,50/1	0,6205
	152,9500	1 0,2013	1			0,54/4 1
54. 1	161,5000	1 0,1912	0,1823	I 0,2200 I	(0,41/4 (
	1 0,0000	1 0,0000	1 0,0000	1 e = - 20 1)	i i
	1 7,2000	I 0,2152	1	I (,0565)	l I	· 1
\mathbf{H}_{C}	114,4000	1 0,0391	1 0,2826	1 -0,1596		
I _fn	121,9000	1 0,2574	1	0,1218		
EIE1	129,4000	1 0,4297	0,1610	0,4531	0,7161	1,1452
	130,7000		1	1 0,3374		0,8204 I
	144,4000	1 0,2313	1 0,2037	1 0,2831	₩ 9,4782	0,0872 1
	161,5000	0,2423	, 0,2181	I 0,3058 (0,4254	0,5220
iii			· · · · · · · · · · · · · · · · · · ·			
	1 7,2000	1 0,0000	1 0,0000	1 0,0000	1	
	114,4000	1 0.1329	1 0.1405	1 -0.0295		
21	121.9000	1 0.2387	1	1 0.1347	•	
É IE2	129,4000	1 0,2818	0,2098	0,3526	0,7028	1,0444
	136,9000	1 0,2857	1	1 0,3006	1	0,7707
	144,4000	1 0,2461	1 0,2249	0,2747	1 0,4577	0,5894
	152,9500	1 0,2326	I	1 0,2729	(0,5097
	161,5000	0,2294	1 0,2047	1 0,2678	1 0,3976	0,4757
	1 0,0000	1 0,0000	1 0,0063	1 0,0000	1	••••••••••••••••••••••••••••••••••••••
T.	1 7,2000	1 0,0843	1	1 -0,0244	ŧ	t i
	114,4000	1 0,1349	0,1345	1 -0,3195	(1
1	121,9000	0,2314		! 0,1351	 	
	129,4000	1 0,2603	1 0,1950	0,3422	0,7001	1,0426
	5736,7000 144 4444	1 0,2710		1 0,2940		0,7690
	499,4000 (159 ofaa)	1 0,2332	1 0,2100	1 0,2078	1 0,4092	I 0,088/ I 0 5465
でス	161.5000	1 0,2400	1 0 1942	1 0,2083	1 1 0 2955	1 0,0000 1 0.4749
and the second s		· · ··································	1 V,1700	I VIGUUI	1 V;07JU 	

ji M (a) Deslocamentos radiais (dr x r)

Tabela 3.2 Análise do modelo E com carregamento não consistente

2 I SEÇÃO 3 I SEÇÃO I SECÃO 1 | SEÇÃO lraio(cm) (dv(cm/100) (dv(cm/100) (dv(cm3100) (dv(cm/100)) 0,0000 | 0,8496 0,9935 1,3116 F | 7,2000 1,2577 0,8038 114,4000 0,8011 ε 0.6934 1,1091 1 121,9000 0,8400 0,5415 Α 0,2907 0,4024 -0,0062 S 129,4000 1 0,3958 1 0,2907 Т 136,9000 0,2084 0,2274 0,1042 144,4000 | 0,2341 0,1897 ł 152,9500 1 0,2125 0,1945 Į 161,5000 1 0,2233 0,1772 0,2425 0,2049 ł 1 0,0000 1 0,6633 1,0664 1,2759 ł 1 7,2000 [0,6642 1,2353 1 114,4000 | 0,7639 0,8078 1,2080 ł 121,9000 | 0,7301 0,6344 ł 0,3913 0,4684 0,0583 129,4000 | 0,3564 1 136,9000 1 0,2199 0,2397 0,2250 0,2058 0,1715 0,1178 144,4000 1 152,9500 1 0,2091 0,1750 0,1578 161,5000 1 0,1776 0,2140 ł 0,2356 6,0000 0,7428 1,0187 1,3243 1 1 1 7,2000 | 0,7554 1,2207 114,4000 | 0,7638 0,6739 t 1,1587 121,9000 | 0,4990 0,7422 129,4000 1 0,4046 0,3314 0,3169 0,0415 Ł 136,9000 1 0,2639 0,2330 144,4600 0,2221 ł 0,2424 0,1826 0,1212 ł 152,9500 1 0,1825 0,2109 ~ 161,5000 | 0,1828 0,2128 0,2276 0,1544 I. 0,9209 1 0,0000 1 0,6445 1,2312 L 1 1 1 7,2000 0,6810 1,1594 ł ł ŧ 114,4000 0,6347 0,7249 1,1016 l **9000** 0,4801 0,7188 ł E3-129,4000 0,4040 0,3364 0,3238 0,0461 ¢136,9000 0,2630 0,2330 **\$144,4000** 0,1217 0,2418 0,2223 1 0,1817 152,9500 | 0,2125 0,1834 161,5000 -0,1869 0,2160 0,2306 0,1.557 ſ

/0

(b) Deslocamentos verticais (dv x r)

Fig. 3.1 Elemento tridimensional utilizado no NONSAP/fonte: Bath et al.

(a) alocação intuitiva

(b) alocação consistente

Fig. 3.2 Forças nodais equivalentes a uma força de campo uniformemente distribuida em elemento plano/ fonte: Mattar e Vallin

(a) alocação intuitiva

(b) locação consistente

Fig. 3.3 Forcas nodais equivalentes a um carregamento superficial uniformemente distribuido em uma face de um clemento tridimensional/fonte: Mattar e Vallin

• 3.7 Malha para an<mark>álise estrutural de cilindro infinito de</mark> parede espessa em estado plano de deformação usando elemento de treliça/fonte: Mattar et al.

- 14

Fig. 3.9 Análise do cilindro infinito - \mathbf{G} x raio/fonte: Hattar et al.

Malha para análise estrutural da moeda furada usando elementos tridimensionais de 20 nós com o NONSAP/ fonte: Mattar et al. •

3.14

MEDIDAS EN CH

Fig. 3.16 Malha para análise estrutural axissimétrica do modelo de VPCP monocavidade com o FEAST/ fonte: Mattar et al. 5 **m**

Fig. 3.17 Parcela da estrutura do modelo E adotada para malha de elementos finitos

174

ĸc

Fig. 3.19 Elemento "fatia de queijo"

(a) elementos 4, 7 e 8 (b) Vazios devido a não não conformes conformidade

Fig. 3.20 Não conformidade

elemento 2 :

Fig. 3.21 Não simetria na definição dos elementos "fatja de queijo"

qua dráti

3.22 Definição do elemento "fatia de queijo" para modelos E2 e E3

> Fig. 3.23 Não conformidade entre elementos contíguos

(a) dv x ângulo

(b) 🎸 🛪 ângulo

(c) {r × ângulo

Fig. 3.24 Modelo E2 × FEAST: deslocamentos dv, de, dr

is. 3.25 Modelos E x FEAST: deslocamento radial x raio

.

· .

. .

CAPITULO QUATRO

ANALISE DE UN MODELO DE VPCP MULTICAVIDADE

4.1 Considerações gerais

Verificada a viabilidade de utilização do NONSAP re para cálculo de estruturas tridimensionais, é apresentada agora a aplicação do programa no cálculo de um modelo específico de VPCP multicavidade.

Houve a preocupação de se encontrar para modelo um vaso que tivesse sido objeto de testes e que apresentasse valores experimentais, a fim de que fosse possível uma comparacão de resultados.

O cálculo do vaso foi feito em sua fase elásticolinear, que é o comportamento que o mesmo deve apresentar ao longo de sua vida útil(1,6).

.2 0 modelo experimental

4.2.1 Introdução

Na literatura corrente, foi encontrado o relatório da Gulf General Atomic (GGA)(14) sobre o estudo feito para o vaso multicavidade do HTGR 1000 MW(e). Tanto a forma do modelo quanto a quantidade de dados fornecidos vieram de encontro à proposta de trabalho inicialmente tracada e assim ele foi adotado como base para os cálculos a serem desenvolvidos.

4.2.2 Critérios de projeto

Antes de descrever o modelo, é necessário falar dos critérios considerados no projeto do protótipo em que ele foi baseado, para que se possa entender suas particularidades. São peles:

- todos os componentes estruturais devem se comportar de maneira essencialmente elástica até uma pressão de 1,2 vezes a Máxima Pressão de Cavidade (MPC), que para o reator de 1000 Máxima MW(e) é de 4,5 MPa;

enquanto que as lajes de fechamento superior e inferior devem resistir a uma carga de 3,0 MPC, sem que ocorra ruptura.

Além disso, no projeto do barril (parede cilíndrica) e da laje considerou-se que:

a seção do barril do VPCP deve resistir às tensões de protensão e restringir os deslocamentos causados pelo efeito da ptemperatura;

enhuma tensão de tração deve existir na laje, sob condições Compormais de operação.

Também, um mecanismo foi incluido no projeto: o Plano de escorregamento, que é uma articulação colocada nas Junções das lajes de fechamento com a parede cilíndrica 2 que foi incorporada para permitir movimento diferencial nessas re-Siões e minimizar o cisalhamento radial transmitido às lajes
pelo deslocamento do barril.

Essa particularidade de projeto gerou um comportamento peculiar na estrutura: para um determinado valor de pressão, ocorreu o deslizamento da laje sobre a parede cilíndrica e a partir dai deixou de haver, nessa região, resistência do concreto a esforços de cisalhamento e de tração. A interação entre lajes e barril foi minimizada, e este último tornou-se essencialmente um cilindro carregado axissimetricamente pela pressão interna e pela protensão circunferencial, sem forças nas extremidades.

A pressão interna, sob a qual deve se manter o Filuido refrigerante, foi assegurada no projeto do protótipo pelo trabalho de circuladores que fazem o bombeamento do gás

H.2.3 0 modelo

A estrutura foi construida em concreto. Constituise de um cilindro com uma cavidade central, que abriga o núcleo do reator, e mais seis cavidades igualmente espaçadas a seu redor, onde estão os geradores de vapor. Todas elas foram pressurizadas.

Duas lajes de fechamento foram colocadas nas extre-Bidades do cilindro. Na laje de topo foram feitas 76 perfuracoces, revestidas com tubos vedantes, que simularam as abertuA reprodução do plano de escorregamento foi feita colocando-se óleo na superfície de separação, de forma a evitar a aderência entre o concreto do barril e o concreto da laje.

Membranas de borracha foram instaladas nas cavidades principal e secundárias, para agir como impermeabilizante e eliminar a necessidade de solda, utilizada em membranas metálicas.

O modelo adotado está na fig. 2.18 e suas dimensões na fig. 4.1a.

4.2.4 Propriedades dos materiais

No VPCP há dois materiais principais de construção: a concreto e aço. O primeiro é um material multifásico que causa a alguns problemas para a simulação do modelo a partir do protótipo. O aço, no protótipo, é usado em duas formas: como material dútil com resistência relativamente baixa nas armaduras frouxas e nas membranas de revestimento, ou como fio de alta resistência e baixa dutilidade, usado na protensão.

No relatório GGA foi apresentado um estudo de simi-No relatório GGA foi apresentado um estudo de similitude cuja preocupação foi resguardar a similaridade entre modelo e protótipo. No que diz respeito aos materiais, concluiu-se que os padrões comportamentais do modelo acompanharão Os do protótipo somente se as curvas adimensionais de tensãodeformação (para os materiais) forem idênticas no intervalo de

92

1.

tensão dentro do qual as comparações são feitas. E, embora não tenha sido apresentada uma solução final, foi adotado um critério como sendo uma forma indicada de produzir materiais para o modelo que simulem o concreto e o aço: usar os mesmos materiais básicos do protótiro.

Não será reproduzido aqui tudo que já foi discutido e apresentado no relatório GGA. Serão relacionados apenas os aspectos necessários para a comparação entre o modelo experimental e o modelo numérico.

É evidente que não é possível usar o mesmo concreto no modelo e no protótipo: há necessidade de se reduzir o tamanho do agregado para o modelo. Porém, isso aumenta a superfície específica do agregado, a capacidade de aderência do cimento e modifica as características de tração do concreto. Para contornar esse problema, foi utilizado um agregado de su-Perfície mais polida, que reduz a capacidade de aderência e mantém a identidade entre as curvas adimensionais tensão-deformação na tração.

Também devem ser considerados os vazios que se formam no lançamento, mistura e processo de hidratação do concreto, que são quantidades fora de escala. Seus efeitos podem ou não ser significativos, sendo mais indicado procurar reduzir a Possibildade de formação de tais vazios. Para, isso usa-se Concreto com alta densidade.

O módulo de deformação do concreto (Ec) adotado para o modelo foi de 31.015 MPa. O coeficiente de Poisson (マ)

não foi fornecido.

O estudo do concreto a ser utilizado no modelo foi apresentado em relatório à parte, que não foi localizado.

4.2.5 Carregamentos

Dois tipos de carregamento foram aplicados ao vaso: - a protensão (vertical e circunferencial), que teve como objetivo aumentar a resistência estrutural do vaso, fazendo-o trabalhar em estado de pré-compressão;

- a pres<mark>são interna, que é a solicitação propriamente dita a</mark> que o va**so fica sujeito.**

Ainda foram utilizados, na estrutura, armaduras frouxas para controlar a formação de fissuras.

a) Prote**nsão**

Dois fatores importantes foram considerados na modelação da protensão: - a forca aplicada na estrutura pelo sistema de protensão; - a resistência que o sistema de protensão provê para a condição de ruptura.

Esses dois fatores são frequentemente mencionados ^{Como} valores de resistência ativa e passiva do sistema de pro-

.

a.i) Protensão Vertical

Į

Statistics of

3

Em torno de cada cavidade de gerador de vapor foram postos 8 fios de 0,64 cm de diâmetro igualmente espaçados,e em torno da cavidade central foram colocados 78 tendões de 0,41 cm de diâmetro agrupados em número de 13, em cada intervalo entre geradores (fig. 2.18).

Os tendões, em torno de cada cavidade secundária, transferem sua carga por meio de pinos de fechamento, o que produz uma força uniformemente distribuida sobre essa superfície de vedação. Cada tendão foi tracionado por uma força de 26.695 N.

Os tendões localizados em torno da cavidade central foram tracionados por uma força de 12.740 N.

a.2) Protensão Circunferencial

Devido às diferenças na forma de dilatação entre « lajes e barril, o sistema de protensão circunferencial do modelo foi dividido em três bandas: uma para cada laje e uma pa-« ra o barril.

Os níveis de protensão circunferencial ficaram em torno de 3,7 MPa na laje de topo, 3,6 MPa na laje inferior e 3,8 MPa no barril, o que corresponde a cerca de 44 voltas de fio 0,41 cm de diâmetro tracionado por uma forca de 13.348 N nas lajes, e 165 voltas de fio 0,41 cm de diâmetro tracionado Por uma forca de 12.015 N no barril. b) Pressão Interna

O VPCP é solicitado, durante toda sua vida útil, pela pressão interna que o gás, utilizado como refrigerante, exerce na parede cilíndrica, lajes e dutos.

No projeto do protótipo da Gulf General Atomic. foi adotada uma pressão de projeto já mencionada no item 4.2.2 e que para esse tipo de reator é de 5,4 MPa (1,2 MPC). Foram, porém, aplicados no modelo valores de pressão interna que chegaram a atingir 13,3 MPa. Isso foi feito com o objetivo de determinar as várias situações que podem ocorrer com a estrutura.

O fluido hidráulico utilizado no modelo foi o ólco que, como o gás, não apresenta resistência ao cisalhamento e exerce pressão normal em qualquer superfície sobre a qual atua.O uso do óleo no lugar do gás não altera o efeito da carga, mas reduz a quantidade de energia armazenada no fluido de pressurização, reduzindo os riscos de uma ruptura não esperada.

Todas as cavidades do modelo foram pressurizadas [•] P^{or} um sitema hidráulico que bombeia o óleo a partir de uma [•] tubulação principal a fim de garantir uma pressurização uni-• forme. O diagrama do sistema está apresentado na fig. 4.3.

4.2.6 Sensores utilizados

Vários dispositivos foram introduzidos no vaso com o objetivo de medir:

- pressão interna do modelo;

- os deslocamentos do modelo em vários pontos da estrutura durante a pressurização:
- cargas em tendões escolhidos;
- a deformação nos cabos de protensão circunferencial durante a pressurização;

- temperatura na cavidade principal e a temperatura externa do ar.

A gravação das medidas foi feita por meio de um sistema de aquisição de dados digital Dymec, com capacidade para 2000 canais, sendo que cada canal registrou os dados de um único sensor. Como suporte dos sensores foi utilizado um pórtico colocado sobre o vaso sem qualquer ligação com a estrutura. A localização dos sensores sobre o modelo está mostrada nas figs. 4.4 a 4.6. Os vários tipos de sensores utilizados e informações complementares são apresentados na tabela 4.1.

4.2.7 Tipos de testes desenvolvidos

O programa de testes foi constituido de duas fases: ⁻ na fase I os testes foram desenvolvidos para demonstrar o ^{Comportamento} do plano de escorregamento no modelo e o com-Portamento do vaso fissurado;

a fase II foi realizada para determinar o modo de ruptura da Jaje de topo.

Quatro testes foram realizados:

	. data	• designição do teste	•	pressão máxima(MPa)	.•
			• • •		
	. 13/09/69	. fase I - teste i -	٠	11,6	•
	•	. comportamento do vaso	•		•
-	•	• não fissurado	•		•
	. 26/09/69	. fase I - teste 2 -	•	9,6	•
	•	. fase I - teste 3 -	•	9,3	•
	•	. comportamento do vaso	•		•
t J ₩		. fissurado	•		•
	* * • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • •		
-	. 15/11/69	. fase II -	•	13,3	•
14		. comportamento da	٠		•
	•	. laje de topo	•		•
Ę					

No primeiro teste a pressão foi sendo aumentada até atingir o valor de 11,6 MPa que corresponde a 2,6 MPC. O com-Portamento do vaso foi linear até cerca de 5,5 MPa - 1,23 MPC - com a pressão equilibrando a protensão aplicada. Acima de 5,5 MPa as curvas de deslocamento e deformação desviaram do estado elástico devido ao aparecimento de fissuras e ao escoamento da armadura frouxa. A separação entre lajes e barril no selano de escorregamento ocorreu entre 5,5 e 6,2 MPa.

Quando a pressão atingiu 8,2 MPa, observou-se a fu-

continuar aumentando a pressão até 11,6 MPa.

Os testes 2 e 3 foram feitos sobre o vaso já fissurado.

Para o teste final (fase II) sobre as lajes, o barril foi reforçado a fim de inibir sua ruptura . A pressão interna atingiu 13,3 MPa - 3 MPC - quando então ocorreu fuga do óleo. A partir desse ponto, não houve mais possibilidade de aumentar o valor da pressão. O último teste não chegou a indicar qual seria o modo de ruína final da laje.

4.2.8 O teste utilizado para comparação

Para fins de comparação com os resultados obtidos pelo programa NONSAP, foi adotada a pressão de projeto que é de 1,2 MPC - aproximadamente 5,4 MPa - com a estrutura em regime elástico linear.

Assim, os valores utilizados do modelo são os relativos à fase I - teste 1, onde o concreto permanece ainda não fissurado e as armaduras frouxas não apresentam deformação.

Os resultados obtidos serão apresentados e discuti-

4.3 O modelo utilizado no cálculo numérico

4.3.1 A estrutura adotada

A estrutura utilizada para o cálculo a ser desenvolvido no NONSAP foi baseado no modelo GGA e suas dimensões são apresentadas na fig. 4.1b. Algumas simplificações e aproximações foram feitas a fim de facilitar a definição da malha de elementos finitos e agilizar o processo numérico. Tais alpterações afetam de maneira pouco significativa os resultados, e tendo em vista a escala do modelo em questão. São elas(fig. - 4.2):

- retirada do dente existente na laje superior (idem para o inferior) reduzindo, na região da cavidade central, o volume de concreto (letra A);

- não são consideradas as tampas de fechamento (superior e in-- ferior) q<mark>ue ficam sobre a cavidade do gerador de vapor (le-</mark> - tra B);

- a menos <mark>da cavidade central e das cavidades dos geradores de</mark> Mapor, nenhuma perfuração foi considerada (letra C);

A cavidade onde se localiza o circulador, situada na laje de topo, teve seu diâmetro reduzido ao do conduto do gerador de vapor (letra D) e a cavidade localizada na laje inferior teve rseu diâmetro ampliado (letra E);

Essas modificações geraram no modelo vários planos de simetria: o plano horizontal que fica a meia altura da estrutura, os planos verticais que ligam os centros dos dutos secundários com o eixo central da peca, e os planos verticais que ligam o ponto a meia distância entre dois dutos e o eixo central.

Assim, considerando, para meia altura da estrutura, um setor cujos planos limítrofes são consecutivamente esses dois planos verticais de simetria, define-se a porção da estrutura que representa perfeitamente o seu todo, se forem usadas as condições de vínculo adequadas. Para o modelo em questão, o setor representativo é formado por um ângulo de 30⁰ (fig. 4.7).

4.3.2 Condições de contorno

Como já visto, qualquer setor com ângulo inferior a 90°, pode ter uma de suas faces limitadas por barras de trelica de alta rigidez.

Para o setor de 30°, mostrado na fig. 4.7, um dos aplanos limítrofes verticais foi considerado sobre o eixo cartesiano Y, coincidindo com o plano XY. Os nós aí definidos foram vinculados de forma a impedir seu deslocamento na direção Z. Nesse caso, não foi necessária a utilização de qualquer recurso pois o NONSAP prevê esse tipo de vinculação.

Doutro plano vertical, situado a 30° do primeiro, teve sua vinculação determinada por barras de treliça de alta risidez, de maneira a impedir o deslocamento de todos os nós pertencentes a esse plano, na direção normal a ele. No plano horizontal de simetria, os vínculos impedem que os nós se desloquem na direção vertical, e também aqui o NONSAP prevê esse tipo de vinculação.

4.3.3 A malha de elementos finitos

A malha de elementos finitos, mostrada nas figs. 4.8 a 4.26, apresenta 19 seções: 11 limites e 8 intermediárias e e foi subdividida em 97 elementos de concreto, 10 elementos de aco e 121 barras de treliça, que exigiram a utilização de 836 nós.

A numeração dos nós foi feita por seção horizontal, - começando <mark>do topo da estrutura, a partir da cavidade do gera-</mark> - dor de vap**or.**

-4.3.4 Seleção das propriedades dos materiais 🦂

Três tipos de elementos foram utilizados no cálculo: tridimensionals em concreto, tridimensionals em aço e barras de treliça. Cada um deles está associado a um grupo de parâmetros que define o material utilizado:

.5

tr = para os elementos de concreto Ec = 29.412 MPa

						¥	-160	0,13
•	- para	05	elementos	de	aço	Es	×	205.882 MPa
						२	R	0,30
. (- para	05	elementos	de	treliça	Ε	Ħ	9;8x10 MPa
						S	n	1000 cm².

「ない」は、「ない」というないで、ないない

Dos parâmetros relativos ao concreto e ao aço, apenas o módulo de elasticidade do concreto foi adotado com base no valor usado para o modelo (Ec do modelo = 31.015 MPa). Os demais não são citados no relatório GGA e para eles foram adotados valores usuais.

Os elementos de treliça são, na verdade, a simulação dos vínculos e por isso seus parâmetros não estão relacionados a um material específico. O objetivo, nesse caso, é apenas criar uma situação de alta rigidez na barra de forma a impedir deslocamento na direção tangencial.

4.3.5 Carregamentos

Dos carregamentos considerados no modelo, protensão e pressão interna, apenas o último foi considerado no cálculo numérico. Essa limitação foi feita porque o estudo foi desena volvido para regime elástico linear, onde é válida a sobreposição de efeitos, e porque os resultados do modelo fornecem deslocamentos em função da pressão interna, com a protensão já previamente aplicada. Dessa forma, para o trecho de regime linear, a comparação é imediata, como pode ser visto no previamente 4.4.

O valor adotado para a pressão interna é de 5,4 MPa (1,2 MPC). Essa pressão foi aplicada na cavidade central, nas Cavidades dos geradores de vapor até a altura das tampas metálicas, e nos dutos transversais. Como esse carregamento é distribuido, ele foi transformado em cargas nodais consistentes, utilizando o programa SAP3PR(18,34).

4.3.6 Análise de sensibilidade

Para a análise de sensibilidade do cálculo utilizado no modelo numérico, dois fatores foram considerados: - o refinamento da malha de elementos finitos; - o número de nós utilizado na definição do elemento.

O primeiro deles já foi objeto de estudo de Smith e outros(46) onde algumas conclusões foram tiradas, tendo em vista o seguinte critério: pode-se considerar que uma análise é precisa quando, para uma malha suficientemente fina, os deslocamentos, tensões e deformações não mudam se a região de interesse é adicionalmente refinada. Os resultados obtidos indicaram que o refinamento da malha não é a maneira ótima de se alcançar soluções precisas. O texto sugere a utilização do Método das Subestruturas como uma forma eficiente de se obter maior precisão (ver item 2.2.4).

Desenvolveu-se, então, para o modelo êm questão, uma análise de sensibilidade, onde foi considerado apenas o segundo fator. Tomando como base o modelo de elementos finitos inicialmente adotado (figs. 4.7 a 4.26) e mantendo a mesma distribuição e o mesmo número de elementos tridimensionais isoparamétricos, quatro alternativas foram utilizadas (fig. 4.27):

g^{ran} element**o definido por 20 nós;** Falement**o definido por 16 nós;**

17.8

- elemento definido por 12 nós;

- elemento definido por 8 nós.

Essas malhas foram denominadas de M20, M16, M12 e M08, respectivamente.

A partir dos deslocamentos nas direções vertical, radial e circunferencial, a porcentagem de erro das malhas M08, M12 e M16 em relação à malha M20 foi calculada para cada moi por meio do programa DESVID.FORT, que é apresentado na E Apêndice A.

Alguns dos valores obtidos foram selecionados (tabela 4.2) e transportados para os gráficos das figs. 4.29 a 4.31. Em cada figura foram agrupadas seções do modelo de mesmas coordenadas y e z. Por exemplo, na fig. 4.29, o primeiro gráfico apresentado é relativo ao nó 7, situado na seção 1 (fig. 4.8). Em seguida foram plotados os gráficos relativos aos nós 3 (seção 113),363 (seção 9), 543 (seção 13), 705 (secão 17) e 786 (seção 19), que têm as mesmas coordenadas y e z

Em cada gráfico estão registradas as porcentagens de erro dos deslocamentos nas direções vertical, radial e circunferencial. Observa-se que, de maneira geral, as porcentagens diminuem à medida que se aumenta o número de nós, isto é, see fator afeta a precisão do cálculo e deve portanto ser considerado na definição da malha de elementos finitos.

Ainda alguns parâmetros relativos às malhas são ^{apr}esentados na tabela 4.3. Analisando os tempos de CPU e as áreas de memória utilizadas, é possível ter uma idéia de como o custo do cálculo de uma dada estrutura pode ser alterado en função da malha adotada: maior precissão no cálculo implica em custos mais alevados.

Não se pretende aqui esgotar esse assunto. Pelo contrário, constatou-se a partir dessas considerações, que muitos outros parâmetros poden ser analisados a fim de se obter um traçado ótimo de malhas de elementos finitos para estruturas tridimensionais. Esse tema deverá ser objeto de **F**ary Constant una análise futura.

4.3.7 Alterações na capacidade de memória

ζ.

.

O cálculo do modelo tridimensional exigiu um aumento na área **de memória reservada pelo programa NONSAP, como já** fora previsto no item 3.3.5.

Na tabela 4.4 é apresentada a sequência de altera-🖡 cões necessárias nas 3 variáveis ligadas à capacidade de memóeria. A primeira coluna indica os valores das variáveis na veresão original do NONSAP. A segunda coluna indica os valores que ressas variáveis apresentavam quando este trabalho teve início. 🕱 As duas úl**timas colunas correspondem aos valores utilizados** nos modelos monocavidade e multicavidade, respectivamente.

Na análise de sensibilidade (item 4.3.6), observa-Se na tabela 4.3 que a memória utilizada manteve o mesmo valor ^{Para} os quat**ro casos estudados. Isso ocorreu porque, embora a**

área de memória necessária decresça com a diminuição dos nós, o valor da variável NUMEST não foi alterado (item 3.2.5).

é conveniente lembrar ainda que, no decorrer da elaboração deste trabalho, o computador IBM/370-155 sofreu algumas modificações que agilizaram seu sistema, trazendo uma economia considerável no tempo de processamento. Os tempos de CPU indicados na tabela 4.3 são anteriores a essas modificações. Só para exemplificar, o modelo de 20 nós que antes utilizava 39 minutos de CPU, passou a dispender em torno de 13 minutos, isto é, 1/3 do tempo inicialmente necessário.

4.4 Apresentação e análise dos resultados

-4.4.1 Introdução

Antes de abordar o tema deste item propriamente dito, algumas observações relativas ao modelo experimental se fazem necessárias, a fim de facilitar o entendimento da análise que será apresentada.

A partir dos resultados fornecidos pelo relatório OGGA, verificou-se que o modelo experimental apresentou comportamento linear até cerca de 5,5 MPa, obedecendo assim o pri-

Quanto à restrição que se faz às tensões de tração ^{P na} laje de topo (item 4.2.2), observou-se que, para a pressão de projeto (5,4 MPa), as deformações de tração não ultrapassa-

ram os val**ores de pré-compressão, isto é, o concreto não esta**va sendo p**ropriamente tracionado.**

A separação entre laje e barril, na região do plano de escorregamento, ocorreu no intervalo de pressão entre 5,5 a 6,2 MPa. O presente trabalho tomou como base de comparação a pressão de projeto (5,4 MPa), portanto a análise foi feita antes que a separação ocorresse.

Segundo o relatório GGA, a análise dos testes não foi feita de maneira completa mas, ainda assim, permitiu algumas interpretações preliminares a respeito do comportamento do modelo experimental.

Os modelos experimental e calculado serão chamados # de modelos GGA e MULT20, respectivamente.

4.4.2 Resultados disponíveis

Os resultados obtidos com o programa NONSAP foram: - deslocamentos de todos os nós nas três direções dos eixos - cartesianos (x, y, z);

- tensões normais(fx, fy, fz) e de cisalhamento (fxy,fyz, fxz) relativas aos eixos cartesianos, no centróide de cada elemento (posição 21 da fig. 3.1).

Os resultados fornecidos pelo relatório GGA se ^{apr}esentaram sob a forma de gráficos em função do valor da ^{Pressão} interna, e foram os seguintes: - deslocamentos e deformações nas direções radial, circunferencial e vertical obtidos experimentalmente em pontos localizados no plano de simetria que atravessa as cavidades. Sobre cada um dos gráficos relativos às deformações está traçada uma reta vertical, que representa o estado final de deformação devido à protensão. Esse valor indica a deformação por compressão, que deve ser superada para que a pré-compressão, causada pela protensão, seja aliviada e as deformações do concreto se transformem em deformações de tração. Tais valores foram obtidos, em sua maioria, experimentalmente. Alguns, porém, foram estimados;

- deslocame**ntos da laje de topo na direção vertical, obtidos** .experimentalmente;

- deslocame<mark>ntos calculados analiticamente em coordenadas "ci-</mark> líndricas, **em alguns pontos da estrutura.**

Algumas alterações foram necessárias nos resultados obtidos a fim de compatibilizar os valores experimentais com os calculados, bem como permitir a verificação das tensões.

4.4.3 Formas de comparação e localização dos sensores

A comparação entre resultados calculados pelo NONSAP e os valores experimentais foi feita de três maneiras: - deslocamentos radiais e verticais: valores experimentais x Valores calculados analiticamente e numericamente; - deformações radiais e verticais: valores experimentais x va-

deformações circunferenciais: valores experimentais x valor

res a partir de deslocamentos calculados.

A relação entre valores experimentais e calculados foi feita geometricamente, isto é, para cada sensor (valor experimental) há, na malha de elementos finitos, um nó ou um intervalo entre dois nós correspondente.

As posições dos sensores de deslocamento (d) e de deformação (E) que constam do relatório GGA não estão cotadas, por isso foi necessário lançar mão de medidas em escala das figs. 4.4, 4.5 e 4.44, tomando como base as dimensões do modelo apresentadas na fig. 4.1a, a fim de que se pudesse obter a localização dos pontos de interesse.

Nas tabelas 4.5.1 a 4.5.4 são apresentadas as coordenadas verticais (x) e radiais (r) dos sensores de deslocamento (d) e de deformação (E) (figs. 4.4 e 4.5), relacionandoas com os respectivos nós da malha de elementos finitos (figs. 4.7 a 4.26). Como esses sensores estão situados no plano de simetria que passa sobre as cavidades, a coordenada circunferencial é sempre nula.

A.4.4 Deslocamentos

Ma) Alterações necessárias

Para os deslocamentos, a única alteração é relativa ^{aos} valores fornecidos pelo NONSAP que, originalmente obtidos ta coordenadas cartesianas, foram transformados em coordenadas cilíndricas. As relações utilizadas foram (fig. 4.28):

$\Delta h = \Delta x$	(4.1)
or = by cos & + bz sen oc	(4.2)
4θ = Δz cos α - Δy sen α	(4.3)

Δh, Δr, ΔO são os deslocamentos calculados nas direções x, r e O:

Δx, Δy, Δz são os deslocamentos fornecidos pelo NONSAP nas direções x, y e z, respectivamente. O ângulo océ limitado pelos eixos y e r.

O programa desenvolvido para este cálculo denominase DES.C.FORT e está no Apêndice A.

🗺 b) Comparação entre valores experimentais e valores calculados

Ds deslocamentos são apresentados na tabela 4.6.1 sonde, em cada linha, constam o sensor em questão (d), o valor experimental (VE) obtidos das figs. 4.32 a 4.43, o valor analítico (VA) obtido das figs. 4.45 a 4.47, o nó que corresponde posição do sensor, o valor calculado pelo NONSAP (VC) e a porcentagem de erro (DESVIO) do valor experimental em relação aos valores analítico e calculado, respectivamente.

Os valores experimentais e calculados foram também desenhados sobre a estrutura, na fig. 4.48. Pode-se observar que, de maneira geral, há coerência entre os dois tipos de preultado, sendo os valores calculados sempre inferiores aos experimentais. Alguns dados merecem maior atenção e são comentados a seguir.

c) Particularidades observadas nos deslocamentos

c.i) Sensores Ai e A2

O relatório GGA não considerou como resultados válidos os valores registrados por esses sensores, motivo pelo qual não são aqui analisados.

c.2) Sensores A3 e A4

Esses sensores mediram o deslocamento radial do barril em relação à laje de topo. Seus valores absolutos não são relevantes. Cabe apenas destacar que o comportamento aprementado nos seus respectivos gráficos (figs. 4.40 e 4.41) confirmam a não separação entre laje e barril (região do plano de mescorregamento) para a pressão de projeto (5,4 MPa).

Sensor di2

Esse sensor mediu o deslocamento do barril numa posição próxima à laje de topo, e apresentou um valor inferior a dii, localizado a meia altura da parede cilíndrica. No modelo experimental, observa-se que o efeito do plano de escorregamento não foi sentido, caso contrário o valor do deslocamento em diz seria provavelmente superior ao verificado no sensor dii. Isso deve ocorrer pelo fato do sensor diz estar situado em região onde não houve aplicação de carregamento. A localização de d12, no modelo experimental, é próxima porém não coincide com sua localização no modelo numérico, como pode ser visto na fig. 4.43. Por isso, não foi feita a comparação entre modelos. Observou-se apenas a coerência na ordem de grandeza entre os dois valores.

c.4) Variação entre valores experimentais

Os deslocamentos apresentaram, entre os valores experimentais, algumas variações (tabela 4.6.1).

A rigor, não seria possível considerar o comportamento da laje de topo simétrico em relação ao eixo central se fossem comparados, por exemplo, os dados experimentais dos sensores d1 e d6, pois há um desvio de 20% entre eles, valor bastante superior à acuidade do sensor utilizado, que é de 2% (tabela 4.1). O relatório GGA não comenta essa falta de simetria que pode ter sido causada na aquisição de dados, por imprecisão dos sensores ou pela forma como foram fixados no mo-

Para o objetivo do presente trabalho considerou-se, contudo, que tais dados são satisfatórios porque Permitem verificar a adaptação do programa NONSAP para um VPCP multicavidade. Há coerência entre os resultados experimentais e os calculados, olhando a laje como um todo.

d) Os valores analíticos

 $-\mathbf{x}_i$

Segundo o relatório GGA, foram desenvolvidos cálcum pe los analíticos apenas para o caso de deslocamentos, e cada uma das partes <mark>da estrutura (lajes e barril) foi analisada separa-</mark> damente.

O cálculo do deslocamento da laje foi feito a partir de duas hipóteses:

- movimento de corpo rígido (sem flexão) e

- distorção proveniente apenas da flexão, por meio da rotação de seis corpos rígidos em torno de linhas de fissura, na altura do plano de escorregamento.

Para o cálculo do barril, adotou-se como modelo um cilindro de parede espessa, carregado axissimetricamente com pressão interna e protensão circunferencial, sem forças nas extremidades (cilindro infinito).

Os resultados analíticos foram incluidos na tabela 4.6.1 e uma análise comparativa entre eles e os valores experimentais é descrita a seguir.

ed.i) Deslocamento vertical na laje de topo

Os pontos analisados foram os que ficam mais próximos à borda da estrutura (posições relativas a dí, d2, d5 e d6). Essa escolha de pontos não foi aleatória, já que é nessa região que o efeito da flexão é pequeno e, portanto, mais se aproxima da hipótese de corpo rígido, adotada para a laje de topo.

Na verdade, a flexão da laje ocorreu (fig. 4.44), o Mar^{que} explica **o fato dos valor**es experimentais terem sido mais

altos que os analíticos. Deve-se observar que estes últimos (fig. 4.45) foram fornecidos em termos de média entre as quatro posições di, d2, d5 e d6 e isto pode ser encarado como um fator de imprecisão.

Observa-se ainda que uma placa plana, embora sem flexão, sofre menor restrição, em termos de deslocamento, do que uma estrutura monolítica. Isso explica porque os valores obtidos do cálculo analítico (placa plana) são maiores dos que os obtidos pelo programa NONSAP (estrutura monolítica).

d.2) Distorção da laje

O cálculo analítico da distorção da laje foi desenvolvido a partir da hipótese de que ocorre fissuração, isto é, se dá em regime não linear.

Nenhuma estimativa foi feita para distorções na fase elástica, isto é, não foram obtidos valores analíticos para essa fase (fig. 4.46). Como para a pressão de projeto (5,4 ^{MP}a) a estrutura apresentou um comportamento linear, a compatração do valor analítico com o valor experimental fica preju-

Lembrando ainda que o cálculo utilizando o NONSAP ^{An}foi feito p**ara regime elástico linear, não há também** possibilidade de comparação entre valor analítico e valor calculado Aumericamente. d.3) Deslocamento radial no barril

O valor analítico do deslocamento radial, na posicão dii (fig. 4.47), foi superior tanto ao dado experimental quanto ao numérico. Essa diferença foi atribuida à hipótese adotada no cálculo analítico, que considerou a estrutura do vaso como sendo um cilindro infinito. Essa hipótese se contrapõe aos modelos experimental e numérico, que apresentaram lajes de fechamento limitando o deslocamento do barril.

Pode-se considerar que praticamente não houve desvio do valor calculado para o experimental (fig. 4.48) no sensor díi. Isso pode ser explicado pelo fato dessa posição ser o ponto mais distante da estrutura em relação ao plano de escorregamento, isto é, a posição menos afetada por essa região.

04.4.5 Deformações radiais e verticais

a) Alterações necessárias

As deformações radiais e verticais experimentais foram fornecidas pelo relatório GGA e, para que pudessem ser comparadas com os valores calculados, os deslocamentos obtidos pelo NONSAP, já em coordenadas cilíndricas, foram transformados em deformações.

Assim, considerando que a deformação se dá em um Assim, considerando que a deformação se dá em um Intervalo de comprimento, dois nós consecutivos a e b da malha de elementos finitos separados por um comprimento Ar foram tomados, em uma dada direção. Ο NONSAP forneceu para caúa nó os respectivos deslocamentos <u>Δa e Δb. A deformação do segmento ab</u> foi obtida p**ela relação:**

Aa-4b Δu E = ---- = ---Δr ٥r

Au - deslocamento relativo entre os nós a e b.

No caso tridimensional, as equações que regem a relação deslocamento-deformação, em coordenadas cilíndricas, são, para os casos radial e vertical, respectivamente(51):

*onde:

Er e Ex são deformações radial e vertical unitárias em coordepoadas cilíndricas;

чε ω são componentes de deslocamento nas direções radial (r) • vertical (x), respectivamente.

A relação 4.4 é, portanto, uma aproximação que con-

11

(4.4)

tre os doi<mark>s nús, isto é, quanto mais se refina a malha de ele-</mark> mentos fin**itos.**

b) Comparação entre valores experimentais e valores calculados

Os valores das deformações radiais e verticais estão respectivamente nas tabelas 4.6.2a e 4.6.3, onde são apresentados em cada linha: o medidor em questão (E), o valor experimental da deformação (VE) obtido das figs. 4.49 a 4.52, 4.54 a 4.56 (deformações radiais), e 4.59 e 4.60 (deformações verticais), os dois nós da malha a e b entre os quais está situado o sensor, seguido de seus respectivos valores de deslocamento (Δa , Δb) calculados pelo NONSAP, a distância entre os nós (Δr), a deformação calculada segundo a relação 4.4 (VC) e a porcentagem de erro (DESVIO) do valor calculado em relação a o experimental.

: b.i) Análise das deformações radiais na laje de topo

Partindo dos valores relacionados na tabela 4.6.2a, constatou-se a coerência de comportamento entre os dados experimentais e os valores obtidos pelo NONSAP, para os pontos situados no eixo central da laje e que correspondem aos sensores E1 a E4 (fig.4.53).

O fato das deformações na laje aumentarem da borda interna para a externa, nos dois modelos, exprime o comportamento de placa sujeita à flexão, quando solicitada pela pressão interna. Na verdade, o efeito de flexão não é o único a ser considerado: simultaneamente ccorre o deslocamento radial do barril que interfere na redução da pré-compressão da laje.

Os dados experimentais do sensor £4 (fig. 4.52) mostram que essa região passou por uma descompressão até cerca de 5,5 MPa e a partir daí voltou a ser comprimida. Esse comportamento indica que, na primeira fase, houve a influência do deslocamento radial do barril sobre a laje até que ocorreu a separação da estrutura na região do plano de escorregamento. A partir daí, a laje passou a ser solicitada apenas pela pressão interna, apresentando exclusivamente efeitos de flexão.

De qualquer modo observou-se que, para a posição do resensor E4, os valores nunca excederam a 20% da deformação induzida pela protensão, isto é, a região permaneceu sempre comprimida.

O mesmo tipo de comportamento foi verificado no momodelo MULT20. O alto valor apresentado para o desvio foi atripuido ao fato do sensor E4 estar situado na altura do plano de escorregamento, onde há diferenças significativas de comportamento estrutural entre os modelos GGA e MULT20.

Constatou-se o comportamento linear das deformações Aradiais na laje de topo do modelo GGA observando-se as figs. 4.49 a 4.52, no intervalo onde se encontra a pressão de projeto.

As medidas registradas pelos sensores £5, £6 e £7 (fig. 4.57) não apresentaram semelhança com os dados obtidos Pelo NONSAP, tanto em relação aos valores numéricos quanto à forma de comportamento. O relatório GGA não chegou a analisar ressas medidas experimentais. Limitou-se a tecer alguns comentarios:

- observou que o ponto de contraflexão da laje parece estar situado próximo a linha vertical que passa por esses sensores; - verificou que os valores por eles medidos, guando ainda na fase de aplicação da protensão, não corresponderam ao comportamento esperado.

Assim, considerando que esses dados não permitem uma análise comparativa confiável, não foram calculados para eles os val<mark>ores de desvio (tabela 4.6.2a). Serão comentados,</mark> apenas, os valores obtidos pelo NONSAP.

As deformações ocorridas na laje, na direção da borda da cavidade central, não apresentaram grandes variações nos 2/3 superiores dessa região (fig. 4.57). Com a proximidade da cavidade central, porém, as deformações aumentaram signifiprativamente, o que se atribui à proximidade da região com a superfície de aplicação da pressão interna. Esse comportamento indica a necessidade de um refinamento da malha de elementos 🗱 finitos na região próxima à área de aplicação do carregamento, 🕼 já que aí é um local suscetível a grandes deformações.

Aínda uma outra condição foi analisada. Na tabela 4.6.2a, cada sensor E5, E6 e E7 foi localizado, na malha de elementos finitos, sobre o intervalo definido pelo nó relativo à sua posição propriamente dita (nó de refêrencia) e o nó ime-🤌 diatamente à sua esquerda. Porém, observa-se que se o segundo no adotado for o localizado à direita do nó de refêrencia (ta-📲 ^{bela} 4.6.2b) esses resultados não coincidem com os primeiros (fig. 4.58). Novamente aqui a região que apresenta maior discrepância de resultados é a que fica próxima a área carregada, confirmando a necessidade de refinamento da malha.

b.2) Análise das deformações verticais

O sensor £8 foi citado no relatório GGA como apresentando variações não significativas para a análise. Considerando apenas o valor correspondente à pressão de projeto, adotada como base de comparação (5,4 MPa), observou-se que o sensor registrou uma deformação de tração contrariamente ao valor obtido pelo cálculo do NONSAP, como pode ser visto na tabela 4.6.3 e na fig. 4.59. Também, quando a protensão foi aplicada, observou-se nesse sensor um comportamento completamente anômalo. Assim, considerando que o dado experimental não é confiável, ele não será usado para comparação.

Quanto a seu valor calculado, o estado de compressão era esperado, considerando que as solicitações de tração, de devidas à pressão interna, atuaram transversalmente à sua dipreção.

Os valores experimentais e calculados obtidos na Posição do sensor E17 foram coerentes (tabela 4.8.3 e fig. 4.60). Ambos acusaram pequenas deformações de compressão, o que era esperado pois essas deformações ocorreram transversalmente às solicitações de tração, causadas pela pressão interna e foram, portanto, interpretadas pelo coeficiente de Poisson. Lembrando que para o concreto esse coeficiente fica entre 0,15 a 0,20, as deformações transversais devem corresponder a aproximadamente 20% das longitudinais. 4.4.6 Deformações circunferenciais

a) Alterações necessárias

As deformações circunferenciais, fornecidas pelo relatório GGA (figs. 4.61 a 4.68), foram comparadas com as deformações obtidas a partir dos deslocamentos calculados pelo NONSAP.

A equação que rege a relação deslocamento-deformação em co<mark>ordenadas cilíndricas na direção circunferencial</mark> (13,51)) é:

onde:

Eo - deformação circunferencial unitária em coordenadas cilíndricas

u - compon**ente de deslocamento na direção radial**

R - raio (distância do eixo central ao ponto em questão)

• componente de deslocamento na direção circunferencial • direção circunferencial.

Os deslocamentos calculados pelo NONSAP foram, contudo, transformados em deformações circunferenciais por meio da relação:

(4.7.2)

porque as comparações foram feitas em pontos de um plano vertical, onde há simetria em relação à direção circunferencial. Essa relação só é válida para qualquer ponto se a estrutura for axissimétrica (51). Para o caso de estrutura tridimensional, os valores obtidos pela relação 4.7.2 serão tanto mais próximos do real quanto menor for a distância dos nós a um plano vertical de simetria.

11

R

Ee = ---

b) Comparação entre valores experimentais e valores calculados

As deformações circunferenciais são apresentadas na tabela 4.6.4 onde constam, por linha: o sensor em questão (E&), o valor experimental (VE) obtido das figs. 4.61 a 4.68, o nó que corresponde à posição do sensor, o raio relativo ao moi da malha de elementos finitos, o valor calculado da deformação (VC) e a porcentagem de erro (DESVIO) do valor calculado em relação ao valor experimental.

b.1) Análise das deformações circunferenciais na laje de topo

Os valores calculados de E9, E10 e E11 são decrescentes o que reflete a continuidade da estrutura adotada para a malha de elementos finitos.Os dois primeiros valores apresentaram um comportamento coerente com os dados experimentais, como se observa na fig. 4.69. Já no ponto relativo ao sensor E11, a diferença entre os dois modelos foi significativa, e isso se at<mark>ribui à proximidade desse ponto ao plano de escorre-</mark> gamento.

é possível ainda fazer uma análise comparativa do comportamento da laje em função dos dados obtidos nos sensores El a E3 (deformações radiais) e nos sensores E9 e E10 (deformações circunferenciais).

Lembrando que a expressão que fornece as deformações circunferenciais é:

> u Eo = --- (para pontos no eixo de simetria) (4.7.2)

e a que fornece as deformações radiais é:

r

тю ј Er = ---dr

(4.5)

(4.4)

•

aproximada para

۵4 Er = ----۵۲

^{se, como ponto de reférencia, for tomada a origem (0,0), a ^{expressão} 4.7.2 pode ser considerada como sendo a expressão ^{4.4.} Assim, para essa situação Eo é igual a Er, que é o caso ^{das} medidas relativas a E1, E2 e E3.} As deformações obtidas em E9 e E10 são coerentes às medidas pelos sensores E1 a E3, tanto no modelo GGA quanto no modelo MULT20, como pode-se observar na tabela 4.7.

Os sensores E1 a E3 estão situados na região central da laje, onde o efeito da flexão é superior ao causado nas posições E9 e E10, situados próximos à ligação da laje com o barril, o que explica as deformações menores ocorridas em E9 e E10 comparativamente aos sensores E1, E2 e E3.

b.2) Análise das deformações no barril

O alto valor de desvio verificado entre os modelos experimental e calculado para a posição do sensor E12 (fig. 4.69) é atribuido à sua proximidade com o plano de escorregamento.

As deformações circunferenciais na face interna da cavidade central (E13 e E14) não apresentaram coerência entre os resultados experimentais e os calculados (fig. 4.69). Enquanto no modelo GGA os valores decresceram de E13 para E14, o minverso ocorreu no modelo MULT20.

Num primeiro momento, parece que o fato de E13 estar localizado próximo ao duto transversal, onde há pressão aplicada, o sujeitaria a maiores esforços. Nesse caso, o valor registrado no ponto deveria indicar maior deformação comparativamente a E14, como de fato observa-se no modelo experimental. Porém, como a pressão interna solicitou toda superfície do duto, a análise das deformações torna-se mais complexa. Não

cão circunferencial. A falta de maior número de dados experimentais não permitiu verificar o comportamento da parede interna da cavidade do duto vertical, em seu todo.

Um fator que pode ter causado maior deformação em E13 é que, para a pressão de projeto, a deformação correspondente foi superior à registrada para o limite de pré-compressão (fig. 4.65), isto é, a estrutura já estava sendo solicitada à tração propriamente dita guando a pressão de projeto foi atingida.

Quanto aos valores calculados, eles foram bem comportados, crescendo do duto para o centro da estrutura.

Em termos comparativos, verificou-se que os valores experimentais e calculados se mantiveram dentro de uma mesma ordem de grandeza. Para uma análise mais precisa, seria necessario maiores informações a respeito do modelo experimental e um refinamento da malha na região do duto transversal.

Os sensores E15 e E16 apresentaram comportamento esperado e os valores calculados foram coerentes com os dados experimentais: menor deformação na região mais próxima à laje e maior deformação na região central da estrutura (fig. 4.67). Nesse caso, o efeito do plano de escorregamento não foi observado. Esse comportamento pode ser atribuido ao fato do sensores E15 e E16 não estarem localizados em áreas de aplicação de força.
4.4.7 Una análise geral dos dois modelos

Os resultados experimentais e calculados foram tracados sobre a estrutura nas figs. 4.48, 4.53, 4.57, 4.58 e 4.69, onde observa-se que, de maneira geral, os valores obtidos pelo NONSAP, tanto deslocamentos quanto deformações, foram inferiores aos dados experimentais.

Atribuiu-se a causa dessas diferenças primeiramente È à existência do plano de escorregamento no modelo GGA , que permitiu maior deformabilidade do vaso em contraponto à rigipermitiu maior deformabilidade do vaso em contraponto à rigipermitiu maior deformabilidade como base para o cálculo numépermitico e definida de forma monolítica.

Também a presença, no modelo MULT20, de elemencos ra de aco, não incluidos no modelo GGA, contribuiu para aumentar sua rigidez.

Verificou-se também que, apesar das diferenças, houve semelhança de comportamento quanto à forma entre os dois modelos, pelo menos na maioria dos casos. Exceção se observou na região do plano de escorregamento pois, embora, para a pressão de projeto, a separação da estrutura nessa região não tenha ocorrido, a presença do plano de escorregamento já foi, por si só, um fator de descontinuidade não previsto no modelo MULT20.

Também um fator de imprecisão esteve sempre presente, causado pela ausência da localização exata dos medidores ^{no} modelo GGA e introduzido pela utilização de medidas obtidas escala. 4.4.8 Analise dos resultados obtidos pelo NONSAP

Neste item, são analisados o comportamento do VPCP multicavidade segundo os resultados do cálculo tridimensional, desenvolvido com o auxílio do programa NONSAP.

a) Tensões

Para as tensões não foi feita análise comparativa pois o relatório GGA não forneceu valores experimentais de tensões.

Quanto aos valores calculados de tensão, é possível uma verific**ação a partir de um critério de ruptura previamente** adotado.

O critério de ruptura de Rankine permite que se faca uma verificação quanto à resistência do concreto, em termos de tensões principais.

O critério determina que:

r a tensão principal máxima não ultrapasse a resistência à tração do concreto (fct). Se (1) fct significa que o elemento

- a tensão principal mínima não seja inferior à resistência à compressão do concreto (fcc). Se 63 (fcc significa que o ele-

Para que a comparação seja feita, é necessário transformar as tensões fornecidas pelo NONSAP 6x, 6y, 6z, 7xy, 7xz e Tyz em tensões principais, o que é feito por meio da seF

$$f = 11f + 12f - 13 = 0$$
 (4.8)

cujas raízes são as tensões principais 61, 62 e 63.

Ii é chamado invariante linear e é calculado como:

$$II = f_X + f_Y + f_Z \qquad (4.9)$$

12 é chamado invariante quadrático:

$$I2 = \begin{vmatrix} \mathbf{c}_{y} & \mathbf{t}_{yz} \\ \mathbf{T}_{yz} & \mathbf{c}_{z} \end{vmatrix} + \begin{vmatrix} \mathbf{c}_{x} & \mathbf{t}_{xz} \\ \mathbf{t}_{xz} & \mathbf{c}_{z} \end{vmatrix} + \begin{vmatrix} \mathbf{c}_{x} & \mathbf{t}_{xy} \\ \mathbf{c}_{y} \end{vmatrix} + \begin{vmatrix} \mathbf{c}_{x} & \mathbf{c}_{y} \\ \mathbf{t}_{xy} & \mathbf{c}_{y} \end{vmatrix}$$
(4.10)

13 é chamado invariante cúbico:

$$I3 = \begin{bmatrix} \epsilon_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \epsilon_{y} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \epsilon_{z} \end{bmatrix}$$
(4.11)

O programa que realiza essa transformação chama-se FENSÃO2.FORT e é apresentado no Apêndice A, juntamente com o desenvolvimento teórico da equação 4.8.

Seguindo esse procedimento, foi possível comparar as tensões principais com os valores de resistência do concreto, segundo o critério de Rankine. Essa verificação, contudo, contribuiu de maneira restrita para a análise da estrutura, no que diz respeito à distribuição de tensões. Isso ocorreu porque, se para o cálculo dos deslocamentos é possível, na fase elástica, analisar cada carregamento separadamente devido à validade da sobreposição dos efeitos, o mesmo não acontece no estudo das tensões. Portanto, os valores encontrados no cálculo só permitiram avaliar o comportamento da estrutura quando solicitada exclusivamente pela pressão interna.

Observou-se que, em menhum elemento, a tensão **(3** foi inferior à resistência à compressão do concreto. Porém, a resistência à tração foi algumas vezes ultrapassada. Os elementos onde isso ocorreu de maneira significativa foram aqueles em que uma de suas faces fazia parte do contorno da cavia dade central ou do contorno da cavidade do duto vertical (figs. 4.8 a 4.26).

Diante desses resultados, pôde-se concluir apenas sobre a necessidade da utilização da protensão para minimizar la as tensões de tração no concreto. Para uma análise completa de tetensões, deve ser considerada no cálculo a combinação de todos sos carregamentos que solicitam a estrutura.

(b) Deslocame**ntos radiais**

Dois planos verticais foram analisados: quando o< = e quando o< = 30°, isto é, os dois planos limítrofes da ma-

Os deslocamentos indicados nos gráficos das figs. 4.70 são rel<mark>ativos aos nós situados nos raios 9,0cm; 18,0c</mark>m; 27,0cm; 38,0cm; **58,0cm e 70,0cm para a seção de·∝= 0° (fig.** 4.70a) e 9,0cm; 18,0cm; 27,0cm; 41,3cm; 55,7cm e 70,0cm para a seção ∝= 30°(fig. 4.70b).

A estrutura se comportou de maneira esperada: na maioria das vezes tracionada (sem ultrapassar o valor da précompressão), apresentando maiores valores de deslocamento no centro do barril, devido à menor rigidez nessa parte da estrutura. A face superior da laje, relativamente à face inferior, também foi mais solicitada devido ao efeito de flexão.

ŧ

Para $\alpha = 0^{\circ}$, um valor não esperado foi o deslocamento na região da chapa de aço relativo ao raio 38,0 cm. Esperava-se aí um comportamento semelhante ao que se vê no raio 58,0 cm, isto é, um decréscimo no valor do deslocamento em relação aos pontos vizinhos, em função da maior rigidez do aco. Concluiu-se desse comportamento que, na composição das tensões, o efeito da pressão na superfície interna da placa se sobressaiu. Isso teria ocorrido devido a anulação dos efeitos de pressão aplicada na cavidade central pela pressão aplicada no duto vertical. Como esse equilíbrio de forças não ocorreu na outra extremidade da placa (raio 58,0 cm), aí o efeito da maior rigidez do aço foi sentido na direção radial.

Comparando os valores obtidos nos dois planos verticais, verificou-se que houve pouca divergência nos deslocamentos dos nós relativos a posições similares, mesmo nas resiões próximas às cavidades dos dutos vertical e horizontal. Apenas na região da placa de aço as diferenças foram claramente visíveis. c) Deslocamentos verticais

「「「「「「「」」」

35

Ş.

Ŧ

Para esse caso, novamente foram analisados os nós pertencentes aos dois planos limítrofes verticais (figs. 4.71).

O comportamento da estrutura na direção vertical também correspondeu ao esperado: altos valores de tração na região da laje que cobre a cavidade central, onde a pressão interna foi aplicada; valores de tração também significativos na face superior do duto horizontal, onde o carregamento foi aplicado na direção vertical; a face inferior do duto horizontal sofreu compressão.

Da comparação entre os dois planos, verificou-se que, como no caso anterior, as diferenças entre os deslocamentos de nós em posições similares, de maneira geral, não foram 🙀 significativas. Observou-se apenas que as regiões cujos nós 🐲 🖘 Presentaram alterações mais sensíveis de um plano para 🛛 outro 🐏 foram as relativas às faces superior e inferior do duto hori-🚋 zontal onde, no plano 🗙 = 0°, havia pressão aplicada.

👾 🗰 d) Deslocamentos Circunferenciais e radiais compostos em seções horizontais

As figs. 4.72 apresentam o estado inicial e final 🛸 de 6 das 19 secões horizontais da malha de elementos 🛛 finitos, numa composição entre deslocamentos radiais e circunferenciais.

Pode-se dizer que os deslocamentos na região da la-^{je} cresceram do eixo do vaso para a superfície externa (secões 1, $\delta = 9 - figs. 4.72a, b, c).$

2

Na seções 13, 17 e 19 (figs. 4.72d,e,f), os valores de deslocamento foram maiores nos nós mais próximos à cavidade central.

Entre as seções horizontais, os deslocamentos cresceram do topo para o centro do vaso, e esse aumento se deu de forma relativamente contínua.

A placa de aço, localizada na seção 6, apesar de sua maior rígidez, não causou desvios significativos de comportamento.

A seção 13, que atravessa o duto horizontal, apresentou nessa região grandes deslocamentos. Manteve, contudo, a uma configuração coerente na sequência das seções observadas, a isto é, valores de deslocamento maiores dos que os indicados a na seção superior (seção 9) e menores dos que os indicados na a seção inferior (seção 17).

ins canali i Dymec i	Descrição I da medida I	Tipo de l sensor l	Amplitude de escala	Acuidade X
1 1400 a 1 1 1 1404 1	fonte regula- dora de cor- rente continua			
1407 a 1413 1413 1414 1416 a 1419 1424 a 1426 1420	deslocamentos do modelo em relação à es- trutura supor- te da instru- mentação	sensor de deslocamento (di a di5)	±5,0 cm	±2
	temperatura ambiente	termopar	0° a 93°C i	±3
	temperatura do óleo na ca-l vidade centrall	termopar	ð a 93°C	±3
1429 a 1432 1434 a 1434 a 1440 1442 1444 a 1446 1446 1462	deformação do concreto	extensômetro elétrico (Ei a E17)	+1000 a -4000 µm/m	1 ±2
0 1452 a 4 1454 1	cargas nos tendões ver- ticais	célula de carga (Fí e F3)	44.500 N compressão	 ±2
1447 € 1448 	movimento hori zontal de des- lizamento das junções	sensor de deslocamento (43 e A4)	0 a 0,25cm	1 1 1 1
1 1449 c 1 1 1450 1 1 1450 1	movimento de deslocamento relativo entre laje e barril	sensor de deslocamento (A1 e A2)	0 a 0,25cm 	 ±3
	pressão do óleo no modelo		0 a 35 Mpa 	1 ± 0,5
1 1456 1 1458 a 1 1461	deformação no fio de proten- são circunf.	i extensômetro i elétrico i (Ci a C5)	± 10.000 س_m/m	 ±2

Tabela 4.1 Sensores

たななまれという

AN AN A STATE

Malh	a M20	l Des Ver	locamen ticais(ocamentos Deslocamentos icais(EX) Radiais(ER) 		1 Des ICircun	locamen ferenci	tos ais(ET)	Fig.		
 noi	Iseção	EXid	I EX12	I EX08	ER16	I ER12	I ERØS	I ET16	I ET12	I ET08	• •
7	1.1	6,75	110,69	112,66	1 8,64	1 .0	115,14	1 0,98	1-0,88	1-1,75	
113	3	3,54	7,76	8,66	1 5,07	8,20	, 12,96	0,87	0,0	1-0,87	
363	19	8,75	1 9,36	1-1,21	1 0,55	4,67	10,85	1 1,96	1 1,96	0,78	4.29
543	1 13	3,99	1 5,57	4,32	1 2,14	8,01	113,90	10,0	1-1,01	1-1,01	
705	1 17	2,85	4,51	2,67	1 2,05	8,18	114,17	0,0	1-0,99	1-1,98	
786	1 19	0,0	10,0	10,0	1 1 1,89	1 8,05	114,10	10,0	1-1,98	1-2,97 I	
24	1 1	3,12	18,91	111,44	1 6,90	1 9,52	114,82	10,0	10,0	10,01	
130	13	3,40	8,71	110,56	1 5,02	8,21	113,67	0,0	1-0,85	1-1,71	
380	9	2,05	110,17	110,94	3,63	8,19	114,22	0,0	1-0,88	1-0,88	4.30
560	1 13	3,73	111.03	111,35	1 2,45	8,64	115,10	0,0	1-0,93	-0,93	
722	1 17	2,13	1 9,28	110,35	1 2,32	1 8,74	115,34	0,0	1-0,92	1-0,92 1	
63	1 1	9,11	114,40	121,23	1 9,08	112,66	119,50	10,0	10,0	10,0	
169	3	8,57'	113,68	20,29	4,61	8,60	13,87	0,0	0,0	0,0	4.31
289		7,83	114,64	120,92	1-8,31	, 1-16,56	, -15,33	0,0	0,0	0,0	
419	i 7	7,04	1 8,29	113,81	, 1-234,2	, 1-39,48	, -127,2	10,0	10,0	10,01	

Tabela 4.2 Desvios dos resultados obtidos nas malhas M16, M12 e M08 em relação a M20 - valores em porcentagem.

			المرجان الأثثر التلية بالثلة بالتلي جفر جري جري عادره	يعركم والتركي ويبين وتبيه خنيه ويبن وتنف ويبيه وتبيه و
	20 nós l	16 nós l	12 nós l	8 nós l
l nº total 1 de nós	836	616	404	252
l nº elem. l concreto	97	97	97	97
in: elem. Laço	10	10	61	10
n± elem. treliça	121	83	44	44
l tempo de 1 CPU	39'47.04	21 '37.22'	8'13.42'	2'36.20"
l graus de l liberdad e	1915	1426	952	533
l memória L utilízad a	l 4384 l kbytes	4384 kbytes	4384 kbytes	4384 kbytes
l nº cargas lconcentra das	582 	244	163	135

Tabela 4.3 Parâmetros das malhas do VPCP multicavidade

NUHEST	1 2.000	1 3.000	1 9.000	1 16.000
мтот	10.000	1 15.000	140.000	1 140.000
A	1 10.001	1 15,001	1 140.001	- 140.001

「「「「「「「「」」」」

l Mod	delo G	GA		Malha	NONSAP	
Imedidor	t x(cm)	r(cm)	i nó	l seção	l x(cm)	l r(cm)
i di	62,5	70,1	1 50	i 1	1 62,5	1 70,0 1
1 95	62,5	1 38,0	1 1 1	1 1	62,5	38,0
43	62,5	0,0	1 75	. 1	62,5	0,0
i d4	62,5	1 11,0	68/65	1 1	1 62,5	9,0/13,5
ี่ สร	62,5	1 28,0	1 36/29	 1	62,5	27,0/33,0
66	62,5	70,1	1 50	1 1	62,5	70,0
∆3=∆4 (*)	I]]	 	406 451	{ 9 { 10	{38,5 {34,25	70,01
1 611	10,0	70,1	829	1 19	0,0	70,0
i d12	24,0	1 70,1	l 667	1 15	1 20,0	70,0

(*) desloc**amento relativo**

.

「「「「「「「「「」」」」」」

H	lodelo GGA		Ma	alha	NONSAP		
1	medidor	Isecãol	× 1			intervalo	
י 1 1 –			(cm)	 ກວ໌ a	l nó b	Iraio ra (cm)	Iraio r (cm)
	٤١	1 1 1	62,5	75	1 72	0,0	4,5
	Ε2	131	54,0	181	1 178	, 0,0	1 4,5
	£ 3	161	45,5	301	1 298	1 0,0	1 4,5
	٤4	1 9 1	38,5	431	1 428	0,0	4,5
	£5		62,5	58	1 36	1 22,5	27,0
	£ 6		49,75	206	1 194	18,0	1 27,0
] 	£ 7	1 1	38,5	414	1 1 392	1 22,5	27,0

Tabela 4.5.2 Posição dos sensores: deformações radiais

:

• .

 it	iodelo GGA	• ••• ••• ••• ••• ••• ••• •••			Ma	alha N	IONSAP	د هم بین جه بین کرد می پی رو بی ور	
1	medidor	raio	l se	eçőe	5	ł !	int	ervalo	
			 a	1	Ь	l nó a l	nó b	l Xa (cm)	× (cm)
1 - 1 1	£8	27,0	3		2	142	88	54,0	58,25
1	٤17	27,0	1 19	1 1	8	I 815 I	768	. 0,0	1 5,0 1

Tabela 4.5.3 Posição dos sensores: deformações verticais

	IModelo GGA	 Ma	lha	NONSAF	
-	l medidor	seção	×(cm)	 1 ი ა 1	raio(cm)
	Ε9	i 1	62,5	36 1	27,0
	Ε10	4	49,75	194	27,0
	Eii	9	38,5	392	27,0
: • .	ε12	19	38,5	374	33,0
	ι εί3	15	20,0	653	27,0
	I E14	19	0,0	815	27,0
•	Ι εί5 Ι	9	38,5	406	70,0
	I E16	1 19	0,0	l 829 i	70,0

Tabela 4.5.4

ľ

بر بر

Posição dos sensores: deformações circunferenciais ٦

	Modelo GGA		>	lonsap	DESV:	0
6	i valor expe- I rimental(VE)	valor ana- lítico(VA) 	i i noi i	valor cal- culado(VC)	VE=VA ×100 VE (%)	VE=VC×100 VE (%)
l q1	0,4953×10 ⁻¹	0,4445×10 ⁻¹	50	0,2979×10 ¹	10	40
42	1 0,4953x10 ¹	0,4445x10 ²	1 <u>1</u>	0,2711×10 ²	10	45 (
d3	1,3208×10 ²		1 75	0,7798x10 ¹		41
d4/1/	1 0,9652×10 ⁻¹		1 68/65	0,6759x10 ³	.	30
d5/2/	 0,5842×10 ⁴	0,4445×10 ²	36/29	0,3601×10 ²	24	38
ા વેઠ	0,6096×10 ⁻¹	0,4445×10	50	0,2979x10 ²	27	51
1 141/42/3/	1		\$ }	Mili Ma Aya		
1 43/4/	0,1016x10 ³		406/451	0,0774x10 ²	100 US	24
64/4/	0,1016×10 ⁻¹	480 ann 440	406/451	0,0774×10 ⁴		24
di1/5/	0,7620×10	1,2065×10 ²	i 829 i	0,7539x10 ⁻¹	58	1
1 012/6/	1 0,6604x10 ¹		1 667 I	0,6752x10 ²		

Tabela 4.6.1 Comparação de resultados: deslocamentos (ver observações na pág. seguinte) Observações indicadas na tabela 4.6.1:

- 11/ A posição de d4 fica entre os nós 68 e 65 na malha de elementos finitos. O valor calculado (VC) é a média entre os deslocamentos deses dois nós.
- /2/ A posição de d5 fica entre os nós 36 e 29 na malha de elementos finitos. Seguiu-se procedimento similar a (1).
- /3/ A1 e A2 são citados, no relatório GGA,como resultados não válidos e portanto não serão objeto de estudo.
- 74/ A3 e A4 medem o movimento radial do barril em relação à laje de topo. Os números indicados na coluna "nó" são respectivamente: o nó relativo à laje e o nó relativo ao barril. Na coluna "VC" o valor indica a diferença entre o deslocamento relativo ao nó do barril e o deslocamento do nó relativo à laje.
- /5/ A fig. 4.47 apresenta o valor analítico diametral <u>total</u> do barril. Para se obter a dilatação em apenas uma das extremidades do diâmetro, isto é, o valor analítico para dí1, o valor da fig. 4.47 deve ser dividido por 2.

767 A posição de di2 no modelo GGA não coincide com sua posi-

	· • • • • •	r -	· •	12
• • ·		•		< C

i M	odelo GGA		Ма	alha NONSAI			DESVIO I
I Er I	lvalor expe- lrimental (VE)	_α¢_a ηό b	Δ <u>a (cm)</u> Δb (cm)	Δb - Δa (cm) 	ar (cm) 	valor cal- culado(VC) 	VE-VC×100 VE I (%) I
1 81	0,029×10 ²	<u>Z5</u> . 72	0,0878×10 ⁻²	0,0878x10 ⁻¹	4,5 	0,0195×10 ⁻²	33
1 E2	0,016×10 ²	_181 178	0.0 0,0511×10 ⁻²	0,0511×10 ⁻²	1 4,5 1	0,0114×10 ⁻⁴ 	29
E3	0,012×10 ²	<u> 391 </u> 278	0,0289×10 ⁻²	0,0289×10 ⁻¹	1 4,5 }	0,0064x10 ⁻² 	46
E4 	0,005×10 ⁻² 	_431 428	0.0 -0,0089×10 ⁻²	-0,0089×10-2	4,5	-0,0020×10 ⁻²	140(**)
I E5	1 0,0012×10 ¹ 1	<u>59</u> 36	0.2984x10 ⁻² 0,3022×10 ⁻²	0,0038×10 ⁻²	14,5 1	0,000Bx10 ⁻² 	(**)
1 E6	1-0,0014×10 ² 1	_2 <u>06</u> 194	0.1648:10 ⁻² 0,2134×10 ⁻²	0,0486×10 ⁻²	9,0	0,0054×10 ⁻²	(**)
ι ε7 ι	1-0,0016×10 ² 1	<u>414</u> 372	0,2049×10 ⁻²	0,1374×10 ⁻²	4,5 	0,0305x10 ⁻² 	(*)

(*) Os dados experimentais relativos aos sensores E5, E6 e E7 não foram considerados confiáveis a pônto de permitir uma análise comparativa.

(**) O alto valor de desvio é devido à proximidade da posição com o plano de escorregamento.

(a) Considerando os nós à esquerda das posições £5, £6 e £7

Tabela 4.6.2 Comparação de resultados: deformações radiais

Secão	1_0 <u>5_2</u> _ 1_0 <u>5</u> _0	Aa(cm)	I Дb — да I (cm)	1(cm) 	valor calcula
1 (£5)	126	L_0_3022×10 ² 0,2976×10 ²	1-0,0045×10 ²	3,0	-@,0015;
2	/ <u>88</u>	L_0.2520×10 ⁻¹ 0,2595×10 ⁻²	0,0075x10 ⁻²	6,0	0,0013;
3	1_142 1_135	0.2246×10 ⁻² 0,2307×10 ⁻²	0,0061×10 ⁻¹	3,0	1 0,0020>
4	1	0.2134×10 ⁻²	0,0045×10 ⁻²	6.0	1 0,0008;

ι 4 ι (Εδ)	174_1_0_2134×10 ⁻² 188 0,2179×10 ⁻²	 0,0045×10 ⁻² 	6,0	0,0008×10 ⁻²
6	232 1.0.20ZS×10 ⁻² 255 1.0.2214×10 ⁻²	0,0136×10 ⁻²	1 3,Ø	0,0045×10 ⁻²
8 	-338_1_0.2111×10 ¹ 332 0,2368×10 ²	0,0257x10"2	6,0	0,0043×10 ²
9 (E7)	-322_1_0.2042×10 ² 385 0,2353×10 ⁻²	0,0304×10 ⁻²	3,0 	0.0101×10 ⁻²

(b) Considerando os nós à direita das posições £5, £6 e £7 (só para valores do modelo MULT20)

.

. :

4

Мо	delo 60A	۲ ۱	talha NONSA	Чb.		DESVIO
Εv	valor expe- rimental(VE) 	I <u>néal Δa (cm)</u> Inéb I Δb (cm) I	Δb - Δa (cm) 	ک ۳ (cm)	valor cal- culado(VC) 	VE_VC×100 VE (%)
83	0,0028×10 ⁻²	1 142 1 0.3928×10 ² 1 89 1 0.3877×10 ⁻²	-0,0051×10 ² 1	4,25	1-0,0012×10 ⁻²	(*)
E17	1-0,0033×10 ⁻²	1815_10.0 1 768 1-0,0137×10 ⁻¹	-0,0137×10 ² 	5,0	-0,0027×10 ⁻¹ }	19

de permitir uma análise comparativa.

I Modelo GGA		I Malha NONSAP				I DESVIO I
Ee 	l valor expe- l rimental(VE)	1 n.5	Ideslocamento (cm) 	raio (cm)	valor cal- culado (VC) 	VE_VQXX:1001 VE (%)
I E9	0,018×10 ⁻²	36	0,3022×10 ⁻²	27,0	0,0111×10-2	38
E10	0,012×10 ⁻²	194	0,2134×10 ⁻²	27,0	0,0079×10 ⁻⁴	34
! E11	0,019×10 ⁻²	392	0,2049×10 ²	27,0	0,0075×102	۵٥(*) I
1 213	0,032×10 ⁻²	374	0,2594×102	33,0	0,0079×102	75(*)
E13	0,040×10 ⁻²	653	0,8409×10 ²	27,0	0,0311×102	22
1 814	0,037×10 ⁻¹	815	0,9608×10 ²	27,0	0,0356×10 ²	4
: E15	0,012×10 ⁻²	406	0,4212×10 ²	70,0	0,0060×10	50 1
1 1 816 1	0,018×10 ⁻	829	 0,7539x10 ²	70,0	0,0108×10 ⁻²	40 1

(*) Sensores próximos ao plano de escorregamento

\$

Tabela 4.6.4 Comparação de resultados: deformações circunferenciais

				and a first state when the state when the state when
		l Ee experimentall	Eo calculado	Desvio(%)
1	Ei	0,029×10 ⁻²	0,0195×10 ⁻¹	33
1	E 2	0,016×10 ²	0,0114×10 ⁻²	29 1
1	£ 3	0,012×10 ⁻²	0,0064×10 ⁻²	1 46 1 1
1	£9	0,018×10 ⁻¹	0,0111×10 ⁻²	38 1
	E10	0,012×10 ²	0,0079×10 ⁻¹	34

A STATE OF TAXABLE IN

Tabela 4.7 Comportamento da laje de topo - valores de Ee

1.

Fig. 4.2 Alterações geométricas feitas no modelo GCA

ţ

Fig. 4.3 Diagrama do sistema hidráulico do modelo GGA/ fonte: Davies et al.

Fig. 4.4 Posição dos sensores de deslocamento/ fonte: Davies et al.

Hard Land Land

Posição dos sensores de deformação/ Fig. 4.5 fonte: Davies et al.

· : .

Fig. 4.6 Posição das células de carga nos tendões verticais e dos sensores nos cabos circunferenciais/fonte : Davies et al.

1

A CONTRACTOR OF A CONTRACTOR OF

•

Fig. 4.15 Malha de elementos finitos: seção 8

· .

SEÇÃO (1) ---- x= 34,25 cm Fig. 4.17 Malha de elementos finitos: seção 10

Fig. 4.18 Malha de elementos finitos: seção 11

SEÇÃO (12) ----- x= 27,50 cm Fig. 4.19 Malha de elementos fínitos: seção 12

SEÇÃO (14) ---- x= 22,5 cm

⊧SEÇÃO (15) --- x = 20,0 cm :Fig. 4.22 Malha de elementos finitos: seção 13

3.

SEÇÃO (18) — x = 5,0 cm Fig. 4.25 Malha de elementos finitos: seção 18

SEÇÃO (19) --- x = 0,0

Fig. 4.26 Malha de elementos finitos: seção 19

a) com 20 nós

「日本のないないない」の日本の日本で、「日本の

b) com 16 nos

c) com 12 nós

d) com 8 nós

~~~





Fig. 4.34 Deslocamento da laje x pressão interna - sensord, / fonte: Davies et al.

ŀ









Fig. 4.40 Movimento relativo entre laje e barril x pressão interna - sensor A3 /fonte: Davies et al.

こうちょう ちょうかん しんしょう ちょうちょう ちょうかい 日本 アイト・ション しんていたい しんしょう



Fig. 4.41 Movimeto relativo entre laje e barril x pressão interna - sensor Δ4/fonte: Davies et al.





Deslocamento do barril x pressão interna - sensor $d_{j2}$  / fonte: Davies et al.



ig. Deslocamento vertical da laje: comparação entre 4.45 valores calculados analiticamente e valores me-て、日本町、三分 didos/fonte: Davies et al.

LEVANTAMENTO DA LAJE KARIO

のこので、「ない」のないで、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、「ない」ので、いい」ので、いい」の

Ť



Fig. 4.46 Distorção da laje: comparação entre valores calculados analiticamente e valores medidos/ fonte: Davies et al.











Fig. 4.50 Deformação da laje x pressão interna - sensor $E_1$  / fonte: Davies et al.

٠,



Fig. 4.51 Deformação da laje x pressão interna - sensor & / fonte: Davies et al.



Fig. 4.52 eformação da laje x pressão interna - sensor  $\mathcal{E}_4$  / fonte: Davies et al.

こうしていているので、「「「「「「「「「「」」」をなっていたのです。 しょうしん あいましょう



Fig. 4.53 Deformações radiais no centro da laje ( $\xi_1 = \xi_2$ ): resultados experimentais(GGA) × calculados(MULT20)





Fig. 4.56 Deformação da laje x pressão interna - sensor & / fonte: Davies et al.

12 No. 2 Sec.

ł



Fig. 4.37 Deformações radiais da laje ( $\xi_{f}, \xi_{L}, \xi_{T}$ ): resultados experimentais(GGA) x calculados(MULT20)



Fig. 4.58 Deformações radiais: comparação entre os valores calculados(MULT20) apresentados nas tabelas 4.6.2(a e b)



i.

のない

ないとろう

Fig. 4.59 Deformação da laje x pressão interna - sensor  $\mathcal{E}_{\mathbf{F}}$  / fonte: Davies et al.



Fig. 4.60 Deformação do barril x pressão interna - sensor  $\mathcal{E}_{ii}$  / fonte: Davies et al.





Fig. 4.62 Deformação da laje x pressão interna - sensor Ego / fonte: Davies et al.



Fig. 4.63 Deformação da laje  $\times$  pressão interna - sensor  $\mathcal{E}_{\mu}$  / fonte: Davies et al.



Fig. 4.64 Deformação do barril × pressão interna - sensor  $\xi_{jz}$  / fonte: Davies et al.



Fig. 4.65 Deformação do barril x pressão interna - sensor Ess/ fonte: Davies et al.



Fig. 4.66 Deformação do barril x pressão interna - sensor  $\xi_{\rm w}$  / fonte: Davies et al.





Fig. 4.68 Deformação do barril x pressão interna - sensor  $E_{JL}$  / fonte: Davies et al.



Fig. 4.69 Deformações circunferenciais: resultados experimentais(GGA) × calculados(MULT20)



ىلىڭ <del>مەڭلەر</del>ىكى بىلىكى بىلەركەر بەركەر بىلىكىنىڭ بىلەركەر بىلەركەر بىلەركەركەر بىلەر بىلەركەرلەر بىلەركەر بەركە ئىڭ <del>ئىڭ ئىكىڭ</del> بىلىك بىلەركەر بىلەركەر بىلەركەر بىلەركەر بىلەركەر بىلەركەركەركەركەركەر بىلەركەركەركەركەركەركەر بەر



## b) SEÇÃO VERTICAL - 0 = 30"

## Fig. 4.70 Valores do NUNSAP - deslocamentos radiais











Fig. 4.72 Valores do NONSAP - deslocamentos circunferenciais e radiais compostos em seções horizontais



4) SEÇÃO 13

Fig. 4.72 Valores do NONSAP - deslocamentos circunferenciais e radiais compostos em seções horizontais



Fig. 4.72 Valores do NONSAP - deslocamentos circunferenciais e radiais compostos em seções horizontais

## CAPITULO 5

CONCLUSSES E PROPOSTAS PARA TRABALHOS FUTUROS

5.1 Conclusões

Das análises apresentadas nos capítulos 3 e 4, concluiu-se que:

- é viável a utilização do programa NONSAP no cálculo tridimensional de VPCPs multicavidade, particularmente a versão implantada no IBM/370-155 do IPEN, utilizando as adaptações sugeridas no capítulo 3;

- houve coerência entre os comportamentos dos modelos experimental e numérico, apresentados no capítulo 4, sendo o plano de escorregamento o fator de descontinuidade responsável pelos desvios observados, na maioria das vezes;

- há necessidade de refinamento da malha de elementos finitos nas regiões onde houve aplicação de carga;

- utilizando uma análise axissimétrica em um VPCP multicavidade, os resultados possíveis de serem obtidos são relativos às regiões dos planos de simetria do vaso. Observando, porém, a estrutura como um todo, verificou-se que, mesmo que esses resultados sejam compatíveis com os obtidos na análise tridimensional, não refletem o comportamento estrutural em regiões intermediárias, onde constatou-se valores de tensão e deslocamento distintos dos encontrados no plano de simetria. Assim, a análise de um VPCP multicavidade só se dá de forma completa quando é considerado o comportamento tipicamente tridimensional da estrutura.

5.2 Propostas para trabalhos futuros

Ao longo do presente trabalho, verificou-se que algumas etapas, que foram estudadas de forma superficial ou que foram apenas citadas, dão margem a estudos mais aprofundados. São elas:

- escolha da malha de elementos finitos mais adequada para o cálculo de um VPCP multicavidade, por meio de análise de sensibilidade;

- estudos dos efeitos de temperatura no concreto como material de construção e sua influência no comportamento estrutural do vaso multicavidade;

- consideração do carregamento devido à protensão, a fim de permitir uma análise precisa de tensões.

- análise de um VPCP multicavidade em regime não elástico;

~ análise específica de um vaso para GCFR, considerando suas particularidades de projeto.

Lembrando ainda que a análise de VPCPs é feita em regime linear e que, portanto, é válida a sobreposição de efeitos, torna-se conveniente a utilização de programas que permitam a blocagem do sistema de equações envolvido no cálculo pois, embora essa forma de resolução exija mais tempo de CPU, permite reduzir ou até eliminar as restrições relativas à capacidade de memória do computador, conseguindo maior velocidade na resolução de sistemas parciais.

Inclui-se, portanto, como proposta de trabalho, a adaptação de programas desenvolvidos para pesquisa e que normalmete utilizam sistemas não blocados, a fim de que passem a atender especificamente a análise voltada para projetos.

- AMERICAN SOCIETY DF MECHANICAL ENGINEERS. Code for concrete reactor vessels and containments. Section III, Rules for construction of nuclear power plant components. July 1, 1977. (ANSI/ASME-BPV-III-2).
- ARGYRIS, J.H.; FAUST, G.; SZIMMAT; J.; WARNKE, E.P.;
  WILLIAN, K.J. Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl. Eng. Res. 28:42-75, 1974.
- 3. BANGASHY, Y. Reactor pressure vessel design and practice. <u>Prog. Nucl. Energy</u> 10(1):69-124, 1982.
- 4. BANGASHY, Y. The automated three-dimensional cracking analysis of prestressed concrete vessels. In: STRUCTURAL mechanics in reactor technology: transactions of the 6th international conference on ..., held in Paris, France, 17-21 August, 1981. Amsterdam, North-Holland, 1981. v. G-H, H 3/2.
- 5. BATHE, K-J.; WILSON, E.L.; IDING, R.H. NONSAP\_\_A structural\_analysis\_program\_for\_static\_and\_dynamic response\_of\_non\_linear\_systems. Berkeley, Calif., Structural Enginnering, 1974. (UCSESM-74-3).

- 6. BRITISH STANDARDS INSTITUTION. Specification for prestressed concrete pressure vessels for nuclear reactors. London, July, 1973. (BS-4975).
- 7. CHEUNG, K.C. & KOPLOY, M. An assessment of long-term structural behavior of an asymmetric multi-cavity PCRV. In: STRUCTURAL mechanics in reactor technology: transactions of the 6th international conference on ..., held in Paris, France 17-21 August, 1981. Amsterdam, North-Holland, 1981. v. G-H, H 3/9.
- 8. CINTRA FILHO, J. de S. Engenharia\_nuclear\_II. São Carlos, S.P. UFSCAR, 1978. (Notas de aula).
- 9. CONNOR, J.J. & SARNE, Y. Non-linear analysis of prestressed concrete reactor pressure vessels. In: JAEGER, T.A. comp. <u>Structural\_mechanics\_in\_reactor</u> <u>technology: transactions\_of\_the\_3rd\_international</u> <u>conference\_on\_\_\_\_\_beld\_in\_London\_\_U.K.\_\_1=5</u> <u>September\_\_1925</u>. Brussels, Comission of the European Communities, 1975. v.3, G-H, H 2/2.
- 10. COSTA, J.R. da <u>Curso\_de\_introducão\_à\_tecnologia\_do</u> HIGR. São Paulo, Instituto de Energia Atômica, 1972. (IEA-Inf-20).

- 11. DAVIDSON, I. The analysis of cracked structures. In: JAEGER, T.A. comp. Structural\_mechanics\_in\_reactor technolcoy:\_transactions\_of\_the\_3rd\_international conference\_on\_\_\_\_beld\_in\_London\_\_U\_K\_,\_1::5 September\_1975. Brussels, Comission of the European Communities, 1975. v.3, G-H, H 4/1.
- 12. DAVIDSON, I. Theorical and experimental modes of behaviour of cylindrical model prestressed concrete pressure vessels when pressurised to failure hydraulically and pneumatically. <u>Nucl. Eng. Des.</u>, 20: 575-85, 1972.
- 13. DAVIDSON, I.; ASSIS, M.R. de; CAMARGO, P.B. <u>Q\_método</u> <u>da\_relazação\_dinâmica\_na\_análise\_de\_vasos\_de\_pressão</u> <u>de\_concreto</u>. São Paulo, Instituto de Energia Atômica, 1977. (IEA-Pub-471).
- 14. DAVIES, I.L.; FRANKLIN, R.N.; GOTSCHALL, H.L. Model studies\_of\_multi-cavity\_PCRY\_for\_a\_1000\_MW(e)\_HIGR systems. San Diego, Calif., 1970. Pt. 1, 2 and addendum. (GA-P-1002-33).
- 15. DODGE, W.G.; BAZANT, Z.P.; GALLAGHER, R.H. <u>A\_review\_of</u> analysis\_methods\_for\_prestressed\_concrete\_reactor yessels. Oak Ridge National Laboratory., 1977. (ORNL-5173).

- 16. DODGE, W.G. & FANNING, D.N. Analytical methods for determining the inelastic response of prestressed concrete reactor vessels and vessel closures. In: HTGR SAFETY technology: proceedings of the 2nd U.S-Japan seminar, held in Shizuoka, 22-25 Nov., 1978. p. 227-41.
- 17. FANNING, D.N. <u>Analytical\_investigation\_of\_multi-cavity</u> <u>erestressed\_concrete\_eressure\_vessels\_for\_elastic</u> <u>loading\_conditions</u>. Oak Ridge National Laboratory, <u>Sep., 1978.</u> (ORNL/TM-6099).
- 18. FANNING, D.N. SAP3PR: A EDRIBAN\_program\_for\_calculating equivalent\_nodal\_loads\_resulting\_from\_pressure\_on\_the faces\_of\_8\_to\_20\_mode\_isoparametric\_elements. Oak Ridge, Tn., Oak Ridge National Laboratory, 1978. (ORNL/TM-6091).
- 19. FAVRE, R.; KOPRNA, M.; JACCOUD, J.P. Tests on model of a prestressed concrete nuclear pressure vessel with multiple cavities. In: JAEGER, T.A. & BOLEY, B.A. eds. Structural\_mechanics\_in\_reactor\_technology: transactions\_of\_the\_Ath\_international\_conference on\_\_\_\_\_held\_in\_San\_Erancisco.\_Ca.\_\_15=19\_August. 1927.\_v\_H\_Structural\_enginnering\_of\_erestressed reactor\_pressure\_vessels. Amsterdam, North Holland, 1977. H 4/2.

- 26. FUMAGALLI, E. & VERDELLI, G. Research on PCPV for BWRphysical model as design tool-main results. In: JAEGER, T.A. comp. <u>Structural\_mechanics\_in\_reactor</u> <u>technology:\_transactions\_of\_the\_3rd\_international</u> <u>conference\_on\_\_\_\_\_beld\_in\_London\_\_U\_K\_\_\_1=5</u> <u>September\_\_1975</u>. Brussels, Commission of the European Communities, 1975. v.3, G-H, H 3/5.
- 21. GALLIX, R.; LIU, T.C.; LU, S.C.H. Crack analysis of multicavity prestressed concrete reactor vessels. In: JAEGER, T.A. comp. <u>Structural\_mechanics\_in\_reactor</u> technology:\_transactions\_of\_the\_3rd\_international conference\_on\_\_\_\_\_beld\_in\_London\_\_U\_K\_\_\_1=5 September\_\_12Z5. Brussels, Commission of the European Communities, 1975. v.3, G-H, H 4/2.
- 22. GARAS, F.K.; RAUTENBERG,J.; SCHAEFFER, K.; CHALMERS, A.G.; FLEISCHER, C.C. Inelastic behaviour and failure mode of multi-cavity PCPV models for the three-loop helium high temperature turbine reactor. In: JAEGER, T.A. & BOLEY, B.A. eds. <u>Structural\_mechanics\_in</u> reactor\_technology:\_traisactions\_of\_the\_4th international\_conference\_on\_\_\_\_\_beld\_in\_San Erancisco:\_Ca:\_15=19\_August:\_1927.\_y.H\_Structural engineering\_of\_erestressed\_reactor\_pressure\_yessels. Amsterdam, North-Holland, 1977. H 4/1.

- 23. GDODPASTURE, D.W.; BURDETTE, E.G.; CALLAHAN, J.P. Design and analysis of multi-cavity prestressed concrete reactor vessels. <u>Nucl. Eng. Des.</u>, 44: 81-100, 1978.
- 24. HANNAH, I.W. Structural engineering of prestressed reactor pressure vessels. <u>Nucl\_Eng\_Des\_</u>, 50:443-62, 1978.
- 25. HANNAH, I.W. The evolution and structural design of prestressed concrete pressure vessels. In: SAWKO, F. ed. <u>Developments\_in\_prestressed\_concrete=2</u>. London, Applied Science, 1981.
- 26. HUEBNER, K.H. Ibe\_finite\_element\_method\_for\_engineers. New York, Wiley, 1975.
- 27. IMOTO, K. An analytical method for three-dimensional non-linear responses of prestressed concrete nuclear reactor vessels. In: STRUCTURAL mechanics in reactor technology: transactions of the 6th international conference on ..., held in Paris, France, 17-21 August, 1981. Amsterdam, North-Holland, 1981. v. G-H, H 3/7.
- 28. ISOBATA, O. An epirical study of nuclear reactor vessel. HTGR SAFETY technology: proceedings of the 2nd U.S.-Japan seminar on ..., held in Shizuoka, Japan, 22-25 Nov., 1978. p. 264-74.
- 29. KASTEN, P.R.; PEINADO, C.O.; QUADE, R.N.; WASHINGTON, C.E. <u>Advanced\_gas\_cooled\_reactor\_design</u>. Oak Ridge, Tn., Oak Ridge National Laboratory, 1980. (ORNL-GCR-8/22).
- 30. KAWAHATA, S.; ISOBATA, D.; KURODA, T. The method of sliced substructures in the analysis of boiler podded PCPV. In: JAEGER, T.A. comp. <u>Structural\_mechanics</u> in\_reactor\_technology:\_transactions\_of\_the\_3rd international\_conference\_on\_\_\_\_\_beld\_in\_London\_U.K.. 1=5\_Segtember\_1275. Brussels, Commission of the European Communities, 1975. v.3, G-H, H 2/6.
- 31. KUMPF, H.; RAU,P.; HINTERLEITNER, H.; NEMET, J. Advanced prestressed concrete pressure vessels for gas-cooled fast breeder reactors. In: JAEGER, T.A. & BOLEY, B.A. eds. <u>Structural\_mechanics\_in\_reactor</u> technology: transactions\_of\_the\_5th\_international conference\_po\_\_\_\_\_beld\_in\_Berlin\_Germany\_\_13=17 August\_\_1279:\_v\_\_H\_\_Structural\_engingering\_of prestressed\_reactor\_pressure\_vessels. Amsterdam, North-Holland, 1979. H 6/2.

- 32. LAGAN, D.; O'FLYNN, M.; WELCH, A.K. The design of pod boiler pressure vessels with particular reference to Hartlepool nuclear power station. In: JAEGER, T.A. comp. Structural\_mechanics\_in\_reactor\_technology: preceedings\_of\_the\_ist\_international\_conference on\_\_\_\_\_held\_in\_Rerlin\_Germany\_\_20=24\_September\_1971: y.A\_Reactor\_pressure\_yessels\_\_Part\_H\_\_Prestressed concrete\_pressure\_yessels\_\_Brussels, Commission of the European Communities, 1971. H 4/4.
- 33. MATTAR NETO, M. <u>Análise\_estrutural\_de\_um\_modelo\_de\_vaso</u> de\_ecessão\_de\_concreto\_ecotendido\_em\_regime\_não linear. São Paulo, Instituto de Pesquisas Energéticas e Nucleares, 1980. (Dissertação de mestrado).

14 J. 18

- 34. MATTAR NETO, M. & VALLIN, C. Implantacão\_do\_SAP3PR:\_um programa\_para\_calcular\_forcas\_nodais\_eguivalentes\_re= sultantes\_de\_pressões\_aplicadas\_nas\_faces\_de\_elementos isoparamétricos\_3=D\_com\_8\_a\_21\_pós. São Paulo, IPEN/ CNEN-SP, s.d. (Relatório interno).
- 35. MATTAR NETO,M.; SILVA, M.C.A.T. da; VALLIN, C. Viabili= zacão\_do\_NONSAE\_eara\_a\_execução\_da\_análise\_estrutural de\_modelos\_VECEs\_multicavidade. São Paulo, IPEN, 1982. (Relatório interno).
- 36. MODRE, R.A.; KANTOR, M.E.; BREY, H.L.; OLSON, H.G. HTGR experience, programs and futures applications. Nucl. Eng. Des., Z2:153-74, 1982.

- 37. NAUS, D.J. Prestressed concrete reactor vessel research and development studies at the Dak Ridge National Laboratory. In: BRITISH NUCLEAR ENERGY SOCIETY. Gas cooled reactors today conference, held in Bristol, London, 20-24 Sep., 1982. p.173-8.
- 38. PIERONI, R.R. & HUKAI, R.Y. <u>Apreciação\_sucipta\_sobre\_o</u> estado\_atual\_de\_desenvolvimento\_futuro\_dos\_reatores\_de <u>alta\_temperatura</u>. São Paulo, Instituto de Energia Atômica, 1976.
- RASHID, Y.R. Ultimate strength analysis of prestressed concrete pressure vessels. <u>Nucl. Eng. Des.</u>, Z:334-44, 1968.
- 40. REBORA, B.; UFFER, F.; ZIMMERMMAN, T. Non-linear analysis up to rupture of a model of a multi-cavity prestressed concrete pressure vessel. In: JAEGER, T.A. & BOLEY, B.A. eds. Structural\_mechanics\_in reactor\_technology:\_transactions\_of\_the\_4th international\_conference\_on\_\_\_\_\_beld\_in\_San\_Erancis= co\_\_Ca\_\_\_15=19\_August\_\_1977.\_v.H.\_Structural ensinnering\_of\_prestressed\_reactor\_pressure\_vessels. Amsterdam, North-Holland, 1977. H 3/4.

- 41. REICH, H. & CONNOR, J.J. Three-dimensional non-linear failure analysis for PCRV's and containments structures. In: JAEGER, T.A. & BOLEY, B.A. eds. Structural\_mechanics\_io\_reactor\_technology: transactions\_of\_tbe\_4tb\_international\_conference on\_\_\_\_\_beld\_io\_Sao\_Erancisco.\_Ca.\_\_15=12\_August. 1977.\_V.H.\_Structural\_engineering\_of\_prestressed reactor\_pressure\_vessels. Amsterdam, North- Holland, 1977. H 2/1.
- 42. ROCKNHAUSER, W. Structural design criteria for primary containment structures. <u>Nucl\_Eng\_Des.</u>, 2:449-66, 1969.
- 43. SCHONING, J. & SCHWIERS, H.G. The characteristics of the PCRV of the HHT demonstration plant. In: JAEGER, A.T. & BOLEY, B.A. eds. <u>Structural\_mechanics\_reactor</u> <u>technology:\_transactions\_of\_the\_Sth\_international</u> <u>conference\_on\_\_\_\_\_beld\_in\_Berlin\_Germany\_\_13=12</u> <u>August\_\_1979.\_\_\_\_VH\_\_Structural\_enginnering\_of</u> <u>erestressed\_reactor\_pressure\_vessels</u>. Amsterdam, North-Holland, 1979. H 6/4.
- 44. SILVA, M.C. A.T. da <u>Desenvolvimento\_do\_cálculo\_de\_ten=</u> sões\_através\_do\_código\_comentacional\_NONSAP\_eara\_vaso de\_eressão\_em\_concreto\_erotendido\_utilizando\_um\_modelo monocavidade\_azissimétrico\_tridimensional. São Paulo, IPEN, 1982. (Seminário Geral de Área).

- 45. SLOT, T. & O'DONNELL, W.J. Effectives elastic constants for thick perforated plates with square and triangular penetration patterns. <u>J. Eng. Ind.</u> 23:935-42, 1971.
- 46. SMITH, P.D.; COOK, W.A.; ANDERSON, C.A. Finite element analysis of prestressed concrete reactor vessels. In: JAEGER, T.A. & BOLEY, B.A. eds. <u>Structural\_mechanics</u> in\_reactor\_technologyi\_transactions\_of\_the\_4th international\_conference\_on\_\_\_\_\_beld\_in\_San Erancisco\_\_Ca..\_15=19\_August.\_1927\_\_\_yH\_\_Structural engionering\_of\_erestressed\_reactor\_eressure\_vessels. Amsterdam, North-Holland, 1977. H 2/5.
- 47. SPEIDEL, S.R. Parametric study on ligament stresses in multi-cavity prestressed concrete reactor vessels (PCRV's). In: JAEGER, T.A. & BOLEY, B.A. eds. Structural\_mechanics\_in\_reactor\_technology: transactions\_of\_the\_4tb\_international\_conference on\_\_\_\_\_beld\_in\_San\_Erancisco.\_Ca.\_\_15=19\_August. 1977.\_y.\_B.\_Structural\_enginuering\_of\_erestressed reactor\_eressure\_yessels. Amsterdam, North-Holland, 1979. H 4/4.
- 48. STEFANOU, G.D. Ultimate load design and testing of cylindrical prestressed concrete vessel. <u>J.\_Nucl.</u> <u>Sci\_\_Technol\_</u>, <u>12</u>(3):245-54, <u>1982</u>.

- 47. TAKEDA, T.: YAMAGUCHI, T.: IMOTO, K. Inelastic analysis of a multi-cavity PCRV under internal pressure. In: JAEGER, T.A. comp. Structural\_mechanics\_in\_reactor technology:\_trasactions\_of\_the\_3rd\_international conference\_po\_\_\_\_beld\_in\_Londop\_\_U\_K.\_\_i=5 September.\_1975. Brussels, Commission of the European Communities, 1975. v.3, G-H, H2/5.
- 50. TAMURA, M. <u>Aplicação\_dos\_métodos\_de\_relaxação\_dinâmica</u> <u>e\_elementos\_finitos\_na\_ználise\_estrutural\_de\_um\_modelo</u> <u>reduzido\_de\_vaso\_de\_eressão\_de\_concreto\_erotendido</u>. São Paulo, Instituto de Pesquisas Energéticas e Nucleares, 1979. (Dissertação de mestrado).
- 51. TIMOSHENKO, M. & GODIER, J.N. <u>Iepria da Elasticidade</u>. 3 ed. Rio de Janeiro, Guanabara Dois, 1980.
- 52. VALLIN,C. <u>Análise\_experimental\_de\_um\_modelo\_V2CP\_eara</u> reator\_nuclear. São Paulo, Instituto de Pesquisas Energéticas e Nucleares, 1980. (Dissertação de mestrado).
- 53. WADE, M.J. & HENRYWOOD, R.K. Experience in the application of a finite element system to the analysis of complex prestressed concrete pressure vessels. In: JAEGER, T.A. comp. Structural\_mechanics\_in\_reactor technology:\_transactions\_of\_the\_3rd\_international conference\_on\_\_\_\_held\_in\_London\_\_U\_K.\_\_1=5 Seetember.\_1975. Brussels, Commission of the European Communities, 1975. v.3, G-H, H 2/3.

- 54. ZAGOTTIS, D. de <u>Pontes\_e\_grandes\_estruturas\_\_Vol.</u> <u>Elasticidade\_ Elementos\_finitos.</u> São Paulo, USP, Escola Politécnica, 1980.
- 55. ZERNA, W.; SCHNELLENBACH, G.; SCHIMMELPFENNING, K. Construction and calculation of three-dimensional structures with particular reference to prestressed concrete reactor vessels. In: CONCRETE Structures subjected to triaxial stress, seminar held in Bergamo-Italy, 17-19 May, 1974. I-4, p.1-32.
- 56. ZIENKIEWICZ, O.C. & NAYAK, G.C. Finite element methods in the analysis of reactor vessels. <u>Nucl\_Eng\_Des\_</u>, 20:507-41, 1972.

÷.,

### A.1 Programa DESVIO.FORT

O programa DESVID.FDRT calcula a porcentagem de erro dos deslocamentos dos nós dos modelos MULT16, MULT12 e MULT08 em relação ao modelo MULT20.

A porcentagem de erro é calculada segundo a fórmula:

onde:

EV - porcentagem de erro

V20 - valor do deslocamento no modelo MULT20

VI - valores de deslocamento nos nós dos modelos MULT16, MULT12 e MULT08.

A letra V, no programa, é substituida pelas letras X, R e T quando os deslocamentos forem verticais, radiais e tangenciais, respectivamente.

A letra I, no programa, é substituida pelos números 16,12 ou 08, conforme o modelo que estiver sendo comparado.

A saída do programa fornece, para cada ponto, o nú-

mero do nó correspondente a cada modelo (N20, N16, N12, N08), as porcentagens de erro de deslocamentos verticais (EX16, EX12, EX08), de deslocamentos radiais (ER16,ER12, ER08) e de deslocamentos circunferenciais (ET16, ET12, ET08).

•

A listagem do programa DESVIO.FORT é apresentada 🛛 a

. .

seguir.

### PROGRAMA DESVIO.FORT

.

-

| C PRICO | RAMA DESVIO - CALCULA A VARIACAO PERCENJUAL DES MODELOS                     | 00000100         |
|---------|-----------------------------------------------------------------------------|------------------|
|         | E LO EN RELACADA AD MINELS 20. UTILIZANDA DESE CLANENTIN                    | 00000200         |
| C 5H 7  | INTERADAS CTURNICAS                                                         | 00000400         |
|         |                                                                             | 00000600         |
|         |                                                                             | 00000500         |
| 153     | FÚNPATI/,1X, (N23),7X, (A17),2X, (N12),2X, (N03),AX,                        | 00000000         |
| 1.0     | 1000001179209 020 JENJ NIO JENJ NEC FENJ NOS 1003                           | 00.0007.00       |
|         |                                                                             | 0000000          |
| •       | 00 10 1-1 262                                                               | 00000000         |
|         | 21 10 1 1 1 2 2 2<br>21 10 1 2 3 0 2 2 3 2 2 3 2 7 10 N 2 0                 | 00000900         |
|         | N = 01212014201420142014201420                                              | 00001000         |
|         | N                                                                           | 00001100         |
|         | N = 0179200002000000000000000000000000000000                                | 00001200         |
|         | NEWLING CUNNERS OF BUS AND                                                  | 00001300         |
| ۷J      | FUNDAL ( 94 ) 1 0 1 0 4 0 1 0 7 7 1 0 4 1 0 7 7 1 0 4 1 7 7 0 4 0 1 3 1 0 1 | 10001400         |
| 30      | 17 7 7 2 2 1 3 0 1 5 3 1 5 9<br>5 1 1 - 5 1 5 2 0 - 5 5 1 5 1 5 0 - 7 5 2 0 | 00001505         |
| 50      | EA16=(X20~X10)+100,/X20                                                     | 00001600         |
|         |                                                                             | 00001700         |
|         | 2x00#1x20-x03}+100./x20                                                     | 00001300         |
| 120     | IF (K29) 50,60,50                                                           | 00001900         |
| 50      | EN10=(#20-R16)#100./#20                                                     | 00002000         |
|         | CK12=1P20-H121+100+/k20                                                     | 00002100         |
| _       | £RU5=(F20-RJ6)+100./F20                                                     | 00002200         |
| 130     | 171720170,d0,70                                                             | 00002300         |
| 70      | e110=(T20-f10)4109./T29                                                     | 00002400         |
|         | cf12=(f20-f12)*100./f20                                                     | 00002500         |
|         | £103=(120-10d)+100./120                                                     | 00002000         |
| 140     | ~K1TE16,90]N20,N16,N17,N08,EX16,EX12,EX08,ER16,EA12,                        | 00002703         |
| •       | PEROS, ETIS, ETI2, ETOS                                                     | 00002600         |
| 90      | FURMAT(1×+13+31)+9F10.2+/1                                                  | 00002900         |
| 10      | C JNT INJE                                                                  | <b></b> 00003000 |
|         | GU TÙ 100                                                                   | 00003100         |
| 40      | tx1o=0.0                                                                    | 00003200         |
|         | Ex12=0.0                                                                    | 00003300         |
|         | c XU4=0.0                                                                   | 00003400         |
|         | GO 10 120                                                                   | 00003500         |
| 60      | EK10=0.0                                                                    | 00003600         |
|         | Ex12=0.0                                                                    | 00003700         |
|         | c 308=0.0                                                                   | 00003800         |
|         | 50 TO 130                                                                   | 00003900         |
| 50      | ET16=0.0                                                                    | 00004000         |
|         | t[12=0.0                                                                    | 00004100         |
|         | £103=0.0                                                                    | 00004200         |
|         | GU TU 140                                                                   | 00004300         |
| 100     | STUP                                                                        | 00004460         |
|         | ÊNU                                                                         | 00004500         |
|         |                                                                             | 00007700         |

Este programa transforma os deslocamentos do sistema cartesiano para o sistema cilíndrico.

As variáveis envolvidas são:

X, Y, Z - coordenadas do nó no sistema cartesiano

N, ND - número do nó

DX, DY, DZ - deslocamentos do nó no sitema cartesiano

R, DCIRC, DX - deslocamentos do nó no sistema cilíndrico.

A listagem do programa DES.C.FORT é apresentada a seguir.

### PROGRAMA DES.C.FORT

| C | TRANSPONDATED DOS EFFLOCARENTES DES NOS: DE COORDENADAS    | 00003100         |
|---|------------------------------------------------------------|------------------|
| ¢ | CARTESIANAS PALA COCEDERACAS CITIADECAS -ADATTACC          | 00000 500        |
| C | SALL C MASAL                                               | 00000200         |
|   |                                                            | 00000000         |
|   |                                                            | 62003600         |
|   | n ne ny ana pagana ana ana ana ana ana ana ana ana an      | 09000300         |
|   |                                                            | 60496466         |
|   | II (Z.EY.U.L) GU 1C 20                                     | <i>4</i> 0000700 |
|   | A 3 E 4= C A 3 A B (2/3)                                   | 00000600         |
|   | 6C 10 11                                                   | 00066500         |
|   | 2C 11F1=0.j                                                | 0000 1000        |
|   | 2C #1/1 (5,200)#0,03,03,02                                 | 00001100         |
|   | EF-EX-ECU-LALEAI + L74DEIN (A 184)                         | -0000 1200       |
|   | ECISC=L24 LLCS (ALS 1)-EX4 (S13 (111))                     | 00001300         |
|   | WE JIE (C, SLGIBU, D, CCIEC, D)                            | 00001400         |
|   | 1C CLITINE                                                 | 00001500         |
|   | 5361                                                       | 00601600         |
|   | 166 FCFMA1(14,14,42), 1810.2)                              | 0000 1700        |
|   | 20C PC FEAT 133-14-84-91 18. 6. 54X1                       | 66661800         |
|   | 366 ECEBAS(54. + NO. + 15.33. (DESICC BACTAIN + 033. 4.33. | 00001900         |
|   |                                                            | 00001970         |
|   | * ****** *****************************                     | 00002000         |
|   | # F b                                                      | 00002100         |

# A.3 Transformação das tensões nas direções x, y e z em tensões principais

## A.3.1 Teoria (51,54)

As tensões obtidas de NONSAP (x, fs, Cz, Txy, Txz, Tyz formam o tensor:

$$IITII = \begin{vmatrix} f_{x} & f_{xy} & f_{xz} \\ T_{xy} & f_{y} & T_{yz} \\ T_{xz} & T_{yz} & f_{z} \end{vmatrix}$$
(A.2)

: .

Como T é simétrico, existem três valores próprios 61, 62 e 63 obedecendo seguinte critério:

com os correspondentes versores próprios: h1, h2, h3.

Nessa base ( $\vec{h}1$ ,  $\vec{h}2$ ,  $\vec{h}3$ ), o tensor das tensões é escrito da seguinte forma:

$$|| f_1 = 0 = 0 || - (A.3)$$

$$|| = 0 = 0 = 63 ||$$

Para o cálculo dos auto-valores, considera-se que T seja definido conforme a relação A.2, considerando:  $\int - valor próprio de T$  $\vec{h} - versor próprio de T, ísto é, T(\vec{h}) = <math>\int (\vec{h})$  onde:

 $\vec{h} = h\vec{i} + h\vec{2}\vec{j} + h\vec{3}\vec{k}$  e  $h\vec{1} + h\vec{2} + h\vec{3} = 1$  (A.4) então:

$$T(h) = T(h1 \vec{i} + h2 \vec{j} + h3 \vec{k}) = h1 T(\vec{i}) + h2 T(\vec{j}) + h3 T(\vec{k}) =$$

$$= h1 (fx \vec{i} + fxy \vec{j} + fxz \vec{k}) + h2 (fxy \vec{i} + fy \vec{j} + fyz \vec{k}) +$$

$$+ h3 (fxz \vec{i} + fyz \vec{j} + fz \vec{k}) =$$

$$= \vec{i} (fx h1 + fxy h2 + fxz h3) +$$

$$+ \vec{j} (fxy h1 + fy h2 + fyz h3) +$$

$$+ \vec{k} (fxz h1 + fyz h2 + fz h3).$$

Como  $\vec{h} = h\vec{i}\vec{i} + h\vec{2}\vec{j} + h\vec{3}\vec{k} \in T(\vec{h}) = \vec{6}(\vec{h})$ então:

fx hi + fxy h2 + fxz h3 = fhi fxy hi + fy h2 + fyz h3 = fh2 fxy hi + fyz h2 + fz h3 = fh3

de onde se obtém:

 $(f_x - f) hi + \tau_{xy} h2 + \tau_{xz} h3 = 0$ 

 $T_{xy} hi + (f_y - f) h2 + T_{yz} h3 = 0$ 

 $\chi_{xz} hi + \chi_{yz} h2 + (\delta_z - \delta) h3 = 0$ 

O sistema é linear e homogêneo e como a solução não pode ser identicamente nula devido à condição (A.4), então:

$$(f_{x} - f) \qquad T_{xy} \qquad T_{xz}$$

$$T_{xy} \qquad (f_{y} - f) \qquad T_{yz} = 0$$

$$T_{xz} \qquad T_{yz} \qquad (f_{z} - f)$$

e a equação final fica sendo:

$$\int -11 \int +12 \int -13 = 0$$
 (A.5)

Os valores de I1, I2 e I3 estão indicados no item 4.4.8.

# A.3.2 Programa TENSÃO2.FORT

A transformação das tensões fornecidas pelo NONSAP em tensões principais foram feitas por por meio do programa TENSÃO2.FORT, que basicamente resolve a equação A.5. Utilizouse uma subrotina do sistema IBM/370-155, que calcula as raízes de uma equação de 3ºgrau, denominada PA03A.

As variáveis envolvidas são:

NE - número do elemento

L - ponto do elemento para o qual as tensões foram calculadas (centróide do elemento)

X, Y, Z, XY, XZ, YZ - tensões no sistema cartesiano  $f_X$ ,  $f_Y$ ,  $f_Z$ ,  $T_{XY}$ ,  $T_{XZ}$ ,  $T_{YZ}$ , respectivamente A - vetor que contém os invariantes:

A(3) - invariante linear (I1)

A(2) - invariante quadrático (I2)

A(1) - invariante cúbico (I3)

- R vetor que contém as tensões principais:
  - R(3) : 61
  - R(2) : (2
  - R(3) : **[**3

A listagem do programa TENSÃO2.FORT é apresentada a

seguir.

### PROGRAMA TENSÃO2.FORT

| C<br>≎<br>C | CALCULO DAS TENSOES PRINCIPAIS A PARTIR DAS TENSOES HAS DIRECOES<br>X,Y E Z, OBTIDAS ATRAVES DO CODIGO HONSAP                                         |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | IMPLICIT #EAL+8 (A-H, 0-2)                                                                                                                            |
|             | DIAL SIDN K (4),8 (3)                                                                                                                                 |
|             | 10 PDeHAT (///, 17, "ELEHENTOS DE ACO")                                                                                                               |
|             | D) 20 [=1,107                                                                                                                                         |
|             | READ (5, 200) NR                                                                                                                                      |
|             | $\frac{\mathbf{K}\mathbf{E}\mathbf{A}\mathbf{D}}{\mathbf{D}} = \frac{\mathbf{D}}{\mathbf{D}} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} $ |
| :           | u [a] = 100                                                                                                                                           |
| Č<br>C      | CALCULD DD INVARIANTE LINEAB                                                                                                                          |
| -           | A(3) = -1 + [X+X+Z]                                                                                                                                   |
| 202         | CALCULO DO INVARIANTE QUADRATICO                                                                                                                      |
| •           | A { 2} = X* X- XY* + 2+ X* Z- XZ* + 2+ X* Z- XZ + + 2                                                                                                 |
| C           | CALCULO DO INVARIANTE COBICO                                                                                                                          |
| _           | A { 1} =-1. * {X*Y*Z+2*X* 12*X2-X+Y2**2-Y*X2*+2-Z*Y 1**2}                                                                                             |
|             | SUBROTIVA PAOJA QUE CALCULA AS RAIZES DE UMA EQUACAO DE J. GRAU<br>Do TIPO:                                                                           |
| c<br>c      | $L(4)T^{**3} + L(3)T^{**2} + L(2)T + L(1) = 0$                                                                                                        |
| ~           | CALL PAO3AD(A,R,3)                                                                                                                                    |
| č           | ISPRESSAD DAS TENSORS WAS DIRECORS X,Y E Z                                                                                                            |
| c           | WRITE(6,50) WE, I, Y, Z, XY, XZ, YZ                                                                                                                   |
| C 2         | IAPBESSAD DAS TENSOES PRINCIPAIS                                                                                                                      |
|             | WRITE(6, 100) 8(3),R(2),R(1)                                                                                                                          |
|             | 17 (1.20.10) GO TO 80                                                                                                                                 |
|             | 20 CONTANUS<br>63 P3 500                                                                                                                              |
|             | 50 VRITE (6,90)                                                                                                                                       |
|             | 90 FDESAT (///, 1X, 'ELEBENTOS DE CONCRETO')                                                                                                          |
|             | GO 10 23                                                                                                                                              |
|             | 200 FJRSAT (18)<br>300 FORMAT (18,6715,4)                                                                                                             |
|             | 40 POPULALIZIO VILLA 1. TH / OF IVA & DIA & EV IVA & BSA & EV                                                                                         |
|             | 二苯甲二苯基化乙酸医丁医苯基甲基乙基 医肺 "","我去现在是在老太太子太后,"我是我说着他去回去了了那些女子不知道是他是他的话:                                                                                     |
|             | */2= ', f10.4,4%,'%Y= ', f10.4,4%,'%Z= ', f10.4,4%,'%Z= ', f10.4,                                                                                     |