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Summary
Background: The objective of this paper was to verify if the oral administration of �-
aminolevulinic acid (ALA) in animals with prostate tumor can increase the sensitivity of cancer
diagnosis by protoporphyrin IX blood autofluorescence. In this study, the autofluorescence of
blood porphyrin was analyzed using fluorescence spectroscopy on healthy male NUDE mice and
in those with prostate cancer induced by the inoculation of DU145 cells.
Methods: A total of 18 male NUDE mice, ∼8 weeks old on arrival were divided into 3 groups:
Control, Tumor and ALA Tumor. The autofluorescence of blood porphyrin of the groups was
analyzed using fluorescence spectroscopy at different days after tumor induction, to monitor
the tumor progression. Emission spectra were obtained by exciting the samples at 405 nm. The
animals inoculated had their blood collected with and without oral ALA solution administration
to compare PPIX endogenous (Tumor group) and exogenous (ALA Tumor group) signal intensity
and to establish a method to diagnosis early prostate cancer.
Results: Significant differences were observed in autofluorescence intensities measured in the

575—725 nm spectral regions for the studied groups.
Conclusions: The results showed an enhancement of almost 100% in blood PPIX fluorescence,
using the oral administration of �-aminolevulinic acid on male NUDE mice with prostate cancer,

making fluorescence measureme
induction.
© 2010 Elsevier B.V. All rights re
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ntroduction

he three most common forms of prostate disease are
enign prostatic hyperplasia (BPH), prostatitis (inflamma-
ion of the prostate) and cancer. A man may experi-
nce one problem or a combination of two or more
roblems.

Prostate cancer is the most common non-skin related
ale cancer type in the world [1]. Prostate cancer is diag-

osed using a variety of tests including biopsies of the
rostate, digital rectal examination (DRE), transrectal ultra-
onography (TRUS), and assaying prostate-specific antigen
PSA). DRE and TRUS are widely employed but are very lim-
ted in their ability to diagnose prostate cancer since they
o not provide the ability to distinguish between benign
nlargements of the prostate (BPH) and a cancerous prostate
2—4]. Although PSA measurement is regarded as the best
onventional serum tumor marker currently available, it is
ot specific enough for a definitive diagnosis of prostate
ancer because the PSA also increases in cases of BPH or
rostate inflammation [5].

Biopsy of prostate tissue can definitely identify prostate
ancer in most cases. This method results in a grading called
he Gleason score which is based on the pattern of can-
er tissue observed under a microscope [6,7]. Despite the
eliability of this method, it is evident that it is extremely
nvasive.

An ideal method of cancer detection should be quick,
heap and reliable. Fluorescence detection of cancers,
r photodynamic diagnosis (PDD), is the method of can-
er detection based on light induced fluorescence (LIF) to
haracterize tissues. Fluorescence spectroscopy requires a
uorophore [8—13].

There are a number of studies about the exogenous
dministration of �-aminolevulinic acid, ALA, to detect or
reat early-stage cancers [14]. ALA is a precursor in the
eme biosynthesis pathway and is metabolized to fluores-
ent Protoporphyrin IX or PPIX, before being converted to
hotoinactive heme products. The selective accumulation
f PPIX in malignant tissue provides a strong color con-
rast between the intense red fluorescence of malignant
esions and the weak fluorescence of normal tissue [15—17].
bnormal metabolism of PPIX has also been observed in
otal blood, plasma and erythroid cells of cancerous patients
18—20]. Nowadays, ALA is probably the photosensitizer
also called pro-drug) more selective to treatment of cancer
urrently known in oncology, because the accumulation of
PIX is higher in malignant cells than in normal tissues [21].

ALA can be delivered to the target tissue by topi-
al application, oral administration, or by intravenous and
ntraperitoneal injection. Each technique delivers a differ-
nt proportion of the total dose of ALA to the target tissues,
nd with different timing [22,23].

Recently, the autofluorescence of blood protoporphyrin
X (PPIX) was analyzed using fluorescence and excitation
pectroscopy on healthy male NUDE mice and in those with
rostate cancer induced by inoculation of DU145 cells [18].

significant contrast between the blood of normal and can-

er subjects could be established. Blood PPIX fluorescence
howed an enhancement on the fluorescence band around
32 nm following tumor growth.
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The objective of this paper was to verify if the oral
dministration of �-aminolevulinic acid (ALA) in animals with
rostate tumor can increase the sensitivity of cancer diag-
osis by protoporphyrin IX blood autofluorescence. In this
tudy, the autofluorescence of blood porphyrin was analyzed
sing fluorescence spectroscopy on healthy male NUDE mice
nd in those with prostate cancer induced by the inoculation
f DU145 cells

aterials and methods

ell line and cell culture conditions

U145 cells were cultured in DMEM containing high glu-
ose (4.5 g/L at 25 mM) and supplemented with 100 units/mL
enicillin, 50 mg/mL Streptomycin, and 10% FBS. The cells
ere maintained in a humid chamber at 37 ◦C in an atmo-

phere of 5% CO2.

nimals and tumor induction

total of 18 male NUDE mice, ∼8 weeks old on arrival,
ere obtained from the IPEN-USP and housed in laminar air-
ow cabinets under pathogen-free conditions with a 12-h

ight/12-h dark schedule and fed autoclaved standard chow
nd water ad libitum.

The orthotopic tumor model of prostate cancer was used
n 15 animals, where 1 × 105 cells were inoculated into the
rostate gland in a volume of 10 �L of sterile phosphate
uffered saline (PBS). These 15 animals were divided into 2
roups: 7 animals for the group without ALA (Tumor group)
nd 8 animals for the ALA group (ALA Tumor group). The
ontrol animals, three mice, have been inoculated with
nly PBS into prostate gland (without cells), and had their
lood collected without ALA administration (Control group)
nd after, with oral ALA administration (called ALA Control
roup).

onitoring of tumor growth

he animals were monitored and blood samples were col-
ected 7, 14, 21, 35 and 49 days after tumor induction.
pproximately 250 �L of blood was collected with Heparin
s anticoagulant by retro-orbital plexus with a glass cap-
llary for each animal. All experiments were performed
n accordance with the institutional guidelines animal
are.

rotoporphyrin IX calibration curve

rotoporphyrin Standard (Sigma Porphyrin Products, Logan,
tah, USA) was dissolved in acetone (analytical purity) and
olutions containing concentrations of 0.01, 0.05, 0.1, 0.2,
.4, 0.6, 0.8, 1.5 �g/mL were prepared in triplicate. Emis-
ion spectra were obtained exciting samples at 405 nm.
verage curves of each concentration were obtained and

missions between 575 and 725 nm were plotted as a
unction of protoporphyrin IX concentration to perform a
alibration curve.
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mice, in which the tumor cells were inoculated. The results
are shown in Fig. 3. In this figure, signal emission area,
obtained integrating endogenous PPIX emission spectra in
the range of 575—725 nm, was plotted as a function of
days of tumor growth (7th, 14th, 21st, 35th and 49th day
A new concept for photodynamic diagnosis of early prostate

Oral administration of ALA solution

Solutions of ALA (Sigma) were freshly prepared, before each
administration in every day of blood collection (at the 7th,
14th, 21st, 35th and 49th day after tumor induction, admin-
istrated to animals from ALA Tumor Group), by dissolving
0.05 g of ALA in 5 mL of PBS. The pH of the solutions was
adjusted to ∼7.2 by addition of NaOH solution. A total of
500 �L of ALA solution (5 mg per animal) were given to each
animal from ALA Tumor group (on the days mentioned above)
and ALA Control group through a bulbtip gavage needle.
Blood was collected after 3 h 30 (±15 min) of ALA admin-
istration.

Porphyrin extraction

450 �L of analytical grade acetone were added to 150 �L
of total blood collected and mixed well. The mixture was
centrifuged at 4000 rpm for 15 min. The clear supernatant of
mixture was stored in a clean tube and spectrofluorometer
analyses were carried out at the same day.

Fluorescent spectral analyses

The emission spectra were obtained by exciting the samples
at 405 nm, inside of a 1 mm optical path cuvette. The fluo-
rescence of the samples was analyzed with a Horiba Jobin
Yvon Fluorolog 3 Fluorimeter in the range of 575—725 nm.
The emission peaks had been compared with the standard
curve of PPIX in acetone solution.

Tumor excision and histological analysis

At the 7th, 14th, 21st and 35th day, 3 animals with prostate
tumor were sacrificed and at 49th day, the remaining ani-
mals used in the experiment, including animals from control
group, were sacrificed following the American Veterinary
Medical Association guidelines for euthanasia. The prostates
were excised and washed in PBS, fixed in 10% PBS-buffered
formalin for 24 h, and then routinely processed for paraffin-
embedding. Histological analysis was performed in 4 �m
sections stained with hematoxylin and eosin.

Results

In Fig. 1, the emission spectrum of 0.06 �g/mL PPIX acetone
solution (Standard PPIX) is compared with the one obtained
from PPIX of non-cancer animal total blood (Animal Blood
PPIX) extracted with acetone. In these spectra we observed
the two characteristic bands of PPIX, centered on 632 nm
and 700 nm. A very similar emission profile can be observed,

indicating that PPIX is the main factor responsible for the
emission signal obtained in the blood. This fact is due to
the extraction of total blood porphyrin using acetone, which
eliminates the signal of other molecular species. Conse-
quently, light scattering from blood samples is negligible. F
igure 1 Comparison between standard PPIX (0.06 �g/mL)
nd endogenous PPIX fluorescence from animal blood extracted.

btaining PPIX calibration curve

o quantify PPIX concentration present in the blood, a PPIX
alibration curve was obtained and is shown in Fig. 2. To
btain this figure, the area measured under the porphyrin
mission curve in the spectral region of 575—725 nm was
lotted as a function of PPIX standard acetone solutions
oncentrations ranging from 0.05 to 1.5 �g/mL. It can be
een that it increases linearly. A linear function was fitted
o the experimental data to determine a calibration curve.
sing this calibration curve it is possible to estimate blood
orphyrin concentrations on biological samples.

uantification of PPIX in blood

ude mice bearing prostate tumors were investigated for
heir PPIX total blood accumulation response. For this pur-
ose total blood porphyrin was extracted from male Nude
igure 2 Calibration curve of PPIX acetone solutions.
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Figure 3 The area of emission spectra of PPIX extracted from
animals’ blood, in the range of 575—725 nm plotted as a func-
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Figure 4 The area of emission spectra of PPIX extracted from
blood of animals that received oral ALA plotted as a function of
time (days of tumor growth). Day 0 corresponds to ALA Control
Group (animals inoculated only with PBS and had received ALA)
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ion of the days of tumor growth). Day 0 corresponds to Control
roup and Days 7, 14, 21, 35 and 49 correspond to Tumor Group

endogenous PPIX emission).

fter inoculation procedure). Each point corresponds to an
verage of signal from each studied group. For the Control
roup, three animals were used and were inoculated only
ith PBS (without DU145 cells) to exclude enhancement of
PIX from possible inflammation, infection or surgery reac-
ion and the result from this group was indicated at day 0.
or the Tumor Group, seven animals were used and were
noculated with 1 × 105 DU145 cells and had their blood col-
ected from 7 to 49 days after tumor induction. It can be
learly observed that the mean of the values increases in
ntensity as the tumor grows inside the animals, indicating
hat porphyrin is accumulating in their blood.

Although, the average of samples spectra shows differ-
nt values in each week, some of the standard error (SE)
ars coincide in the intervals analyzed. The mean ± SE can
e clearly distinguished between control and tumor animals
fter the second week, but there are no statistical differ-
nce between the first 14 days after DU145 cells inoculation
nd the control animals.
ffects of ALA oral administration in the PPIX
mission signal in the blood

e analyzed the possibility to enhance the PPIX emission
ntensity present in the blood upon ALA administration.

p
f

e
m

Table 1 PPIX concentrations of animals’ blood versus tumor grow
administration and the values of tumor mass area.

Groups [PPIX] endogenous mean ± SE (�g/mL) [PPIX] e

Control 0.0274 ± 0.004 0.0398
Tumor 7 days 0.0270 ± 0.007 0.0568
Tumor 14 days 0.0348 ± 0.006 —
Tumor 21 days 0.0391 ± 0.010 0.0781
Tumor 35 days 0.0435 ± 0.013 0.0876
Tumor 49 days 0.0486 ± 0.012 0.0893
nd Days 7, 21, 35 and 49 correspond to ALA Tumor Group (8
ice bearing prostate tumor that had received oral ALA).

In this study we analyzed the progression of prostate
umor versus the enhancement of PPIX emission signal, after
LA administration, from ALA Control group animals (plot-
ed as day 0) and ALA Tumor group animals (at days 7, 21, 35
nd 49 after tumor induced). Since the first week of tumor
rowth, it is possible to observe a significant difference
etween the intensity of PPIX extracted from total blood
rom Control animals with ALA (ALA Control Group) and ani-
als with prostate tumor that had received ALA (ALA Tumor

roup). These significant differences can be used to diagno-
is early prostate cancer since the first’s cancerous changes
nd help to determine the tumor stage.

In Figs. 3 and 4, data are presented as mean ± standard
rror (SE). Kinetics of fluorescence accumulation in the total
lood from Control animals (with and without ALA), Tumor
nd ALA Tumor groups were assessed using Anova test to
dentify values deviating from the linear relationship, and
-value < 0.05 was considered statistically significantly dif-
erent.
Table 1 represents the concentration of endogenous and
xogenous (ALA-induced PPIX) porphyrin extracted from ani-
als’ blood, calculated from the calibration curve of Fig. 1.

th (growth days after tumor induction) with and without ALA

xogenous-ALA mean ± SE (�g/mL) Tumor mass area (�m2)

± 0.009 —
± 0.006 —

1420.4
± 0.014 4131.7
± 0.017 18,520.2
± 0.007 47,331.3
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Figure 5 Histological prostate slides of all points of tumor progression. (a) The Control group prostate slide; (b) prostate tumor
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at 7th day; (c) prostate tumor at 14th day; (d) prostate tumor
49th day.

Analyses of tumor-bearing prostate were performed at
all points of the experiment, to evaluate the tumor pro-
gression and to investigate the correlation between tumor
mass growth and PPIX fluorescence from blood. Analysis of
tumor cells in situ, using HE (Hematoxylin and Eosin) stain-
ing, indicated the increases of the tumor area during the
experiment, Fig. 5.

Quantitative analysis of these sections showed that
within 7 days from inoculation the tumor mass had not
reached a detectable area yet, using HE staining (Fig. 5b),
but the emission intensity of the blood from animals that
received ALA (within 7 days) was almost 1.5-fold that of ALA
Control group intensity. This result shows how sensitive ALA
induced PPIX photodynamic diagnosis is.

The calculated areas of tumors at 14, 21, 35 and 49 days
are show in Table 1.

A panel of histological prostate slides (a—f) of control
(inoculated PBS) and tumor (inoculated DU145 cells after 7,
14, 21, 35 and 49 days) groups are shown in Fig. 5. The Con-
trol group samples (Fig. 5a) show normal prostate gland, and
any inflammation characteristics were observed. Fig. 5b rep-
resents animal tumor group at 7 days from tumor induced.
At this point of tumor progression no evidence of tumor cells
could be observed by HE staining.

Histological analysis of the samples at 14th (Fig. 5c), 21st
(Fig. 5d), 35th (Fig. 5e) and 49th (Fig. 5f) day evidenced
proliferating tumor cell areas.

Discussions

It is our understanding that this is the first study that anal-

ysis PPIX accumulated in the blood of animals with cancer
after ALA administration. PPIX accumulated in tumor cells
is transferred to blood and can be analyzed by porphyrin
extraction from total blood. Although, the results, in Fig. 4,
indicate an increase of PPIX production in both, control and

d
t
t

i

1st day; (e) prostate tumor at 35th day; (f) prostate tumor at

umor animals, since almost all cells can synthesize PPIX,
ice bearing prostate tumors present the largest concen-

ration of PPIX.
As ALA is a precursor in the heme biosynthesis path-

ay, it is metabolized to fluorescent PPIX. The ALA solution
ill reach tumors cells and the tumor tissues accumulate

emporarily more PPIX than normal tissues. The selective
ccumulation of PPIX in malignant tissue provides a contrast
etween control animals and those induced with tumors.
his contrast was reported by several studies to detect sur-
ical margins during radical and partial prostatectomy in
atients and animals with carcinoma of the prostate and
hotodynamic therapy for prostate cancer and many other
ancers [7,14].

The results indicated that the increase in PPIX blood
mission accompanied the growth of the tumor mass
as at all points significantly different from the values
btained for the normal prostate (control group ani-
als), when animals have received ALA. These findings
emonstrate a true exogenous accumulation of PPIX by
rostate cancer cells caused by tumor-specific metabolic
lterations and these PPIX molecules are transferred to
lood.

Our results indicated that although at the first week his-
ological slice did not show tumor mass yet, we observed it
as already possible to identify the tumor presence on the

amples of blood collected from animals that have received
LA. This fact indicated that this method can aid the early
iagnosis of prostate tumors with high sensibility.

At 35th and 49th we observed the same fluorescent inten-
ity. It may occurs because the necrosis areas are bigger and

eath cells cannot synthesize PPIX and as ALA has a limi-
ation to penetrate deeply into tissue, it cannot reach all
umor cells to synthesize more PPIX.

The use of ALA esters with high lipophilicity would
mprove the effectiveness of ALA. Methyl and Hexyl Aminole-
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ulinic (h-ALA) acid have shown the best results. A
oncentration of 100-fold lower than h-ALA compared to
LA increases the emission intensity by 2—3 fold than that

nduced by ALA [24,25].
ALA solution has no emission signal. The oral administra-

ion doses of ALA did not result in any adverse reaction and
eturning to background levels in up to 24 h [26—29].

Larger and better-designed studies are being developed
o elaborate more on this matter, to verify the most appro-
riate concentration of ALA solution and the best time for
LA administration in animals.

onclusions

his study shows that the administration of ALA in animals
ith prostate tumor leads to an increase in emission sig-
al of PPIX extracted from their blood, making fluorescence
easurements accurate and sensitive since the first week

fter tumor induction. This type of ‘‘mass screening’’ can
id the early diagnosis of prostate tumors to corroborate
ith digital rectal examination.

Although the study has been performed exclusively for
dentifying a prostate tumor in an animal model, we believe
his enhancement of PPIX fluorescence after ALA admin-
stration occurs in all kinds of cancer that accumulate
ndogenous PPIX and this method can be used to diagno-
is other cancers in an early stage, in animal and human
odels.
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