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ABSTRACT

Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of 
large  scale  disasters  was  studied.  A modified  compartmented  model  was  developed  in  a  previous  paper 
presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde 
airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear,  
non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of 
the  world  were  selected.  A more  robust  news  repository  was  used,  and  improved search  techniques  were 
developed to ensure that the scripts would not count false positive news. The same model was used but with  
improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our 
model. Individual parameters and some specific combination of them allow some interesting perceptions on 
how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our  
studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles 
and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and 
policy  makers  are  also  much  more  sensitive  to  some  issues  than  to  others.  The  model,  through  its 
epidemiological parameters, shows in quantitative manner how “nervous” the media content generators are with  
respect to nuclear installations and how resilient this negative feelings about nuclear is.

1. INTRODUCTION

News on high impact subjects as climate changing, global warming, or major disasters, be 
them of  natural  causes  or  not,  always  grab  people's  attention.  This  makes  plausible  the 
conjecture  that  this  interaction  is  responsible  for  shaping  up  an  important  part  of  our 
collective common sense. In a previous work, an adapted epidemiological model was used to 
study the magnitude and the longevity of the repercussion, on the international media, of two 
accidents - the Chernobyl Nuclear accident, Ukraine (1986) and the crash of the Concorde 
airplane near Paris (2000). Unfortunately that research could not be extended or deepened 
using the original news database [1] because of an inconsistency found in the news archival 
methodology. The repository owner [2] changed the way news were indexed and  archived 
making unreliable the information on the news publishing date and therefore unsuitable for 
the research's purpose.  Three years later,  another  repository [3] was found with adequate 
depth and breadth characteristics and accurate dating procedures. The studies were restarted, 



using a larger and more diverse group of events: for the present work old and recent events 
were chosen, in several regions of the world: Bhopal (1984), Chernobyl (1986), Deepwater 
Horizon's  rig  (2010),  Haiti's  earthquake  (2010),  Japan's  earthquake  (2011)  and 
Fukushima/Daiichi  nuclear  plants  events  (2011).  This  paper  is  divided  in  six  sections. 
Following the Introduction, a summary of the pertinent literature is presented; followed by 
problem formulation and model description. Next there are the sections on data collection and 
treatment, results and discussions as well as the conclusions.

2. THE LITERATURE AND CLUES FOR OUR MODEL

The  public  acceptance  of  nuclear  projects  became,  notably  since  the  eighties,  object  of 
special attention from managers and scientists. Nowadays, “it is consensus that the public 
participation on the decision process is essential to success of a new project” [5]. Indeed, 
great industrial accidents at the end of seventies and at the eighties have conducted people to 
have interest on debating the benefits face the risks of complex technologies, like nuclear 
power production.  Sauer and Oliveira  [6] pointed that  disasters like the ones occurred at 
Three  Mile  Island  (1979),  Bhopal  (1984),  Chernobyl  (1986),  the  explosion  of  the  space 
shuttle  Challenger  (1986)  and  the  Piper  Alpha  accident  (1988)  have  promoted  public 
opinion's discredit on the government and industry's technical and political competence on 
securely managing the process related to highly impacting technologies. However, it appears 
that public opinion perceives risk in a different way than experts. “The divergences between 
public and experts on what an acceptable risk is have promoted the study about two important 
aspects of risk management: the public risk perception and the risk communication” [5]. It is 
reasonable  that,  for  different  individuals  or  different  social  groups,  risk  has  different 
meanings. And the media plays a single relevant role in this context: it is an important risk 
information communicator. Wåhlberg and Sjöberg [7] concluded that media really influences 
our risk perception, although it is only one factor among many others. But it is a somewhat 
biased factor, once media tends to focus on dramatic, controversial events that cause social 
upheaval.

News about industrial processes not rarely are more obscuring than enlightening to people 
searching  for  information  about  their  associated  risks:  many  news  “are  concentrated  on 
potentially  catastrophic  effects  and  on  risks  of  diseases,  deaths  and  injury  for  next 
generations” [6]. The most fundamental  ways media contributes  to distort  the public risk 
perception are the numbers and the spectacular tone of news concerning some subjects [7]. 
This fact has motivated many authors to search for a quantitative model for diffusion of news 
concerning a risk agent. We looked for such models on the famous book entitled Diffusion of 
Innovations, published in 1954, Everett M. Rogers [8] presents some approaches on modeling 
the diffusion of novelties. His research and work became widely accepted in communications 
and technology adoption studies. On the other hand, the presented models make assumptions 
that  are  not  applicable  to  news  dissemination.  In  1972,  G.  R.  Funkhouser  [9]  published 
Predicting  The  Diffusion  of  Information  to  Mass  Audiences,  whereupon  he  modeled 
diffusion of information trough probabilistic approaches. Stochastic process based tools were 
used  by  Karmeshu  &  Pathria  [10]  and  Allen  [11]  to  construct  models  to  diffusion  of 
information. Although interesting and useful, these models didn't fit our needs. Dodds and 
Watts [12] developed a generalized model for social  contagion, based on epidemiological 
models.
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A paper of Bettencourt, Cintrón-Arias, Kaiser and Castillo-Chávez [13], entitled The power 
of a good idea: quantitative modeling of the spread of ideas from epidemiological models , 
has  hinted  the  great  potential  of  epidemiological  compartmented  models  to  deal  with 
diffusion  of  news.  We  have  so  created  a  modified  epidemiological  model  for  news 
generation, and its construction and application to two big industrial disasters was presented 
to the 2007 International Nuclear Atlantic Conference – INAC 2007 [15]. In 2009, Leskovec, 
Backstrom and Kleinberg [14] have developed a framework for tracking memes on news 
media, and have used such tool to make a representation of the news cycle; at their paper,  
they indicate that “one can give an argument for the characteristic shape of thread volume 
(…) through an approximation using differential equations” [14] (Note: each thread consists 
of all news articles and blog posts containing a textual variant of a particular quoted phrase). 
These  finds  and  arguments  reinforce  our  previous  finds  that  a  conveniently  modified 
epidemiological model, based on ordinary differential equations, is able to justify the thread 
shape that they have found. This paper adds some confirmation of the conjecture by [14] and 
is also a natural outspread of the one we have presented at INAC 2007 [15]. So to a certain  
extent,  our  deterministic  approach  to  model  news  generation  seems  to  constitute  an 
innovative approach to this issue.

3. PROBLEM FORMULATION AND MODEL DESCRIPTION

It  seems appealing  to  apply  an  epidemiological  model  to  the  news population,  once  the 
available  evidences were precisely the amount of published news about each catastrophe. 
However, there is an immediate problem concerning this approach - news on newspapers and 
magazines,  once  they  are  published,  they  do  not  change,  so  they  cannot  undergo  state 
transitions. On the other hand  journalists can change their state of willingness to produce 
news about a subject. So the question was: would it be possible to assess information about 
this population from available data about published news? Assuming, a priori, yes, the search 
for an appropriate epidemiological model for the journalists population was elaborated. Such 
model should describe the possible states for the members of the population and should also 
describe the transitions between these states.

3.1 Compartmental Epidemiological Model for News Dissemination

Once the accident in question happens,  journalists  producing news about the accident are 
considered as influenced (state I). Those not publishing – yet – are considered as susceptible 
(state S). Only these two states are considered in the model, a simple epidemiological model 
– the SIS model. In fact there is no need to consider different states for other situations, like 
the  incubation  period (state E),  recovered  individuals (state  R)  and  non-interested  (or  
immune) individuals (state Z), for example. It is assumed that journalists that have never yet 
published on subjects related to the accident can still do it at any time – in other words, it is 
conservatively assumed that no one is immune. Also journalists that have stopped writing 
about it, can still publish on that subject  after a while – so there is no need to consider of the  
immunized recovered ones.  Finally,  there is  no reason to distinguish between  susceptible 
individuals (S)  and  those  in  the  incubation period (E),  once  every  non-influenced  are 
permanently exposed, because journalists are always exposed to news and direct contact with 
their colleagues.

INAC 2011, Belo Horizonte, MG, Brazil.



The total of the population of journalists is called J; so, we get J = I + S. The standard SIS 
epidemiological model is set by the following equations:

d
dt

S = - f S I
J
 + μ I

d
dt

I = f S I
J
 - μI

(3.1)

(3.2)

where J is the total of individuals, and is always constant in our model; f is the influence rate, 
and  assumes  always  non-negative  values  and,  when  multiplied  by  I/J,  it  becomes  the 
influence probability; and μ is the recovery rate, also assuming only non-negative values. S, I 
and J are, obviously, time functions.

It is appropriate to note that there is no reason for f to be constant. It is reasonable to expect 
the influence rate to decrease over time, once gradually readers’ interest decreases and so the 
press give less and less space to news on the event. Therefore the rate at which journalists 
become influenced should likewise decrease. To be consistent the model will treat  f as a 
function of time. It's natural to think of a function that has a  peak soon after the event and 
decays with time until it remains small and has little variation. The F = f . ( I / J ) corresponds 
to the probability of a journalist to become influenced after being exposed.

F := { {R0 + R1exp [-β(t - t0)]}
I
J

,     for t  ≥ t0

0,                      otherwise

(3.3)

Table 1. Parameters of interest of the function F – probability of publishing influenced 
news after being exposed to this type of news.

R0 Coefficient of the long-term news persistence of the event

R1 Coefficient of the news outbreak of the event

β Decay constant of the news outbreak of the event

However the differential equations that rule the state transitions of our system depends so far 
on functions S, I and J, which refer, respectively, to the number of susceptible, influenced and 
all journalists at a given moment. All these variables refer to data that is not available, for this 
reason some transformation should be made in the variables.

Some plausible hypotheses have to be made to relate the above mentioned quantities with the 
ones for which data is available. Let the number of news that cites the accident published at 
time t be denoted by Q(t); the number of news that don't cite the accident published at time t 
by P(t); and the total of published news at time t came to be denoted by N(t). It's obvious that 

INAC 2011, Belo Horizonte, MG, Brazil.



N = Q + P holds. Thereafter let  ψ be the average productivity of the journalists – in other 
words, the mean number of news a journalist publishes in one day. Indeed it's reasonable to 
think  ψ shouldn't vary when the studied time period is not too long.  Then the following 
equations are valid to relate the number of news – citing and not citing the accident – and the 
population of journalists:

S(t)  = ψP(t);     I(t)  = ψQ(t) ;     J(t) = ψN(t) (3.4)

Functions are then normalized with respect to their values at time t0 = 0; this day corresponds 
to the first day the news on the event appear. Adopting the notation  S0 := S(0),  I0 := I(0), 
J0 := J(0), the following definitions can be introduced:

Ŝ(t)  := 
S(t)
S0

 = 
P(t)
P0

; Î(t) := 
I(t)
I0

 = 
Q(t)
Q0

; Ĵ(t)  := 
J(t)
J0

 = 
N(t)
N0

(3.5)

This normalization brings, for example, the following ease: being the population J considered 
constant over the observation period, we get Ĵ(t) constant equal to 1. Therefore we have, so 
far, an epidemiological model defined by the following equation system:

d
dt

S = - FS + μI

d
dt

I = FS - μI

(3.6)

(3.7)

Dividing (3.6) by S0  and (3.7) by I0 we have:

d
dt

Ŝ  = - FŜ  + μ I
S0

d
dt

Î  = F S
I0

 - μÎ

(3.8)

(3.9)

Let's  attempt,  first,  to  the  equation  (3.9).  Since  Î is  a  normalized  function,  it  would  be 
interesting to write the equation only in terms of normalized functions. Of course, by the 
definition of Ŝ, we have

S = ŜS0

So, one can write equation (3.9) as follows:

d
dt

Î  = F
ŜS0

I0

 - μ Î (3.10)

Once P0 =  ψS0 and Q0 =  ψI0, the following equality holds:
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d
dt

Î  = F
ŜψS0

ψI0

 - μ Î  = F
ŜP0

Q0

 - μ Î (3.11)

It would be interesting this differential equation depend only on the function Î, once this fact 
would make its solution easier. So one can note that

Ŝ := S
S0

 = P
P0

 = N-Q
P0

(3.12)

As  N is a constant function,  N  ≡ N0 holds. Moreover we have  Q = ÎQ0. So the following 
equality is true:

Ŝ = 
N0 - Î Q0

P0
(3.13)

Thus equation (3.11) can be written as follows:

d
dt

Î  = F
N0 - ÎQ0

Q0

 - μ Î = F (N0

Q0

 - Î) - μ Î (3.14)

Let us turn to expression of F. One can observe that I / J = ψI / ψJ = Q / N, and using N ≡ N0 

and Q = ÎQ0, one can obtain the following formula:

F := { {R0 + R 1exp [- β(t -t0)]}
ÎQ0

N0

,     for t  ≥ t0

0,                          otherwise

(3.15)

Given this formula of F, we can finally write equation (3.14) in a such way that it depends 
only on Î. We then get a second order Bernoulli differential equation, which is given by the 
following formula:

d
dt

Î  = {R0  + R1exp [-β( t- to)]}
ÎQ0

N0
(N0

Q0

 - Î)  - μ Î

                       = - [R0 + R1 e-β t ]
Q0

N0

( Î )2  - [μ - (R0  + R1e-βt ) ] Î (3.16)

The  equation  (3.16)  governs,  accordingly,  in  our  model,  the  quantitative variation of 
influence parcel of  the  population  of  journalists.  From  there  we'll  seek  to  identify  the 
parameters of interest R0, R1, β e μ for each case – for each industrial catastrophe. These 
parameters,  once  given  the  utilization  of  each  one  at  the  model's  construction,  can  be 
interpreted as follows:
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Table 2. Parameters of interest of the developed model.

R0 Coefficient of the long-term news persistence of the event

R1 Coefficient of the news outbreak of the event

β Decay constant of the news outbreak of the event

μ Decay constant of influence (recovery rate from influenced state)

3.2 System Behavior for Large Time Values

It's worth recalling the definition of F – the probability of publishing influenced news after 
being exposed to this type of news:  

F := f I
J
 = { {R0 + R1exp [-β(t - t0)]}

I
J

,     for t  ≥ t0

0,                      otherwise

  (3.17)

                     = { {R0 + R 1exp [- β(t -t0)]}
ÎQ0

N0

,     for t  ≥ t0

0,                          otherwise

(3.18)

So we are able to see the equality

f  = R0  + R1exp [- β(t -to) ] (3.19)

involving the influence rate f. 

When t → ∞, we will get:

lim  t →∞  exp [- β(t -to) ] = 0  ⇒ (3.20)

⇒  lim t→∞  (R1) {exp [-β( t- to)]} = 0  ⇒ (3.21)

⇒  lim t→∞  f  = R 0
(3.22)

Thus, for enough large values of t, the influence rate f  is arbitrarily close to R0. 

This fact sets a scenario where sometimes the system, depending on  R0,  R1,  β and  μ,  can 
present  an interesting growing trend of influentiation on population. In other words: some 
events  would  observe  a  distal  turning  point from  which  the  proportion  of  influenced 
journalists I would start re-growing, once it is was declining since it peaked a few days after 
the disaster's occurrence. Indeed, given the equation (3.19) and the definition
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K0  := 
Q0

N0
(3.23)

we are able to write the ordinary differential equation (3.16) in the following form:

d
dt

Î  = - f K0 Î2 - μÎ  + f Î (3.24)

Such equation informs us that the function Î has critical points if and only if

- f K0 Î2 - μÎ  + f Î  = 0  ⇒ (3.25)

⇒  (Î)(- f K0 Î  - μ + f ) = 0 (3.26)

If Î = 0, then Î' = 0 and Î would remain zero forever – in other words, there would not be any 
influenced journalist, and so a re-infection process would not happen. Thus, let's see the case 
on which Î ≠ 0. In this case while

- f K0 Î  - μ + f  = 0,  then  d
dt

Î  ⩽ 0 (3.27)

and Î will be continuously approaching zero, however using equality (3.22), when t is enough 
large, the critical point at which Î starts to increase again can be calculated as the time t for 
which Î reaches the value

Î  = 
R0  - μ
R 0K0

(3.28)

Therefore one can conclude that  if  and only if  R0 > μ the critical  point  can be reached, 
because otherwise  Î will  reach zero at  an earlier  time and  d

dt Î  ⩽ 0  at  this  same point 
making Î = 0 to become a permanent condition.

For processes with R0 > μ  there will be an bounded oscillatory behavior because as soon as 
Î > 0 its derivative will become less than zero pushing it back again.

The only  point  to  be  made  here  is  that  this  model  has  the  potential  to  consider  natural 
“reinfections”.

4. DATA COLLECTION AND PROCESSING

Once we have the ordinary differential equation:

d
dt

Î  = - [R0  + R1 e-β t]
Q0

N0

( Î)2  - [μ - (R0 + R1e- βt ) ] Î (4.1)
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our main interest is to identify the parameters  R0,  R1,  β and  μ that provide the best fit of 
equation (4.1) to the reality of the collected data from the published news. We should find a 
point  (R0,  R1,  β, μ) in  R4 that fit  as good as possible the solution of this  equation to the 
collected data of published news about each disaster of interest; so we should get one optimal 
point (R0, R1, β, μ) for each catastrophe.

4.1 Data Collection

Data were collected from the NewsLibrary repository [3], provided by NewsBank Inc. [4]. 
This has shown to be the most robust, reliable and accessible repository available on the web 
at this time. Indeed, in a previous work [15], we used the Google News Archive Search; but 
this tool has shown to replace sometimes  the date on which an article was published with 
dates  cited  in  the  articles's  body,  providing too  many false-positives  on each search;  we 
communicate this failure to Google, but they said it's actually not a failure, but a resource to 
identify  the  time  periods  that  are  likely  to  be  relevant  to  each  query.  So the  option  for 
NewsLibrary repository was made.  The search took place in 2011 May and June. For each 
disaster, we have collected the number of articles published per day, since the first day in 
which there were articles citing the event – day 0 – until a certain time that was called day W, 
which depends on the case, as shown in Table 3. Thus, for each integer t, 0 ≤ t ≤ W, we have 
obtained a number  IR(t) that corresponds to the number of articles published by journalists 
that day. The graphs of the function IR(t) for all studied events are shown in Figure 1.
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Figure 1. Graphs of the function IR(t),  t = 0, ..., 44, for all studied events.
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Table 3. Analyzed period and correspondent day W for all studied events.

Event Occurrence Analyzed period day W

Chernobyl April 26, 1896 2 years 729

Bhopal December 3, 1984 2 years 729

Challenger January 28, 1986 2 years 729

Fukushima March 11, 2011 1½ month 44

Deepwater April 20, 2010 1 year 364

Japan March 11, 2011 1½ month 44

Haiti January 12, 2010 1 year 3 months 454

4.2 Data Smoothing

Once the data collection for each disaster was made, the data needed to be smoothed before 
being approximated, because it would be approximated by a continuous function – a solution 
of equation (4.1).

The procedure performed to smooth the data was as follows:

a) From day 0 to day when IR(t) reaches its maximum – day M – there is no change. 
That is, for every t, it remains the correspondent IR(t).

b) From the first days after the day M, we get the mean for each group of three days – 
one day can not belong to two different groups – and each day in this group receive as 
the value of IR(t) the average of their group. For example, in the case of Chernobyl, 
the day M occurs at t = 2. The first group of three days will so be the group for t = 3,  
4, 5. Then, as the average of published articles per day in this group is 184, we have 
IR(3) = IR(4) = IR(5) = 184. However, we used a minimum score: if the sum of the 
IR(t) values of the three days of the group is less than a certain CMIN, then the group 
will now contain one more day - the next day after the last day of the group – until it 
reaches the minimum score. Hence, each day of the group receives as  IR(t) value the 
average value of the group.

For each event, the correspondent minimum score CMIN was set as the average of the number 
of published articles per day in the first half of the period taken into account (which ends at 
day W):

CMIN  = 
2∑t=0

W−1
2 IR (t )

W+1 (4.2)
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We have used rounding by truncation in all operations for calculation of  CMIN. One should 
note the following: as consequence of imposition of the minimum score, the set of values  t 
can assume may reduce. Since a given time t', it is possible that the function IR(t) is always so 
small that no longer can reach minimum score untilt t = T. The set of values that t can assume 
now go from 0 to the last day of the last group that achieved the minimum score, which we 
will  call  the  day V,  that  depends on the case,  as shown in Table 4.  Once the data  were 
smoothed, it was normalized with respect to IR(0), given the very definition of the function Î.

4.3 Parameters Identification

Since we got the data smoothed and normalized, we proceeded to identify the parameters of 
interest. We have chosen to use Sequential Least Squares Programming technique [16] to find 
the point that minimizes our function with non-linear constraints. Indeed, we have tried many 
non-linear  optimization  methods:  downhill  simplex algorithm,  modified  Powell’s  method, 
conjugate  gradient  algorithm,  BFGS  algorithm,  Newton-Conjugate  Gradient  method, 
simulated annealing, and brute force technique; a few of them provided clearly bad results – 
the simulation of the equation of interest using such results got quite far from reality of data.  
Other ones were unable to complete optimization in acceptable time. The fastest and best 
choice was, undoubtedly, the Sequential Least Squares algorithm. 

Thus we proceeded to define the function to be minimized: let x = (R0, R1, β, μ) be as defined 
before. We called IS(x) the simulation – performed via the fourth-order Runge-Kutta method 
– of the ordinary differential equation (4.1) with the parameter set x, with initial conditions t0 

= 0, x(t0) = 1 (due to the fact that Î is the result of  a normalization of function I(t)). We then 
called  IS(x, t) the value of such simulation at time t, with t = 0, 1, 2, ..., V, where V is the  
number corresponding to the day V. The function given to the minimization algorithm was as 
follows:

E ( x ) = √∑t=0

V

[Is (x ,t )  - Ir (t ) ]
2 (4.3)

 

Table 4. CMIN and consequent day V for all studied events.

Event CMIN day V

Chernobyl 20 728

Bhopal 3 729

Challenger 26 727

Fukushima 659 42

Deepwater 217 363

Japan 1698 40

Haiti 404 449
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In other words: the goal was to minimize, with respect to  x,  the Euclidean norm of errors 
between the simulation and data collected from the NewsLibrary repository. One can note 
that,  on  each  iteration  of  the  optimization  process,  a  new  simulation  was  performed  to 
calculate the value of the objective function. The optimization program was executed, for all 
events, from the initial point (1, 1, 1, 1) – the canonical vector example with non-zero entries 
in R4. Table 5 contais the results obtained by performing these optmization process.

Once Table 5 was achieved, in order to assess the influence process behavior at the beggining 
of the analyzed period, we have calculated, for each disaster, the value f̄  defined as the 
average f – the influence rate, which is a function of  R0, R1, β and μ – for the first 40 days of 
the analyzed period of each event.  Then we have evaluated the difference f̄ −μ and, in 
Table 6, we have sorted the events by such difference, which can indicate, if it's greater, a  
stronger influence rate opposed to a weaker recuperation rate. Such values would meanwhile 
be affected by the period in which f̄ is evaluated. We have chosen to evalute f̄ for the 
first  40 days  of  the  analyzed  period  because  the  Japan earthquake  and  consequently  the 
Fukushima  accident  are  very  recent  events,  and  so  both  should  not  be  systems  with 
completely stable parameters.  We conjecture that the calculation of f̄ for a wider range of 
days would conduce Japan and Fukushima events to an approximation of their  similars – 
respectively Haiti and Chernobyl.

We have also calculated, for each disaster, the resilient endemic propensity [17], which was 
called ε and defined as follows:

ε := 1
R0  - μ (4.4)

A larger ε value can point to a propensity of the event to generate an endemic, in other words, 
a self sustaining influence process that however doesn't trigger a new outbreak or epidemic. 
Such measure may be interpreted as the persistency capacity  of the event to  become the 
subject of new articles last long after the disaster's ocurrence – in other words, events that 
posses greater ε values are more resilient in the media. Table 7 shows all events ordered by 
calculated ε values.

Table 5. Identified parameters and objective function value for all studied events.

Event R0 R1 β μ E(x)

Chernobyl 1.90161633 5.64453851 1.43305041 1.89824296 23.23606580

Bhopal 5.5789935 2.74049343 1.06153285 5.5666485 37.83153979

Challenger 4.22657173 45.71444984 8.70693565 4.2118337 2.16311943

Fukushima 19.5813878 0.81401107 0.29303129 19.53813254 2.45628832

Deepwater 5.95316998 0.13630052 0.0355955 5.9572922 16.44219916

Japan 4.95570448 0.21447007 0.18462508 4.95683549 0.86033893

Haiti 2.23739491 4.1986905 1.35348209 2.24174738 11.00282360
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Table 6. Events sorted by f̄−μ - influence rate strength - at the first 40 days of the 
analyzed period.

Event f̄ f̄−μ

Challenger 5.3696220759 1.1577883759

Chernobyl 2.0869456764 0.1887027164

Haiti 2.3789249099 0.1371775299

Fukushima 19.6615059701 0.1233734301

Bhopal 5.6837404353 0.1170919353

Deepwater 6.0271491561 0.0698569561

Japan 4.9874893643 0.0306538743

Table 7. Events sorted by ε – resilient endemic propensity.

Event ε

Chernobyl 296.4394655789

Bhopal 81.004455245

Challenger 67.8516735276

Fukushima 23.1185756368

Haiti -229.7545991127

Deepwater -242.5877318532

Japan -884.1654804107

As  discussed  in  subsection  3.2,  events  that  present  R0 >  μ have  long-term  reinfection  
pressure.  From Table  5  one  can  conclude  that  the  only  events  that  present  R0 >  μ are 
Chernobyl, Bhopal, Challenger and Fukushima. It's interesting to note that the only recent 
disaster in this  group is  Fukushima – justly the only event  occured in  a  nuclear  facility. 
Indeed,  it  seems  that  media  will  faster  forget  the  Japan  earthquake  itself  –  which 
unfortunately has caused too many deaths – but will not forget so fast the Fukushima nuclear 
power plant accident – which have not caused any death.

5. CONCLUSIONS

First it has to be noted that the research has used a news repository based in the USA and, 
although they collect news from all over the world, the majority of the sources come from the 
US. So the sample has a natural bias capturing more news items that may be of concern and 
interest to the US people. In general, media gives more prominence to disasters involving
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nuclear facilities than to other types of catastrophes. Comparing the strength of the influence 
rate  shortly  after  the  occurrence,  Chernobyl  nuclear  accident  ranked  second  and 
Fukushima/Daiichi  ranked  fourth,  well  ahead  of  Bhopal,  Deepwater  Horizon  and  Japan 
Earthquake itself, whose tragic consequences were of much larger proportion. Something that 
would not occur, should the media attention be distributed in proportion to the seriousness of 
the event.  Given some discount due to the bias mentioned before,  one can conclude that 
nuclear accidents don't receive always the vast majority of the attention of media agents: 
events that causes more commotion in public, with great appeal to emotion, or when they are 
associated to misfortunes of defenseless people seems to cause a even larger news outbreak, 
even when without involving nuclear issues. Falling into this category are the Challenger 
shuttle explosion – which presents the biggest R1 (news outbreak coefficient) value – and of 
the  devastating  Haiti  earthquake,  the  only  non-nuclear  events  that  exceed  respectively 
Chernobyl and Fukushima in short-term influence rate.

The accident of the space shuttle caused great commotion in the U.S., as many people was 
watching the launch alive on TV and the explosion was terrifying to the American people. 
But, after Challenger, the Chernobyl accident is the most short-time striking event we have 
studied. In third place comes the Haiti earthquake, another  very affecting event, given the 
poverty of the place. Moreover one can note that Japan earthquake itself presents the smallest 
influence rate value shortly after occurred; this is certainly due to this disaster had not caused 
so much commotion in public as Haiti earthquake did, once Japan is doubtless one of the 
richest  countries  in  world  and  they  have  dealt  very  effectively  with  the  short  term 
consequences of it.  Besides there seems to be enough human and economic resources to 
rebuild what was sorely destroyed.

When we look the long-term scenario for each event we also realize that disasters involving 
nuclear  issues  receive  differentiated  preference  from  media  agents.  Chernobyl  nuclear 
accident presents the greatest  propensity  to  become endemic.  This seems to indicate  that 
media will keep on coming back to the subject of nuclear accidents, much more frequently 
and longer than they do for others types of events. While Chernobyl has the greatest tendency 
of  persistence  on  media  of  all  catastrophes,  Fukushima  plant  accident  has  the  greatest 
propensity of endemic of all  its contemporary disasters:  even the Haiti  earthquake is less 
resilient  in  media  than  Fukushima,  as  well  as  Challenger  explosion  is  less  resilient  than 
Chernobyl. While noting that when more data is accumulated on Fukushima its respective 
data on tables 3 to 7 may change, it seems Fukushima is not as resilient as Chernobyl and it  
could even stay less resilient than the Bhopal gas tragedy. From these findings one might 
conclude that Fukushima event is not a “new Chernobyl event” regarding dissemination and 
persistence of news in the media.

Lastly it is clear that there is still much work to be conducted in modeling news dissemination 
by epidemiological  models.  The next  targeted step involve implementation  of  our  model 
equipped with other – maybe better – probability functions for influence rate f. Furthermore 
the  use  of  other  metrics  from epidemiological  sciences  to  help  the  interpretation  of  the 
modeled data has to be careful and thoroughly analyzed. An enlargement of the model to 
include multiple “generating facts” is currently being considered as this would be very useful 
to  model  further  peaks  that  could  be  generated  world  conferences  that  are  organized  to 
discuss the event one or more years later. Finally a search is being done for other enough 
robust and accessible repositories of periodicals  from other countries and continents. The 
purpose is to be able to evaluate the Country bias referred in the beginning of this section.
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