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Abstract  

The use of three different quadrature schemes in discrete-ordinates calculations of neutral parti-
cle transport in ducts of arbitrary but uniform cross-sectional geometry is studied. The considered  

schemes are: (i) the single-quadrature scheme defined by the standard Gauss-Chebyshev quadrature  

generated by the measure (1 — 1,2)12dµ on [-1, 1], (ii) the double-quadrature scheme based on the  

nonstandard Gaussian quadrature generated by the measure (1 — p2)112dp on [0,1] and its counterpart  
on [-1, 0], and (iii) the double-quadrature scheme based on the standard Gauss-Legendre quadrature  

mapped onto [-1, 0] and [0, 1]. To implement the discrete-ordinates method, an approximate model  

of transport in ducts derived from a weighted residual procedure with two basis and two weight func-
tions is adopted. The main conclusion of this work is that the double-quadrature scheme based on the  

nonstandard measure is the best of the three. However, for those who do not wish to deal with the  

special techniques of the constructive theory of orthogonal polynomials that are required to generate 
 

this scheme, the standard double Gauss-Legendre scheme constitutes a viable alternative.  

1 Introduction  

The problem of neutral-particle transport in an evacuated duct with a purely scattering wall is known  

in kinetic theory as free molecular flow. As a classical problem in the field, this problem has been  

studied since early times (Loeb, 1934); even so, new studies and approaches continue to be reported  

in the literature along the years (Davis, 1960; Garelis, 1973; Fustoss, 1981).  

Some years ago, Prinja and Pomraning (Prinja, 1984) contributed to a renewal of the interest in the  

duct problem from the perspective of controlled-fusion research. As pointed out by these authors,  

the problem of quantifying the transport of energetic neutral particles, mainly atomic and molecular  

hydrogen isotopes and helium, in ducts of various cross-sectional geometries in tokamak devices  

is a very important one. Since the problem involves, in its most general form, multidimensional  

geometry, energy dependence and complicated wall scattering models, Monte Carlo simulation has  

been the preferred approach. However, Monte Carlo calculations are expensive, and this motivated  

Prinja and Pomraning to propose an approximate one-dimensional model for treating this problem.  

Their model includes the use of a standard multigroup approximation to treat the energy dependence  

of the problem, but the analysis in their paper was restricted to the space-angle treatment. Recently,  

the analysis has been extended to include energy dependence and a wall scattering model that allows  

the scattered particle to reappear at a different site on the wall than the original scattering site (Prinja,  

1996). 
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Deterministic Transport Theory Methods I  

The approximate model developed by Prinja and Pomraning made it possible a reduction in the num-
ber of independent variables in the problem from five (three in space, two in angle) to two (one in  

space, one in angle). The essential idea of the model is to average the distance between wall colli-
sions over the duct cross section and the azimuthal angle, and to interpret the resulting expression as  

a mean-free-path. As a result of this physical insight, a transport equation in the (z, p) variables with  
an "interaction cross section" proportional to (1 — p2)1/2 was obtained (Prinja, 1984). 

At about the same time that the Prinja-Pomraning model was introduced, Larsen developed a more 
mathematically oriented way of deriving the model, by projecting the original transport equation and 
associated boundary conditions onto a (z, µ) subspace (Larsen, 1984). Larsen also showed that the 
Prinja-Pomraning model corresponds to the lowest order approximation in a hierarchy of approxima-
tions derived by a weighted residual procedure, but he did not pursue specific representations of basis 
and weight functions applicable to higher order models. 

In a subsequent work (Larsen, 1986), Larsen, Malvagi and Pomraning were able to improve the 
precision of the one-dimensional model by considering the next order approximation in Larsen's 
hierarchy of approximations. As their model makes use of two basis functions, these authors called 
it the N = 2 model. The shape of the basis functions used to approximate the desired solution 
was suggested by the form of the angular flux in a duct subject to an isotropic source of particles 
emerging from the wall. In prescribing the weight functions against which the original transport 
equation and the associated boundary conditions were projected, two methods were considered: (i) 
the Galerkin procedure, based on weight functions that are the same as the basis functions for the 
problem; and (ii) a variational principle, based on weight functions that are the basis functions for 
the adjoint problem. In their sample calculations, Larsen, Malvagi and Pomraning used the discrete-
ordinates method with a standard quadrature scheme (denoted as the SS scheme in this work) based 
on the Chebyshev polynomials of the second kind to compute reflection probabilities for semi-infinite 
and finite circular ducts and transmission probabilities for finite circular ducts. The discrete-ordinates 
equations were solved analytically for the case of a semi-infinite duct; for finite ducts, these equations 
were spatially discretized and solved numerically. Their converged numerical results compared well 
with reference results obtained from the Monte Carlo, integral equation and view factor approaches: 
a maximum error of 7% was observed in the reflection and transmission probabilities for the test 
cases they considered and the computer time was only a fraction (typically 1/10) of the Monte Carlo 
and view factor computer times. On the other hand, the N = 1 model of Prinja and Pomraning 
exhibited substantially larger errors that reached — 400% in the transmission probabilities for some 
test cases.  

Recently, we devised an improved way (Garcia, 1999) of implementing the discrete-ordinates method 
for solving the finite duct problem in the N = 2 model. A reduction (in some cases, a factor of 
10) in the number of ordinates used by Larsen, Malvagi and Pomraning to obtain converged results 
for the reflection and transmission probabilities for circular ducts was achieved by decomposing the 
problem into uncollided and collided problems prior to using the discrete-ordinates approximation, 
and by using a double-quadrature scheme (denoted here as the DN scheme) based on the nonstandard 
half-range quadrature generated by the measure (1— p2)"2dp  on [0, 1] (and its counterpart on [-1, 0]) 
to solve the collided problem. 

In this work, we study the alternative of using a double-quadrature scheme (denoted as the DS scheme) 
based on the standard Gauss-Legendre quadrature mapped onto [-1, 0] and [0,1] to solve the collided 
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Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications  

problem in the discrete-ordinates approximation to the N = 2 model. The idea of trying the Gauss-
Legendre scheme for this problem was suggested by Siewert (Siewert, 1998), who has successfully  

used convenient mappings of this quadrature to develop discrete-ordinates solutions for various prob-
lems defined by transport equations with unconventional scattering terms (Barichello, 1999; Siewert,  

1999a; Siewert, 1999b).  

2 The model  

Following Larsen, Malvagi and Pomraning (Larsen, 1986), we note that the particle distribution func-
tion W(r,1) in an evacuated duct of cross-sectional area A and length Z must satisfy the transport  
equation  

SI  • DxY(r, SZ) = 0,  

where r and 12 are, respectively, the position and the direction of particle motion, and can be expressed  

in Cartesian coordinates as r = (x, y, z) and SZ = [(1 — µ2) 1i2  cos cp, (1 — µ2)1i2 sin yo, µ] . The  
region in space where Eq. (1) is valid consists of the interior of the duct, which is specified by R =  
[(x, y) h(x, y) < 0] and 0 < z < Z. Here, h(x, y) is a function that describes the duct cross-
sectional shape, so that 8R = [(x, y) I h(x, y) = 0] denotes the contour of the duct inner wall.  

With these definitions, the duct cross-sectional area and the duct perimeter are given, respectively, by  

A = fR  dxdy and L = f aR  ds, where ds is an elementary arc length.  

In regard to the boundary conditions needed to complete the formulation of the problem, prescribed  

incident particle distributions are assumed at the duct ends, i.e.  

`y(x,y, 0 ,µ,(G) = F(x,y,µ,So) 

and  

`p(x,y, Z, — µ,(p) = G(x,y, µ,cP),  

for (x, y) E R, 0 < µ <1 and 0 < cP < 2/1. In addition, the duct inner wall is characterized by partial  

isotropic reflection, written in general form as  

—St • nW(r,11) = 
 f 
	p(r, SZ ^ 	 ft)W(r, IZ')dfl', 
Y•n>o 
	 (3)  

for (x, y) E 8R, 0 < z < Z and SZ • n < 0, where

( 1 p(r, ft' 	1) = - ( )  (1  • n)(1' •  n) , 	 (4)  

n denotes the unit outward normal vector at position r on 8R, and c is the probability that a particle  

striking the inner wall will be reflected towards the duct interior.  

In the N = 2 model discussed in detail by Larsen, Malvagi and Pomraning (Larsen, 1986), the par-
ticle distribution function kP (x, y, z, µ, cp) is approximated in terms of the prescribed basis functions  

ay (x, y, cp), j = 1 and 2, as  

`P (x, y, z, µ, cp) 	(z , µ)a1 (x, y, cp) + 412 (z, µ)a2 (x, y, cP), 	 (5)  
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Deterministic Transport Theory Methods I  

and a weighted residual procedure (Galerkin or variational) is used to deduce two coupled transport 
equations for the coefficients of the approximation %Pi (z, µ), j = 1 and 2, and their corresponding 
boundary conditions. The resulting transport equations can be written in matrix form as 

¡1 

µaz  `Ir (z, µ) + (1 — 142)1/2Ati'(z, µ) 
= c(1 

 µ 2 ) 1 ^2B J (1 — pay ̂ 2 `y(z ^ F^ )dµ ^ ^ 	 (6)  
1  

for 0 < z < Z and —1 < µ < 1, and the boundary conditions as  

`I'(0, µ) = F(µ) 	 (7a)  

and  

`F (Z, -µ) = G(µ),  

for 0 < p < 1. Here W(z, p) is a column vector of two components, the unknown coefficients  

(z, p), j = 1 and 2, in the approximate representation expressed by Eq. (5), A and B are 2 x 2  
full matrices that depend on the duct cross-sectional geometry and on the prescriptions of the basis  

and weight functions (Larsen, 1986) and the vectors F(p) and G(p) have, respectively, components  

F, (µ) and G; (µ), j = 1 and 2, that are given by  

1  Li2r 
= 2

^rA 	 ^j (
X , y, ^P)F(z, y, µ, ^P)d^pdxdy 

and  
1 
 % 

2„ 

G, (µ) = 271 1, ^ a^ (x, y, ^P)G(x,  y, µ, ^P)d,pdxdy, 
R 0  

where ,31  (x, y, gyp), j = 1 and 2, are the prescribed weight functions. 

3 Decomposition into uncollided and collided problems  

The desired solution to the problem formulated by Eqs. (6) and (7) can be split into uncollided and 
collided components as 

'I' (z, µ) = *0  (z, µ) + *.(z, µ) • 	 (9)  

Here the uncollided component of the solution, * o (z, p), is defined so that it satisfies Eq. (6) for 
c = 0 and Eqs. (7), i.e. 

µã 'I'o(z , µ) + ( 1  — µ2 ) 112A^o(z , µ) = 0 ,  

foro < z < Z  and  < µ < 1, and 

= F (µ )  

and  

Alto  (Z, —µ) = G (µ),  
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for 0 < p < 1, while the collided component, W. (z, p), must satisfy 

¡
1 

az Ft`I`„ (z, Ft) + ( 1  - 1 2 )
1/2A` ,.(z, A) = irc(1 - µ2) l/2B J  (1 -µz ) 1/2 4, .(z, lli )dp  + Q(z, p),  

1 

(12)  

for 0 < z < Z and -1 < p < 1, and the boundary conditions 

* * (0, p,) =W. (Z, -A)  =0  

for 0 < p < 1. We note that in Eq. (12) the first-collision source Q(z, p) is expressed as 

¡
1 

Q(z, A)) = ^
2c 

(1 - p2)1/2B  J (1  - µz )1/z 'Yo(z, µ)d1^', 
1  

and becomes explicitly known once the uncollided problem is solved. 

In regard to the uncollided problem, a diagonalization procedure was used (Garcia, 1999) to reduce 
this problem to a decoupled "two-group” problem for which an analytical solution can be readily 
found. The resulting uncollided solution can be written as (Garcia, 1999) 

`I`o(z, p) = [Ulze-

a1(1-142)1/2z//+ + U21e
-

a2(1-A2)'/2z/µl F(A) 
 

and  

`Iio(z, -p) 
= [U1ze-ai(1-4`2)'/2(z-z)/µ + U2ie- a2(1-1.2)1/2(z-z)/µ] G(µ),  

for 0 < z < Z and 0 < p < 1, where A i  and A2  are the eigenvalues of A and, for A l  # A2, 

r 

(13)  

(14)  

(15a) 

(15b) 

Uij =  
ai -

A
j  

(Ai  — a22  — (ai — (122)(Aj — a22)/a21  

(221 — (Aj a22) 

(16)  

with ail denoting the (i, i) element of A. We note that an alternative representation of Uij is available 
for treating the degenerate case A l  = A2, and that, to avoid the need of using complex arithmetic in the 
calculation, Eqs. (15) were reformulated in terms of real quantities for the case where the eigenvalues 
of A appear as a complex conjugate pair (Garcia, 1999). 

4 A numerical discrete -ordinates solution for the collided problem  

If the spatial dependence of Eq. (12) is discretized according to a spatial mesh defined by the points 
zk , k = 0, 1, ... , K, with zo  = 0 and zK = Z, and the angular dependence according to a set of 
discrete directions p i , i = 1, 2, ... , M, chosen as the nodes of the quadrature of order M used to 
approximate the integral in this equation, then the fully numerical discrete-ordinates version of the 
collided problem defined by Eqs. (12) and (13) can be written as the set of linear algebraic equations, 
for k = 1, 2, ... , K and i = 1, 2, ... , M,  

M 

—Pi 
k 

[^k ,i - Wk-1,4+ ( 1  - Ili )1/ 2A^ k = 
ĉ 

(1 - Ili ) 1/2B 	'I'k,j ^ ̂iWj 	+ Qk,i, 	( 1 7)  
j- 1  

 

ptémber, 999 `Ntádiii9*5poin  

 



Deterministic Transport Theory Methods I 

subject to the boundary conditions 

for the values of i such that pi > 0, and 

= 0, 

11K,i -= 0, 

	

for the values of i such that pi < O. Here Ak = Zk 4-11 	= 	 is the vector of 
coefficients for the collided angular flux at the mesh edge zk along the ordinate pi, 

1 fzh 	, 
41k,i = 	 W.a.Z, iii)dz 	 (19) 

"k zk-i 

is the vector of mesh-averaged coefficients for the collided angular flux along the ordinate pi, 

1 	z „, 
41k,i = 	 WtZ)Iii)d•Z 	 (20) 

J.-1k zk_i 

is the vector of mesh-averaged sources along the ordinate pi, {wil are the quadrature weights, and 

w = f 1 	, for the SS and the DN quadrature schemes, 
3 	(1 - 4)1/2 , for the DS quadrature scheme. (21) 

Looking at Eqs. (17) and (18), we can conclude that we have only 2KM equations for the 4KM un-
knowns (2K M edge quantities and 2KM mesh-averaged quantities). A simple way of obtaining the 
2K M complementary relations needed to match the number of equations to the number of unknowns 
is to use the "diamond-difference" approximation (Bell, 1970) 

= 	 (22) 

for k = 1, 2, ... , K and i = 1, 2, ... , M. Equation (22) simply approximates the mesh-averaged 
coefficient vector as the average between the coefficient vectors at the edges of the mesh, and thus 
we can use this equation to eliminate the mesh-averaged coefficient vectors in Eq. (17), in analogy 
with the procedure adopted for the conventional scalar case (Bell, 1970). Applying a diagonalization 
procedure similar to the one used to find the solution for the uncollided problem in Sec. 3, we can 
write the resulting equation as (Garcia, 1999) 

= Peik 	 CikSk,i, 

for the values of i such that pi > 0, and 

[2Cik 	±CikSk,i, 

for the values of i such that pi < O. In these equations, we use the definitions 

Ak [C so = 	_fi 4)1/2BD., TX) 

	

jVV j 	k-1,j 	11 k,j) 	Qk,i 
IN I 1r 	 j=i 

(23a) 

(23b) 

(24) 
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and  

1 	 1 + Sika22  

+̂sk — 
(1 + Sidt1)(1  + SikA2)  

— sikazl 

Sik(A1 — a22)(A2 — a22)/a21  

1 + Sik ( i11 + 	— a22)  

(25)  

with sik = (1 — 4) 1/2 6,k  / (21141).  Again, we consider that Eq. (25) is in a convenient form only  

if the eigenvalues A 1  and a2  are real. For the case where the eigenvalues appear as a complex pair,  
simple algebraic manipulations can be used to deduce an alternative representation for Cik, expressed  
in terms of real quantities only (Garcia, 1999).  

To solve Eqs. (23), we have employed a standard sweep technique (Bell, 1970), where the boundary  
condition expressed by Eq. (18a) is used to initiate the application of Eq. (23a) across the mesh from  
left to right and the boundary condition expressed by Eq. (18b) is used to initiate the application of  
Eq. (23b) in the reverse direction. An initial value for the scattering component of the total source  
vector Sk,i defined by Eq. (24) is postulated (we used 0), and the process is considered converged  
when the computed components of do not differ (in relative terms) by more than a specified  
amount (10 -8  was our choice), for all k = 0, 1, ... , K and i = 1, 2, ... , M, in two successive  
sweeps.  

5 Numerical results 

In this section, we report the results of our investigation on the use of the SS, DN and DS quadrature  
schemes defined in the Introduction to solve the collided problem. We consider a test problem defined  
by an isotropic and uniform distribution of particles entering a circular duct of unitary radius at z =  0 
(Larsen, 1986; Garcia, 1999). To begin, we report in Table 1 our converged results for the reflection  
(R) and transmission (T) probabilities  

1 

R = 2 f 0/1 (0, — µ)dl^ 

o  

and  

T = 2 f F^`y1 (Z, µ)dl^ , 
o  

for several values of the wall scattering probability (c) and of the duct length (Z) expressed in mul-
tiples of the duct radius. Assuming that the quadrature nodes have been ordered so that 1 > µ 1  >  
µ2  > • • • > pm  > —1 and defining m = M/2, we can show that the discrete-ordinates results for the  

reflection and transmission probabilities can be expressed, for this problem, as  

M 

R = 2  E  
i=m+1  

and  

T = 2 f /Aim (Z,  p)dp  + 2  ,̂ wifci(1 — µ: ) -112Wiw.1(Zr  

o 
 

1 	 m 

i=1  

(26a) 

(26b)  

(27a)  

(27b)  
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Deterministic Transport Theory Methods I 

where W. 1 (0, ps), i = m + 1, m + 2, ... , M, and T . 1 (Z, µ; h = 1, 2 , ... , Bare the discrete-
ordinates results for the first components of the collided-coefficient vectors S.(0, p i), µ; < 0, and 
41. (Z, p .,) p > Q respectively, and T oi  (Z, p) is the first component of the uncollided-coefficient 
vector given by Eq. (15a) for z = Z. We note that the results reported in Table 1 are based on the use 
of the DN quadrature scheme of order 256 (the other two schemes yielded the same converged results 
but at the expense of higher quadrature orders) and a uniform spatial discretization scheme with 640 
mesh intervals for the cases where Z = 1 and 2560 mesh intervals for the cases where Z = 20. 
In addition, we note that we have found that the uncollided integral in Eq. (27b) can be accurately 
computed with the standard Gauss-Legendre quadrature of order 200 mapped onto [0,1], for all of the 
test cases considered in this work. 

Table I : Converged reflection and 
transmission probabilities. 

c Z R T 

0.2 1 4.6571(-2) 4.1431(-1) 

0.2 20 5.4032(-2) 2.5011(-3) 

0.5 1 1.3105(-1) 4.8516(-1) 

0.5 20 1.6540(-1) 2.7229(-3) 

0.8 1 2.4067( — I) 5.8096(-1) 

0.8 20 3.6732(-1) 3.8224(-3) 

Using the results in Table 1 as our reference, we show in Table 2 the relative percent deviations 
observed in the reflection and transmission probabilities obtained from discrete-ordinates calcula-
tions using the SS, DN and DS quadrature schemes in various orders. Uniform spatial discretization 
schemes with 80 mesh intervals for the cases where Z = 1 and 1280 mesh intervals for the cases 
where Z = 20 were used to generate these results. As can be seen in this table, the DN scheme 
introduced in our previous work (Garcia, 1999) converges, in general, more quickly than the other 
schemes, as M increases. On the other hand, the DS scheme yields, in most cases, the worst results 
in the lowest order of approximation (M = 2), but shows, especially for the reflection probability, a 
faster convergence rate than the SS scheme, as M increases. 

6 Conclusions 

Based on the numerical studies performed, we have concluded that, among the three quadrature 
schemes considered in this work for discrete-ordinates calculations in the N = 2 model of neu-
tral particle transport in ducts, the DN scheme is the best. As this quadrature scheme is based on a 
nonstandard measure, and thus requires more laborious computational techniques (Gautschi, 1985) to 
be generated than the others, the DS scheme is a good option if one does not wish to deal with these 
techniques. Finally, it should be made clear that the amount of computer time needed to generate 
these quadratures is not at issue, since we have found that it is always negligible when compared with 
the amount of computer time needed to perform the rest of the calculation, which is essentially the 
same for all of the quadrature schemes studied. 
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Table 2: Relative percent deviations in the reflection and transmission 
probabilities computed with the SS, DN and DS quadrature schemes. 

Duct 
Parameters 

Quadrature 
Order 

Percent Deviation in the 
Reflection Probab lity 

Percent Deviation in the 
Transmission Probability 

c Z M SS DN DS SS DN DS 

2 22.1 13.0 35.1 2.3 0.71 3.6 
4 7.5 -0.48 1.2 0.24 -0.24 -0.19 

' 8 2.0 0.026 0.35 0.034 -0.002 0.039 
0.2 1 16 0.59 0.0 0.043 0.022 0.0 0.005 

32 0.15 0.0 0.006 0.005 0.0 0.0 
64 0.039 0.0 0.0 0.0 0.0 0.0 

128 0.011 0.0 0.0 0.0 0.0 0.0 

2 14.8 2.3 27.7 -2.1 -1.8 
4 5.9 -0.25 3.5 -1.8 -1.6 
8 1.9 -0.024 0.52 -1.6 -1.7 

0.2 20 16 0.52 0.002 0.072 -2.3 -1.8 
32 0.14 0.0 0.009 -0.36 0.31 
64 0.033 0.0 0.0 0.0 0.044 

128 0.007 0.0 0.0 0.0 0.004 

2 14.4 8.9 27.3 3.9 1.2 7.0 
4 5.3 -0.36 1.5 0.42 -0.48 -0.26 
8 1.4 0.023 0.34 0.029 -0.002 0.095 

0.5 1 16 0.42 0.0 0.046 0.031 0.0 0.012 
32 0.11 0.0 0.008 0.008 0.0 0.002 
64 0.023 0.0 0.0 0.002 0.0 0.0 

128 0.008 0.0 0.0 0.002 0.0 0.0 

2 8.8 

oo 
kr

■ 

c
n

v
p

o
q

0
.
0

0
  

,-4
6
6

cD
o

c:S
ci  

1 

24.0 -7.4 -8.1 -6.7 
4 3.9 3.6 -6.6 -7.0 -6.2 
8 1.3 0.60 -7.0 -6.3 -6.6 

0.5 20 16 0.36 0.085 -4.6 -8.0 -5.4 
32 0.091 0.012 -0.14 -1.1 1.0 
64 0.024 0.0 0.004 -0.004 0.14 

128 0.006 0.0 0.0 0.0 0.011 

2 5.7 4.3 18.6 2.8 0.76 7.7 
4 2.8 0.054 2.2 0.15 -0.50 0.065 
8 0.83 0.012 0.32 -0.069 0.0 0.14 

0.8 1 16 0.23 0.0 0.046 0.002 0.0 0.017 
32 0.062 0.0 0.004 0.0 0.0 0.002 
64 0.017 0.0 0.0 0.0 0.0 0.0 

128 0.004 0.0 0.0 0.0 0.0 0.0 

2 2.3 -5.7 28.7 -28.6 -30.5 -22.2 
4 1.6 -1.2 4.2 -24.8 -26.5 -22.3 
8 0.63 -0.11 0.77 -22.7 -23.2 -21.0 

0.8 20 16 0.19 -0.003 0.11 -8.8 -19.0 -8.1 
32 0.049 0.0 0.016 -0.21 -1.9 2.4 
64 0.014 0.0 0.003 0.013 0.010 0.28 

128 0.003 0.0 0.0 0.0 0.005 0.026 
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