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ABSTRACT 

 
 

To carry out sensitivity analysis on a finned surface, the differential perturbative method is 
applied in a heat conduction problem within a thermal system, made up of a one-dimensional 
circumferential fin on a nuclear fuel element. The model is described by the temperature 
distribution equation and the further specific boundary conditions. The adjoint system is used to 
determine the sensitivity coefficients to the case of interest. Both, the direct model and the 
perturbative formalism resultant equations are solved. The heat flow rate at a specific point of the 
fin and the average temperature excess were the functional responses studied. The half thickness, 
the thermal conductivity, the heat transfer coefficients and the heat flow at the base of the fin were 
the parameters of interest to the sensitivity analysis. The results obtained through the perturbative 
method and the direct variation presented, in a general form and within acceptable physical limits, 
good concordance and excellent representativeness to the analyzed cases. One evidences that the 
differential formalism is an important tool to the sensitivity analysis, and it validates the application 
of the methodology in heat transmission problems on extended surfaces. The method proves to be 
useful and efficient while elaborating thermal engineering projects.  
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I.  INTRODUCTION 
 

In thermal engineering, the complete analysis of the 
heat transmission plays an important role to assess 
appropriate dimensioning of the equipments and to 
guarantee their efficiency, economy and security.  

When there is a large difference in reference to the 
heat transfer coefficient on two sides of a surface, the 
convective heat transport can be increased through the use 
of fins on the lower coefficient side, say, extending the 
thermal contact area [1].  

The use of extended surfaces is currently very 
relevant because it enables the transmission of a large heat 
amount among fluids and surfaces. Those surfaces can be 
found in many thermal systems, such as: nuclear fuel 
elements, condensers and heat exchangers used at the 
industry, and also in vehicle radiators, cryogenics, air 
conditioners, gas turbines, microcomputers and other 
applications.    

The use of fins on the nuclear fuel elements is a 
characteristic of gas-cooled nuclear reactors, because this 

fluid has a low heat transfer coefficient. There are few 
reactors that have this shape, about 30 units worldwide. 

In the optimization of thermal systems is frequently 
used a computational model that represents the real 
phenomena. However, the model entry data, called 
parameters as well, are subject to many uncertainties or 
imprecisions that can impose important restrictions to the 
reliability of the results in the output of the model.  

Thus, the system analysis (thermal, for example), at 
the industrial sector or at scientific studies, will include the 
determination of the resultant influence of the variation, or 
perturbation, of some parameter of the problem in the 
system behavior. This technique is known as “sensitivity 
analysis” [2]. 

The sensitivity analysis methodology using the direct  
or conventional method, consists of the variation of one or 
more control parameters maintaining the others fixed. The 
calculation is repeated with the parameters of interest, 
constructing “response surface”. This method has several 
disadvantages, which make it sometimes an impracticable 
methodology, because many parameters can cause 
alterations (or perturbations) in the system. Moreover, some 



models adopted for the calculations are very complex and 
time-consuming.     

In reference to the perturbative methods, these are 
applied to the sensitivity analysis mainly when there is not 
an analytical solution for the model and when its numerical 
solution is very expensive from a CPU-time stand point. 
The principal advantage of these formalisms, in a general 
form, is the sensitivity calculus of the response in reference 
to the equation parameters without previous choosing of the 
parameter variation range (the opposite of the direct 
method, where the previous choosing is compulsory).  For 
the calculation of the new response, for each parameter 
variation, is used an expression of simple resolution, and it 
works with an unique additional equation system for each 
analyzed response. Thus, it makes viable the model solution 
in complex equations and it reduces the calculation time. 
The methodology is currently expanding to other 
engineering areas and industrial applications [3]. Previous 
research works have had successful results that were 
obtained by [4], that used the formalism in a solute transfer 
model through soils; [5], in a steam generator model used in 
light water cooled nuclear reactors; and [6], in 
waterhammer problems in hydraulic networks. 

The principal objective of this paper is to carry out a 
sensitivity analysis, using the differential formalism of the 
perturbation theory to determine the influence of the 
parameter variations in the functional responses of interest. 
The method is applied to a problem of heat conduction, 
made up of a one-dimensional circumferential fin on a 
nuclear fuel element with specific boundary conditions. The 
heat flow rate at a specific point of the fin and the average 
temperature excess were the functional responses studied. 
The half thickness, the thermal conductivity, the heat 
transfer coefficients and the heat flow at the base of the fin 
were the parameters of interest to the sensitivity analysis. 
The obtained results will be discussed considering the 
influence of each studied parameter in the thermal system 
perturbation, for the given conditions. In this way, the more 
sensible parameters will be determined, targets of special 
care, while studying and elaborating projects of finned 
thermal equipments. The advantages and the validity of this 
application in extended surfaces will be presented. 

 
 

II.  THE UNIFORM THICKNESS 
CIRCUMFERENTIAL FIN MODEL 

 
General Considerations.  The uniform thickness 
circumferential fin is a common type of transversal 
extended surface, used in several thermal equipments, 
mainly in industrial heat exchange pipes, as well as in gas-
cooled nuclear reactor fuel elements.  

The thermal sensitivity analysis that is carried out 
through the application of the differential perturbative 
method is the main focus of this paper. In this section, the 
model will be described with the considerations and 
boundary conditions. Next, the fin temperature distribution 
equation is solved for the temperature excess in the fin and 
heat flux is obtained. 

 
Description of the Model, Considerations and Boundary 
Conditions.  The cylindrical coordinates and the Bessel 
functions for the solution of the problem are used to study 
the fin. The uniform thickness circumferential fin model, 
fixed on the nuclear fuel element, is shown on Fig. 1, where 

0r  is the fin base radius, i.e., the fuel element radius,  
1r  is 

the fin and 
02y is the fin thickness.  

 
 
 
 
 
 
 
 

 

 

 

 

Figure 1.  Uniform Thickness Circumferential Fin.  
 
 

Considerations to the studied model: 
 
 - the cooling fluid temperature, 

ft , is constant around the 

fin; 
 - the heat transfer coefficient, h , along the fin, is an 
uniform value; 
 - the fin is made of homogeneous material and it is 
assumed that the thermal conductivity coefficient k  has an 
uniform value, taken at the mean temperature of the fin; 
 - the temperature distribution and the heat conduction are 
one-dimensional for a low Biot number. The temperature is 
a function of the radius r only, because the thickness is very 
small if it is compared with the value of 

01 rr − ; 

 - the fin heat generation is negligible, that is, 0''' =q . 

 
The fin temperature distribution is obtained through 

the analytical solution of the Eq. (1) [7],  
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( t  is the temperature of the fin). 
The boundary conditions are obtained with the 

knowledge of the heat flow in two points of the fin: 
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The boundary condition at 'r  is deduced through a 

process that the fin surface is extended in its length by half 
of the original thickness, and the new edge is supposed to 
be isolated. According to [8], the errors in relation to that 
approximation are less than 8% for a Biot number less than 
0.5. The studied case has a Biot number of 17.02 0 =kyh , 

using the Table 1 data. Thus, 'r  is the fin equivalent radius. 
The fin temperature distribution equation is given 

by:  
 

)'()()()'(

)()'()()'(

0100100101

00010001

0

0

rmKrmIrmKrmI

rmKrmIrmIrmK

km

q

−
+

=θ       (2) 

         
where 

1I  and 
1K  are first order modified Bessel functions 

of first and second types, respectively.   
The equation for the heat flow is: 

 

dr

d
kq

θ
−=''           (3)                    

 
Thus, 
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The fin physical and geometric properties are shown 

on Table 1. 
 
 

TABLE 1.  One-dimensional Circumferential Fin Data 
 

Material: stainless steel–type 304 (alloy: Cr, Ni, Mn, C, Si) 
Fin thickness:                                           my 005.02 0 =  

Fuel element radius (without fin):                mr 0125.00 =  

Fin radius:                                     mr 0225.01 =  

Fin equivalent radius:                 myrr 025.0' 01 =+=  

Fluid temperature:                                      Ct f º200=  

Heat flow at the base of the fin:             2
0 000,360 mWq =   

Thermal conductivity coef. at Cº250 :       CmWk º18=  

Heat transfer coefficient:                      CmWh º600 2=  

 
 

III.  DETERMINATION OF THE GENERAL 
SENSITIVITY COEFFICIENT – APPLICATION OF 

THE DIFFERENTIAL FORMALISM. 
 

The sensitivity coefficient is the basic element of the 
sensitivity analysis using the perturbative methods. The 
differential formalism developed by the perturbation theory 
is one of the most direct and accurate tools among several 
proposed formulations. The adjoint equations system is 
obtained by the following procedure [9]: 

 
1 - derivating the equation system; 

2 - extracting the source terms 
)(iS of the derivated system; 

3 - obtaining the adjoint operator; 
4 - bilinear concomitant calculus; 
5 - adjoint system boundary conditions determination.  
 

The sensitivity coefficient is calculated for a two- 
equation system, equivalent to Eq. (1), because, in this way, 
the heat flow can be incorporated as a state variable. So, it 
is possible to deal with direct problems and general 
functional responses [10]. So, the generalized system is: 
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The adjoint equation, the boundary conditions and the 
bilinear concomitant.  Following the procedure above, the 
adjoint system is found: 
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where +S , the adjoint equation source term, will be a 
known function in the phase space coordinate when the 
functional responses are chosen. 

 
The adjoint equation boundary conditions were 

chosen to reduce the bilinear concomitant, producing a 
result that can be easily solved. Thus, the chosen boundary 
conditions are: 

 

00* rrwhen ==θ    and    '0* rrwhen ==θ                                 

 
And the bilinear concomitant is: 
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where the subscribed /i means the derivation in reference to 
parameter i. 
 
 
Chosen Cases for the Sensitivity Analysis. 
 
Studied Functionals. 
 

∗  Heat flow rate at the point p  of the fin - 
pQ   
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The known functions in the phase space coordinate 

are 
01 2)( yrrS p−=+ δ  and 02 =+S , where )( prr −δ  is the 



impulse function (Delta Dirac) concentrated at the point p  

of the fin, located at mrr p 018.0==  and arbitrarily 

chosen. The nominal value of the functional 
pQ  is obtained 

with ''q  from Eq. (4) and Tab. (1) data.  

 
∗  Fin average temperature excess - θ   
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The known functions in the phase space coordinate 

are 01 =+S  and 
2

0
22 '

1

rr
S

ππ −
=+ . The nominal value of the 

functional θ  is obtained with θ  from Eq. (2) and Table 1 
data.  
 
Studied Parameters.  The parameters for the sensitivity 
analysis were chosen in reference to its importance in the 
thermal engineering projects, given by: 

 

∗  Fin half thickness - 
0y  

∗  Thermal conductivity coefficient - k  
∗  Heat transfer coefficient - h  
∗  Heat flow at the base of the fin - 

0q  

 
Calculations and Profile of the Adjoint Functions 

*θ and '*'q .  Regarding the values of +
1S and +

2S  for each 

studied functional, the Eq. (6) is solved using the Green 
function and Dirac superposition methods [11]. The result 
is:  
 
Functional 

pQ  - Heat Flow at the point p of the fin.  
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and, 
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The profile observed on the Fig. 2 is due to the 

presence of the impulse source at the point p , where in this 

example, it is the maximum value of the adjoint function at 
that point.   

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2.  Adjoint Temperature Excess versus Radius. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

Figure 3. Adjoint Heat Flow versus Radius.  
 
 
 

Fig. 3 shows a discontinuity leap at the point p , due 

to the relation between *θ  and '*'q . It also shows the 

importance of the function around the point p , and the 

positive and negative contributions at the left and right of 
that point, respectively.  
Functional  θ  -  Average Temperature Excess of the Fin.  

The solution is: 
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The results show that, in respect to the functional θ , 

'*'q  contributes uniformly, but the contribution of *θ  is 

null because of the boundary conditions imposed to the 
problem.   
 
Sensitivity Coefficients Calculations.  The general 
expression for the sensitivity coefficient is [9,10]: 
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The expressions for each functional-parameter 

combination can be found in a detailed way in [12]. 
 
 
 

IV.  RESULTS ANALYSIS 
 

The sensitivity coefficients using Table 1 data and a 
numerical computational program are: 

 
 

TABLE 2.  Sensitivity Coefficients   
 
 Functionals 
Parameters )(WQp

 )(º Cθ  

)(0 my   35,055.6 mW   32,000  mCº  

)º( CmWk        0.768 Cm º                 0 WCm 2º  

)º( 2 CmWh  - 0.0238 Cm º2  -0.133 WCm 22 º  

)( 2
0 mWq              1 2m      2.22x10-4 WCm º2  

 
 

Table 2 shows relative values, where it is not 
possible to do a comparison of the results in an absolute 
way. As a consequence, to make the comparison possible, 
the sensitivity S (or absolute sensitivity coefficient) has the 
definition: 
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where 
p
R

δ
δ  is the relative sensitivity coefficient and 

0R  and 

0p are the nominal values at the reference point.  

The nominal parameters and functional values are 
presented below, and then the absolute sensitivity 
coefficients. 

 
 
 
 
 

TABLE 3.  Parameter and Functional Values without 
Perturbation 

 

Functionals 
)(WQp
           )(ºCθ  

 
73.321            80.0 

 

                                   Parameters 
)m(y0       )º( CmWk     )CºmW(h 2     )mW(q 2

0  

 
     0.0025              18                    600             360,000 

 
 
 

TABLE 4.  Absolute Sensitivity Coefficients 
 

 Functionals 
Parameters )(WQp

 )(º Cθ  
  )(0 my  1.195 1 

  )º( CmWk  0.188 0 

  )CºmW(h 2  - 0.195 -1 

  )( 2
0 mWq  1.000363 0.9997 

 
 

Table 4 shows absolute values, for the comparative 
effects on the influence of the parameters in the functional 
response of interest. In a first analysis of the table, 

0y and 

0q  are the parameters that cause the major influence in the 

functional responses. In other words, for each 1% 
uncertainty in the parameter, the functional has about the 
same percentage of variation.  The parameter k  presents, in 
reference to the functional 

pQ , the smaller influence of the 

absolute values. On the functional θ , its sensitivity 
coefficient is null, where there is no dependence of it in 
relation to the parameter k , because it is linked to the kind 
of admitted boundary condition in the fin extremities. 
Additionally the parameter h  causes a weak influence in the 
functional 

pQ  and an influence in the functional θ  

comparable to 
0y  and  

0q .   

To verify the precision of the utilized formalism, the 
nominal values of the parameters were varied with an 
increase and decrease of 5%, 10% and 15%, respectively. 
The results of the functionals were obtained through the use 
of: i) the direct method with Eqs. (8) and (9), and ii) the 
differential perturbative method with sensitivity coefficients 
from Table 2. The values were calculated with Table 1 data. 

The differential formalism presented the following 
results: 

a) The relative errors were below 2.5% and most of 
them below 0.2%. Thus, the used method has a good 
precision. In regard to the functional θ , the calculus is exact 
to the parameters 

0y  and k , as expected.        



b) Slopes in the response surface were correctly 
reproduced. For instance, the functional 

pQ  has a 

decreasing behavior as parameter h increases. The negative 
sign of the calculated sensitivity coefficient (Table 2) 
confirms that expectation.    

c) The parameter k  causes a low sensibility in face 
of 1% uncertainty in the functional 

pQ . And, for the 

functional θ , there is no sensitivity at all to the parameter 
variation.  

 
 

V.  CONCLUSIONS 
 

Through the obtained results, the first conclusion is 
that the absolute sensitivity coefficient is essential to the 
discovery of the more sensible parameters in a functional 
response. The used method presented a good 
representativeness for the analyzed cases, where most of the 
cases had good precision and accuracy.  

The most influent parameters on the functional 
response 

pQ  were the h  (heat transfer coefficient) and the 

0q  (heat flow at the base of the fin).  About the functional 

θ ,  the 
0q  was the most influential as well.    

Another noticed advantage: repetitions to obtain the 
perturbated values are eliminated through the determination 
of the sensitivity coefficient. 

The good results achieved with the use of the 
formalism on the model demonstrated the validity of the 
application in heat transmission problems of extended 
surfaces, where it proved to be a very efficient technique to 
elaborate thermal engineering projects.  
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