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Abstract— The cultivation of cells in 3D has gained more
interest in research once 3D architecture can be closer to full
cell physiological functionality. The cultivation of the cells in a
spheroid format has shown very promising results, further for
bioprinting developing so fast during the last decade. The in-
teraction of spheroids and the matrix, or bioink, have propor-
tionate new structures to be analyzed, specially if one would like
to follow the whole system (spheroid and bioink) without fluo-
rescent dyes. Trying to solve this image limitation, the aim of
this paper is to present a study on different Convolutional Neu-
ral Networks (CNN) architectures employed to identify different
structures in fibroblast NIH-3T3 spheroids. Three different ar-
chitectures were considered: GoogleNet, ResNet18 and AlexNet,
all implemented in Python 3.7 using the PyTorch Application In-
terface Programming (API). Given a spheroid image taken in a
light microscope, four structures can be identified: the cell, the
dead cell, the impurity/contamination and the background con-
sisting of a gel in which the spheroid is immersed. All four CNN
architectures were trained and evaluated with a dataset consist-
ing of over 370 samples, split into a training set (≈ 70%), a test
set (≈ 20%) and a validation set (≈ 10%). Since our dataset has
unbalanced classes, a data augmentation was applied in order
to provide a comparable number of samples for all classes being
considered.
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I. INTRODUCTION

Cellular spheroid is a complex aggregate of cells, non-
substrate-adherent in a spherical shape, composed from hun-
dred up to thousands of mutually adherent populations of
cells [1]. Imaging a spheroid is an important step in order
to understand how cell behavior operates and give references
about possibilities according to the cell type of spheroid for-
mation. As spheroids have an easy handling and suitabil-
ity for high quality imaging, doing such analysis provides
a great representation of three dimensional organization of

cells which, in this case, is much similar to real tissue when
compared to a 2D monolayer cell culture [2]. Cells cultivated
in spheroid are getting more attention once this kind of struc-
ture can mimic the 3D architecture for the cell. Studies us-
ing a combination of spheroids has shown results closer to
the functional tissue [3, 4] and bioprinting targeting the re-
generative medicine [5]. The studies using spheroids to get
the functional results take time and it is important to follow
the transformation of the spheroids with non invasive tech-
niques and simple equipment as light microscopy. For this
reason, the objective of this work is, based on the work of
Rodrigues [6], verify which Convolutional Neural Network
(CNN) could be applied to start the observation of the viable
cells in the spheroids.

II. METHODOLOLGY

A. Spheroid images

Spheroids were prepared by non-adhesive hydrogel tech-
nique. Basically, a NIH-3T3 fibroblasts suspension with 1×
105 cells/mL were poured in a well from a 12 well plate pre-
viously covered with agarose and molded micro vessels with
a mold developed at CTI-Renato Archer. The cells were left
in an incubator at 37oC at the humidity chamber with 5%
increase of CO2 for 3 days, when they were pictured in a
contrast phase microscope with 200 times magnification.

B. Dataset Preparation

The image dataset consists of 370 samples of cell im-
age segmented from two spheroids images with impurity
(8.33%), live NIH-3T3 cells (8.33%), dead cells (41.66%)
and background (41.66%). Figure 1 presents the classifica-
tion criteria, which the samples was split into train, test and
validation datasets corresponding to 70%, 20% and 10% of
the original data respectively. Since each class presents a
considerable difference in the number of samples (5× in
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some cases), data augmentation techniques were applied to
the training set in order to perform equalization of samples,
thus, improving the quality of the training process.

Fig. 1: Spheroid of the fibroblast cell line NIH-3T3. a) Caption of the
whole spheroid; b) Background; c) Live cell that does not belong to the

spheroid, d) Live cell that belongs to the spheroid; e) Dead cell

The transformations applied are given below:

• Random rotation with −10o ≤ θ ≤ 10o;
• Random horizontal flip with a probability of 50%;
• Random vertical flip with a probability of 50%;

After the data augmentation procedure, a new training
dataset was generated with background (24.57%), impurity
(25.71%), live NIH-3T3 cell (25.71%) and dead cells (24%).

In order to improve the CNN performance, another set of
transformations were applied to both, train and test datasets:

• Image resize to 260×260 pixels;
• Color channel normalization;

The image resize step is needed in order to allow
the proper use of the desired CNN architectures, such as
GoogLeNet, which requires a minimum image size of 260×
260 pixels.

For the color channel normalization, all pixel values were
normalized between [0,1] by the PyTorch Tensor object [7]
using a linear function and followed by a second normaliza-
tion according to the Equation 1:

Ii j =
Ii j −µc

σc
(1)

where the subscript c corresponds to a given color channel
and µc and σc are the mean and standard values respectively.
For each channel, µc and σc are given by Table 1:

Table 1: Mean and standard deviation for a given channel

Channel µc σc

1 0.485 0.229

2 0.456 0.224

3 0.406 0.225

By applying Equation 1, the values are normalized to the
range [−1,1] with zero-mean, improving the training and
testing process by bounding the neural network weight val-
ues [8].

C. CNN Implementation

All CNNs architectures were implemented using Python
3.7 Anaconda [9] distribution and the PyTorch API. Within
the train and test datasets, a class corresponding folder was
created and labeled automatically using the torch Image-
Folder method. The hardware specification is a core i7 with
16Gb and a Tesla K80 Nvidia graphic processor with 24Gb
of RAM. Were considered the following CNN architectures:

• AlexNet [10];
• GoogLeNet [11];
• ResNet 18 [12];

For each architecture, the classifying layer was altered in
order to perform the classification of the four different struc-
tures considered, as shown in Table 2.

In Table 2, for the Dropout layer, the variable p corre-
sponds to the probability of certain neurons being randomly
deactivated during the training process.

D. Training and Testing Process

In order to proceed with the training process, each class
was labeled from 0 to 3. The Adam optimizer was chosen for
all CNN architectures along the Cross-Entropy (CE) given by
Equation 2.

CE =
Nclass

∑
i=0

yilog(yi −1)+(yi −1)log(yi) (2)

In Equation 2, yi is the predicted value for a given sample.
Different hyperparameters sets consisting of the number

of epochs for training, learning rate and training batch sizes
were considered and are given by Table 3.
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Table 2: Classifying layers for the architectures considered

Architecture Classifying layer

AlexNet Dropout (p=0.5)

Linear (input features = 9216, output features =

4096)

Rectifier Linear Unit

Dropout (p=0.5)

Linear (input features = 4096, output features =

4096)

Rectifier Linear Unit

Linear (input features = 4096, output features =

4)

Logarithmic SoftMax

GoogLeNet Rectifier Linear Unit

Linear (input features = 1024, output features =

4)

Logarithmic SoftMax

ResNet 18 Linear (input features = 512, output features =

4)

Logarithmic SoftMax

The testing loss and accuracy were computed along with
the training procedure at the end of each batch loop with the
test batch size fixed at 10 samples. For each CNN architec-
ture, the number of trainable parameters is presented in Ta-
ble 4.

III. RESULTS

Each CNN architecture was trained and tested according
to the parameters described. The corresponding training and
testing loss and accuracy are presented in Figures 2(a) and
2(b) respectively, considering AlexNet (hyperparameters set
1); GoogLeNet (set 6); ResNet 18 (set 2). All other hyperpa-
rameters sets presented lower accuracy rate and higher loss
values.

The computational time needed to perform the training/
testing procedure was evaluated and it is presented in Table 5
for the corresponding plots in Figure 2.

Figure 3 presents the confusion matrix for AlexNet. The
confusion matrix was evaluated considering the validation
dataset, which consists of 35 samples with 23 background
images (label 0), 2 dead cell images (label 1), 2 living cell
outside spheroid images (label 2) and 8 living cell inside

Table 3: Hyperparameters used for training the CNNs

Set Epochs Batch size lr

1 50 20 1.0×10−3

2 50 20 1.0×10−4

3 50 40 1.0×10−3

4 50 40 1.0×10−4

5 100 20 1.0×10−3

6 100 20 1.0×10−4

7 100 40 1.0×10−3

8 100 40 1.0×10−4

Table 4: Trainable parameters for each CNN architecture

CNN Architecture Number of Parameters

AlexNet 57020228

ResNet 18 11178564

GoogLeNet 5604004

spheroid images (label 3).

IV. DISCUSSIONS

As can be observed in Figure 2(a), all architectures pre-
sented a decaying tendency for the training set loss function,
with AlexNet also presenting oscillating values higher than
GoogLeNet and ResNet 18. On the other hand, for the test-
ing set, Figure 2(b), AlexNet presented a decaying behavior
as the number of training epochs increased but still with os-
cillating values. GoogLeNet and ResNet presented an oscil-
lating behavior with no decaying tendency. It must be noted
that GoogLeNet still has room for improving its training loss
function curve with a higher number of epochs. It is impor-
tant to note that the behavior observed for all architectures
is consistent with those found at Rodrigues work [6]. Fig-
ure 2(b) shows that the CNN architecture with the highest
accuracy for the test set is the AlexNet, with a success rate
of almost 98.8% and with a training time of 26.54 minutes,
while GoogLeNet presents an accuracy for the test set of
≈ 25% with a tendency to remain constant and ResNet pre-
sented an accuracy of, at most, ≈ 40% but oscillating. It is
important to notice that, according to Figure 3, the AlexNet
architecture was able to identify 100% of the living cells in-
side the spheroid (label 3), which indicates that this model
can be used to evaluate the number of those cells as a non-
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(a)

(b)
Fig. 2: CNN training and testing. a) Loss for AlexNet; GoogLeNet and ResNet 18. b) Accuracy for AlexNet; GoogLeNet and ResNet 18. The green line is

the test set and the blue line the training set
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Table 5: Computational time for training/ test corresponding to Figure 2

CNN Architecture Comp. Time [min]

AlexNet 26.54

ResNet 18 56.50

GoogLeNet 116.20

Fig. 3: AlexNet confusion matrix for the validation dataset: 0 - Background;
1 - Dead Cell; 2 - Living cell outside the spheroid; 3 - Cell inside spheroid

invasive procedure. One important point to have a CNN for
this kind of identification is the possibility of following the
spheroids behaviour when cultured in more complex struc-
ture. The identification of single cells in these models usually
are handmade, which requires a highly qualified person and
usually the analysis criteria is not the same from one person
to another, making it time consuming. The preparation of the
Figure 1 brought a lot of discussion among the authors and
the time to do the segmentation to train the CNN took about
40 minutes.

V. CONCLUSIONS

This work wanted to explore different CNN for cell identi-
fication in spheroid structures. Here, we started with a simple
structure to do this exploration and the AlexNet showed to be
the promising one. As next steps, this CNN is intended to be
used in more complex images.
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