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Abstract — In order to ensure safety in a nuclear power plant, operation and protection systems must take 
into account safety parameters, whether to guide operators or to trip the reactor in emergency cases. 
Especially in a boron-free small modular reactor (SMR) where reactivity and power are controlled exclusively 
by rod banks, the power distribution is mostly influenced by its movements affecting the power peaking factor 
(PPF), which is an important parameter to be considered. The PPF relates the maximum local linear power 
density to the average power density in a fuel rod indicating a high neutron flux that can cause fuel rod 
damage. In this technical note, 2117 samples from simulations of an idealized boron-free SMR controlled 
exclusively by rod banks were used to generate a Support Vector Machine (SVM) model capable of estimating 
the PPF as a function of control rod bank positions. Such model could be used to predict the maximum PPF in 
the reactor core by carrying out simple calculation. Residing in a SVM parameter grid search and a 10-cross- 
validation process in the training set to reach an optimized and robust model, the results have shown a root- 
mean-squared error of about 0.1% consistent for both training and testing sets.

Keywords — Support vector, power peaking factor, small modular reactor, reactor monitoring, boron free. 

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Growth in Artificial Intelligence (AI) has made it pos
sible to approach problems through machine learning tech
niques; consequently, a substantial quantity of work has 
been produced in the last few years in distinct areas of 
expertise.1–5 However, even with all the computational cap
ability available nowadays and modern approaches being 
sought in the nuclear field, it would not be practical to 
calculate every reactor state from physics-based simulations 
during plant operation and use it in monitoring and control
ling systems because in addition to the reactor calculation 
itself, postprocessing would be highly time-consuming con
sidering the timescale response desired for such systems. 
Thus, reactor technology endeavors to use AI techniques for 
simpler and accurate models that could be applied in control 

and diagnosis to predict parameters generally associated 
with reactor safety such as critical heat flux and power 
peaking factor (PPF), among others.6–13

As one of these parameters of interest, the PPF is of great 
importance and shall be fully monitored during operation, 
especially in boron-free small modular reactors (SMRs) in 
which reactivity control and power are exclusively performed 
by rod banks. For some current SMR designs that rely on such 
characteristics [the CAREM reactor from CNEA and IMR 
from Mitsubishi, for example],14 the required monitoring 
conditions could present a challenge for safe operation. In 
these reactors, control rod banks must be more inserted in the 
core during operation when compared with a standard 
Pressurized Water Reactor (PWR), in which a significant 
part of the reactivity is controlled by boric acid diluted in 
the moderator; consequently, the nonhomogeneous control 
rod absorber presence causes a major neutron flux distortion 
affecting power distribution and fuel rod temperature profile. *E-mail: priscila.sanchez@usp.br
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As the PPF relates the maximum local linear power density 
(LPD) to the average power density in a fuel rod, it can 
indicate the level of neutron flux distortions inside the reactor 
core.

In SMRs, PPF online monitoring could be performed 
using in-core detectors such as Self-Powered Neutron 
Detectors (SPNDs) and operational ex-core detectors. 
However, some issues must be addressed in order to obtain 
more suitable and reliable systems for SMR designs and 
their operational conditions, especially those for propulsion 
purposes, which operate as load-follower requiring auto
matic control rod bank movements. First, the prompt- 
signal cobalt SPNDs available in the nuclear industry are 
much less accurate than rhodium detectors, which have 
a slower response time,15 and a delay would also be added 
in the process of calculating the PPF from the in-core power 
distribution map. Second, SMR proportions are comparable 
to the ex-core detector’s sensitive dimensions, which could 
cause unrealistic power distribution measurements along 
the axial direction, as the ex-core detectors placed in the 
upper and lower parts of the reactor vessel surroundings 
could not effectively discriminate the contribution of each 
active core portion in the overlay signal. Consequently, 
considering these existing limitations and constraints, an 
approach that uses AI techniques could be exploited in the 
new SMR developments.

In the last few decades, there has been special interest 
in SMRs [under 300 MW(electric)] for generating electri
city from nuclear power, pursuing passive safety systems, 
reducing capital costs, and providing power to regions far 
off the grid distribution systems.14 A remarkable feature of 
these small new designs is the possibility of modular 
construction, where large mechanical and structural reactor 
parts can be mounted off-site and then brought into place. 
Moreover, these small, simpler units are also strategic in 
the case of ship and submarine compact vessels with 
greater propulsion availability for military use as well as 
for merchant objectives.16,17 Currently, SMRs based on 
diverse concepts are under development or construction. 
Most of them are in the conceptual phase, and some are 
licensed (SMART, Korea), under construction (HTR-PM 
China; KLT-40S Russia; CAREM, Argentina), or already 
in operation (IPHWR-220, India).18

As an approach for reactor plant control and safety 
monitoring during operation, some researchers have used 
AI techniques to estimate the PPF. Most of them have used 
Artificial Neural Networks19–22 (ANNs), and a few have 
used Support Vector Machine23,24 (SVM). However, none 
of them have addressed the behavior of such tools in 
boron-free SMRs. The previous published works in 
which PPF estimation is approached through the SVM 

tool23,24 employed it in a standard commercial reactor. 
The standard reactor has a much longer active size, and 
the PPF will differ in behavior when compared with 
a boron-free SMR, mainly because of the nonhomoge
neous xenon distribution and relatively less insertion of 
control rods in the core. Therefore, the feasibility of SVM 
modeling and its characteristics have not yet been 
exploited in boron-free SMRs. Regarding the methods, 
the selection of train and test datasets and model validation 
during training in addition to the dataset size and model 
complexity may also vary from this technical note to 
similar studies covering the subject.

The AI technique called SVM is based on machine 
learning and it was first applied in classification problems, 
but lately, it has also been used to solve nonlinear regres
sion problems by minimizing an alternative loss 
function.25 Its mechanism involves mapping the problem 
into a space in which it becomes linear and simple to 
solve. Consequently, using the alternative loss function, 
SVM can be applied to accurately estimate the PPF 
(Refs. 23 and 24) presenting some advantages over the 
ANN method23,26 such as greater sensitivity in dealing 
with monotonic transformations and values containing 
irrelevant input information, better generalization perfor
mance and interpretability of the logic behind the algo
rithm, etc.

The work presented in this technical note was per
formed using an idealized small modular boron-free PWR 
in order to create a SVM model and evaluate its accuracy 
in predicting the PPF in reactors with such peculiar char
acteristics. For this purpose, the reactor simulations were 
carried out in the three-dimensional (3-D) multigroup dif
fusion code CITATION27 aiming to obtain the PPF for 
distinct configurations of control rod bank positions and 
use it as input in the process of building an adequate SVM 
model in R code.28 The diffusion code was merely applied 
to obtain the database to investigate the SVM concept in 
these sorts of reactors; therefore, a higher-order code based 
on neutron transport methods could also be employed in 
the reactor modeling without becoming restrictive.

II. METHODOLOGY

II.A. Support Vector Machine

Support Vector Machine (SVM) is a statistical tool 
based on machine learning that was first introduced by 
Vapnik and Chervonenkis in the 1960s (Ref. 29). It is 
commonly used in classification problems and pattern 
recognition, but it is also possible to solve regression 
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problems by introducing an alternative loss function 
known as ε-insensitive.

The main idea of Support Vector Regression (SVR) is 
mapping a nonlinear problem into a high-dimensional feature 
space where it becomes linear and easier to solve. Therefore, 
given a set of N training data xi; yið Þf g

N
i¼12 <

n � <, with xi 
being the state input vector and yi being the desired value to 
be predicted by the SVR model, the following regression 
function can be considered:

y ¼ f xi;wð Þ ¼
Xn

j¼1
ωjϕj xið Þ þ b ¼ w; Φ xið Þh i þ b 

with

w ¼ ω1ω2 . . . ωn½ �

and

Φ ¼ ϕ1ϕ2 . . . ϕn½ � ;

where  

Φ = feature that maps xi vectors in the n-dimensional 
space

w = weight vectors
b = bias.

The optimization problem consists of minimizing the 
regularized risk function:

R wð Þ ¼
1
2
k w k 2 þ C

XN

i¼1
yi � f xi;wð Þj jε ; ð1Þ

where

yi � f xi;wð Þj jε ¼
0; if yi � f xi;wð Þj j 6 ε
yi � f xi;wð Þj j � ε; otherwise:

�

The term yi � f xi;wð Þj jε is the so-called Vapnik’s 
ε-insensitive loss function that defines a tube around 
f xi;wð Þ. If yi lies inside the tube, then the ε-insensitive 
loss function is zero, and if it is located outside, the function 
gives the distance between yi and the tube boundary. The 
parameter C is the regularization constant determining the 
trade-off between f xi;wð Þ flatness and the amount up to 
which deviations larger than ε are tolerated in the regression 
function. Increasing ε causes a reduction in the number of 
support vectors as well as in the bias term; however, it 
decreases model accuracy leading to overfitting issues.

From Eq. (1), it is possible to notice that larger errors 
can be penalized by increasing either C or although as 
increasing the weight vector norm would cause model 
complexity to rise, the general course of action is to 
minimize the risk function by tuning the regularization 
constant and the loss function deviation threshold.

Equation (1) can be rewritten as a function of upper 
ξ� and lower ξ constraints on the system’s outputs as

R w; ξ; ξ�ð Þ ¼
1
2
k w k2 þ C

XN

i¼1
ξi þ ξ�i
� �

; ð2Þ

where

ξ ¼ ξ1ξ2 . . . ξN½ �

and

ξ� ¼ ξ�1ξ�2 . . . ξ�N
� �

with the following constraints:

yi � hw;Φ xið Þi � b 6 εþ ξi
hw;Φ xið Þi þ b � yi 6 εþ ξ�i for i ¼ 1; 2; 3; . . . ;N
ξi; ξ�i > 0 :

8
<

:

ð3Þ

Then, the Lagrangian composed by Eq. (2) and the con
straints in Eq. (3) gives the final regression function

y ¼ f xkð Þ ¼
XN

i¼1
αi � α�i
� �

K xi; xkð Þ þ b ; ð4Þ

where K xi; xkð Þ ¼ Φ xið Þ;Φ xkð Þh i is the kernel function. 
If yi lies outside the ε-tube, then either the αi or the α�i 
Lagrange coefficient is nonzero, and the corresponding 
observation xi is called a support vector. Thereby, from 
Eq. (4), any other predicted value y could be obtained 
from its associated observations or state input vector xkð Þ

just as a function of the support vectors.
Figure 1 shows a scheme for better visualization of 

a nonlinear SVR using Vapnik’s ε-insensitive loss func
tion, including its constraints.

This technical note uses the Radial Basis Function 
(RBF) or Gaussian kernel given by

K xi; xkð Þ ¼ e� γkxi� xkk
2
:

The RBF maps the real-world data into the feature 
space where a linear model can be built and easily solved.
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The SVM tool is very sensitive to the choice of 
proper parameters.31 So, in order to apply the demon
strated method above, it is recommended to use a grid 
search over all hyperparameters available C; ε; γð Þ to 
reach better results. The grid search can be employed 
simply by selecting a finite set of reasonable values for 
each hyperparameter, training the data with each com
bination of these sets, evaluating performance by inter
nal k-fold cross-validation, and keeping the parameters 
that achieved the highest score in the validation pro
cess. This validation method gives a trade-off between 
model bias and variance: the lower the k-value, the 
higher is the bias in the error estimate and the smaller 
is the variance. Conversely, when the k-value is set 
equal to the number of instances in the training set, 
the error estimate is then very low in bias but has 
a high variance potential.

Genetic algorithms and other tools can also be imple
mented to find the best model parameter values, although 
they are computationally highly demanding and for small 
datasets most of the time present very similar results when 
compared with simple methods such as grid search, for 
example.31–33

The approach adopted in this technical note to create the 
SVM model is a grid search using exponents of 2 for C and γ 
along with a 10-cross-validation process in the training set, 
which is recommended for well-balanced bias and 
variance.34 Subsequently, the C and γ ranges were reduced 
around each better result from the previous search aiming to 
fine-tune the values, and then, after finding the best values for 
these two hyperparameters, a similar procedure was applied 
for the ε loss function parameter keeping the other two fixed.

II.B. Reactor Model Description and PPF Estimation

The simulated SMR selected to acquire the SVM 
input database was modeled in the 3-D multigroup code 
CITATION27 designed by Oak Ridge National 
Laboratory to solve problems using the finite difference 
representation of the neutron diffusion theory as 
a simplification of the neutron transport equation. In 
order to idealize the reactor, a typical standard western 
PWR design was chosen: 275°C average moderator tem
perature, 135-bar primary circuit pressure, one fuel cycle, 
uniform slightly enriched UO2 pellets surrounded by 
Zircaloy cladding, 17 × 17 rectangular assembly array 
possessing 29 guide tubes for control or safety rods 
comprising 21 fuel assemblies in the full core. The active 
length considered was approximately one meter long.

Initially, the focus of the reactor core configuration 
with safety and control banks was on covering 
a sufficient reactor shutdown margin in the cold and 
stuck rod condition as well as the existing reactivity 
excess without boron diluted in the moderator. The 
model considered three control rod banks (C1, C2, and 
C3), uniformly distributed in the reactor core in order to 
ensure a more balanced power distribution during the first 
cycle of operation, and two safety banks (S1 and S2) 
located at the periphery of the reactor. Furthermore, burn
able poison rods (about 20) were inserted and equally 
distributed inside the fuel assembly located in the reactor 
middle with the purpose of flattening the power distribu
tion curve on the region.

The simulations were performed in four energy 
groups, with bank C3 fully inserted, banks S1 and S2 
completely withdrawn, while banks C1 and C2 could 
vary from withdrawn to fully inserted aiming to cover 
as many as possible operational situations during fuel 
burning. These are representative scenarios as the 
changes occurring in the core along the cycle are mainly 
related to the introduction of neutron-absorbing fission 
products that would just cause the reactor to operate with 
control rod banks more withdrawn.

The PPF was calculated from simulations as

PPF ¼
max LPDf g

Pt=M � lð Þ

with

LPD ¼ κ � At �
X4

g¼1
σf ;g � ϕg ;

Fig. 1. Nonlinear SVR scheme with Vapnik’s ε-insensitive 
loss function. Adapted from Ref. 30. 
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where
Pt = total thermal power
M = total number of fuel rods

l = active length
κ = average energy released per fission

σf ;g = macroscopic fission cross section per energy 
group g

At = transversal area of the mesh size region
ϕg = neutron flux crossing the mesh region.

III. RESULTS

The database acquired using the CITATION simula
tions from 2117 possible configurations of the C1 and C2 
control rod banks has shown a peaking factor range varying 
from approximately 2 to 3.2. As can be seen in Figs. 2 and 3, 
the PPF behavior is represented by a smooth surface, and 
the region where the PPF is above 3 can be observed when 
both banks are around 50 to 70 cm inserted in the core (more 
than half the total core active length).

Figure 3 also shows that the PPF is the highest when the 
C1 and C2 banks are positioned approximately 66 cm inside 
the core (around two-thirds of it). The presented behavior 
can be easily explained since in a thermal reactor neutroni
cally loosely coupled, the axial neutron flux shows a half- 
cosine shape that is pushed toward the bottom of the core by 
the insertion of the control rod banks.

The step positions of banks C1 and C2 were used as 
input and the PPF as the output in the SVR model obtained 
from R code.28 Initially, the data were randomly split into 
training set xC1

i ; xC2
i ; yPPF

i
� �� �1589

i¼1 (75%) and testing set 

xC1
k ; xC2

k ; yPPF
k

� �� �528
k¼1 (25%), and then, the parameter grid 

searches were performed over the training set by means of 
the tune function intending to create the model.

A large grid search was completed using exponents of 2 
for both C and γ over the training set, followed by subse
quent searches reducing the exponent range and grid size 
around the best values found as previous results. A total of 
four searches of this kind was executed. Then, the final 
values of these two hyperparameters were found by using 
a smaller range and a more refined grid around them. After 
selecting the final values of C and γ and fixing them, two ε 
grid searches were performed around small values aiming to 
improve the model accuracy accordingly with the loss func
tion properties. The final model was also built using the tune 
function default 10-cross-validation procedure, as recom
mended for well-balanced bias and variance.34 The best 
model performance was reached with C = 256, γ = 2, and 
ε = 0.01 and 482 support vectors.

The testing set presented a very similar performance to 
that obtained in the training set, as shown in Table I, proving 
the model generalization power in estimating the PPF for 
a variety of reactor conditions. Statistical errors were very 
low, highlighted by the Root-Mean-Squared Error (RMSE) 
of about 0.1%. Although, the maximum relative error could 
be considered quite high, around 1%, the frequency distri
bution in Fig. 4 is mostly concentrated in the ±0.2% range.

The Willmott’s Index of Agreement is a standardized 
measure of the degree of model prediction error, ranging 

Fig. 3. Two-dimensional detail and level curves of PPF 
behavior according to bank C1 and bank C2 insertion in 
the reactor core. 

Fig. 2. Three-dimensional and two-dimensional PPF 
behavior according to bank C1 and bank C2 insertion 
in the reactor core. 

TABLE I 

Training and testing set statistical error analysis. 

Dataset RMSE 
(%)

Maximum 
Relative 

Error 
(%)

Mean 
Absolute 

Error, 
10−3

Willmott’s 
Index 

of 
Agreement

Training 0.15 1.45 2.3 0.9999994
Testing 0.16 1.05 2.6 0.9999993
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from zero to one. The value of one indicates a perfect 
match between predicted and observed data while zero 
indicates no agreement at all.35 That being said, the index 
presented in Table I corroborates with the high model 
accuracy seen in Figs. 5 and 6 where most of the pre
dicted PPF values overlap the simulated ones for both 
training and testing sets.

Finally, Fig. 7 also indicates that PPF residues 
obtained from the prediction model when compared with 
the CITATION simulations results weighted by its standard 

deviations show a Gaussian characteristic expected from 
a reliable regression model: points are symmetrically dis
tributed around zero with approximately 65% of them 
between ±1, 95% between ±2, and 99% between ±3.

Supposing the PPF value of the idealized reactor 
considered is limited by design in less than 3, this 
would lead to restrictions in some bank position combi
nations with the purpose of preventing core damage and 
ensure safety. In order to fulfill this requirement, the 
maximum operation reactor power or the automation 
system complexity could be affected depending on the 
uncertainty of the PPF monitoring technique employed. 
However, as the SVM approach showed a high level of 
accuracy in predicting the PPF, there would be no further 
complications related to it, demonstrating its possible 
applicability on monitoring PPF in boron-free SMR 
with all the advantages previously highlighted.

IV. CONCLUSIONS

The SVR has presented itself as a promising approach to 
estimate the PPF with a high level of confidence and gen
eralization without calculating every reactor state from phy
sics-based simulations during operation of boron-free SMRs 
controlled exclusively by rod banks movement. The rela
tively small number of support vectors (model simplicity) 
turns calculations fast and viable to be employed in online 
PPF prediction, overcoming the above-mentioned issues of 
the monitoring systems commonly used in PWRs.

It is possible that statistical errors could be reduced 
even more by adding new reactor inputs to the SVR model 
as, for example, the neutron thermal flux in the in-core 
nuclear detector positions. Meanwhile, it has not showed 
significant performance improvements in the testing set for 
general commercial PWRs (Ref. 23). Another change that 
could be implemented in the SVR model is the database 
increase with nonsymmetrical rod position configurations 
(decoupling each control rod from the rod banks) intending 

Fig. 4. Training and testing set relative error distribution. 

Fig. 5. CITATION-simulated and SVM-predicted PPF 
from the training set. 

Fig. 6. CITATION-simulated and SVM-predicted PPF 
from the testing set. 
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Fig. 7. Training and testing set PPF weighted residue. 
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to build a model capable of predicting, with greater relia
bility, more general reactor configurations including those 
faced in accident conditions and thereby giving more 
flexibility to manage the PPF in case of anomalies.
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