

Universidade Federal do Río Grande de Marta Centro de Ciências Exatas e da Terna Departemento de Química Departemento de Fisica Márico e Experimental

INFLUÊNCIA DA TEMPERATURA DE CALCINAÇÃO NA OBTENÇÃO DE FASES DO SISTEMA La₂O₃-MoO₃

R. A. Rocha, E. N. S. Muccillo
Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos
CCTM – Instituto de Pesquisas Energéticas e Nucleares
C. P. 11049 - Pinheiros, 05422-970, S. Paulo, SP
rarocha@net.ipen.br. enavarro@usp.br

A técnica de síntese desenvolvida por Pechini, eficiente na síntese de materiais homogêneos, foi utilizada para a obtenção de óxidos da família LAMOX (La_2O_3 -Mo O_3). O principal objetivo deste trabalho é determinar as condições ideais para a obtenção da fase única $La_2Mo_2O_9$. A resina obtida durante a síntese foi caracterizada por análise térmica diferencial e termogravimétrica. O material obtido após a calcinação em diferentes temperaturas foi caracterizado por difração de raios X, para a determinação das fases e cálculo do tamanho de cristalito, e microscopia eletrônica de varredura, para observação da morfologia das partículas. Os resultados mostraram que a decomposição do material ocorre em etapas distintas; a obtenção de fase única é dependente da temperatura de calcinação e as partículas apresentam-se aglomeradas, independente da temperatura de calcinação. (FAPESP, CNEN / IPEN, FINEP / PRONEX)

Palavras chave: síntese de pós, Pechini, LAMOX, eletrólitos sólidos

INTRODUCÃO

Os compostos de molibdato de lantânio formam uma extensa família de materiais com propriedades físicas interessantes. Estas propriedades dependem das estruturas cristalinas destes óxidos e do estado de oxidação do molibdênio $^{(1)}$. Quando o Mo está em seu mais alto estado de oxidação (VI), as propriedades ferroelétricas e ferroelásticas do GdzMo3O12 ou a incomum expansão térmica negativa do Ln2Mo3O12 se sobressaem. Alternativamente, as propriedades catalíticas do La2MoO6 são especialmente atrativas. A fase La2Mo2O9 apresenta elevada condutividade iônica e é conhecida há mais de 30 anos.

Algumas relações molares La_2O_3 : MoO_3 foram estudadas para determinação do diagrama de equilibrio $^{(2)}$. Existem compostos que possuem fusão incongruente e/ou apresentam mudança de estrutura cristalina, reversíveis ou não.

Diversos estudos têm sido conduzidos nos óxidos de lantânio e molibdênio ⁽³⁻¹⁰⁾, que podem ser preparados pela eletrólise em sais fundidos ⁽⁴⁾; moagem de alta energia ⁽⁵⁾, sol-gel modificado ⁽⁶⁾, utilizando ácido cítrico como agente formador de complexos ou ainda, por mistura de óxidos ⁽³⁻⁷⁾.

Uma das fases de maior interesse é $La_2Mo_2O_9$, que possui uma condutividade iônica comparável com a da zircônia dopada ⁽³⁾. Esta fase apresenta uma transição de estrutura cristalina em temperatura próxima a 580 °C, resultando num aumento da condutividade em duas ordens de grandeza. A fase à alta temperatura, β - $La_2Mo_2O_9$, cristaliza-se na forma cúbica e a fase à baixa temperatura, α - $La_2Mo_2O_9$, não possui uma estrutura bem definida, mas acredita-se que se cristaliza na forma monoclínica $^{(3,7,10)}$.

As substituições catiônicas $^{(3,8,9)}$ ou aniônicas $^{(8,10)}$ podem ser realizadas com a finalidade de eliminar a transição de fase, estabilizando a fase cúbica (fase à alta temperatura), à temperatura ambiente.

1048 _ 1053

10079