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Abstract

In this work, two techniques of angular interpolation for the discrete-ordinates method in radiation
transport, namely the source-function integration technique and a technique based on the inclusion of
dummy nodes in the quadrature scheme, are studied. It is shown that these techniques are equivalent (i.e.,
they yield the same results) in plane geometry. In addition, numerical studies carried out for two model
problems in atmospheric radiative transfer are used to show that the technique based on inclusion of dummy
nodes can be implemented in a way that makes it more economical than the source-function integration
technique. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The discrete-ordinates method for solving transport problems was introduced by Wick [1] and
Chandrasekhar [2] in the 1940s, following and generalizing the original concept of the two-stream
approximation of Schuster [3] and Schwarzschild [4]. The original version of the method, which
became known in the literature as the Wick}Chandrasekhar method, is based on approximating
the angular integral in the scattering term of the transport equation by a numerical quadrature and
analytically solving the resulting set of ordinary di!erential equations for the particle distribution
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function at the quadrature nodes. The method has been extensively developed by Chandrasekhar
[5] and used by several authors for solving problems in radiative transfer, as discussed, for
example, by Lenoble [6] in a review that includes a list of references covering the period from the
inception of the method up to 1974. Other valuable sources of information on the fundamental
aspects of the method and its application to atmospheric radiative-transfer problems are the review
by Hansen and Travis [7], the book by Liou [8] and the reprint collection edited by Kattawar [9].
More recent works have focused mainly on computational aspects of the method [10}12], on
e$cient approaches for treating problems de"ned by general sources that may depend on space
and angle [13,14], and on the extension of the method to accomodate polarization e!ects [15].

The most obvious di$culty with the discrete-ordinates method is that situations may exist (e.g.,
remote-sensing applications) where the particle distribution function may have to be computed
for directions of particle travel not included in the approximating quadrature. A simple way of
overcoming this di$culty is to use some kind of interpolative technique to compute the particle
distribution function for any direction, given the discrete-ordinates solution. Indeed, a few such
angular interpolation techniques have been developed and reported in the literature, as discussed
next.

Chandrasekhar [2] was the "rst to use the so-called source-function integration technique,
hereafter referred to as the SFI technique, in the context of the discrete-ordinates method. This
technique is based on integrating the equation of transfer in space separately for the positive and
the negative ranges of the cosine of the polar angle (k), with the scattering term being expressed in
terms of the (supposedly known) discrete-ordinates solution. The resulting formulas for the particle
distribution function are continuous functions of k in each of the half-intervals [!1, 0] and [0, 1].

In the 1960s and 1970s, a substantial e!ort was directed towards the development of computer
codes based on the discrete-ordinates approximation [16}18]. Because these codes were intended
primarily for neutron and gamma-ray transport calculations, and in these "elds of study solutions
are also required for problems formulated in one-dimensional curvilinear geometries (spheres and
in"nite cylinders), as well as in two and three dimensions, the fact that analytical solutions of the
discrete-ordinates equations were abandoned in favor of a numerical formulation resulted, in part,
from the need of using spatial discretization to cope with the more complex form of the streaming
operator in these geometries. There are two reasons why dummy nodes, i.e. nodes associated with
zero weights, are usually included in the quadrature schemes used by these codes. The "rst is that,
sometimes, the inclusion of certain dummy nodes is a requirement of the numerical scheme being
used to solve the discretized equations (e.g., the node k"!1 in spherical geometry [16,17]). The
second is of particular interest to us: the inclusion of dummy nodes provides a way of computing
the particle distribution function for ordinates not included as regular nodes in the quadrature
scheme used by the discrete-ordinates approximation [19].

A few other angular interpolation techniques for the discrete-ordinates method have also been
investigated. In addition to the SFI technique, Karp [20] has considered Lagrange and cubic-
spline interpolation techniques. As a matter of fact, Karp's analysis was performed for the
spherical-harmonics method, but it can be easily extended [20] to equivalent forms of the
discrete-ordinates method [21,22]. His conclusions were: (i) the SFI technique is by far the most
accurate of these techniques; (ii) Lagrange interpolation is completely inadequate because it can be
very innacurate; and (iii) spline interpolation, although less accurate than the SFI technique, is
more economical and produces reasonable results, particularly if supplemented with particle
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distribution functions computed at a few selected values of the angular variable with the SFI
technique. Stamnes [23] has investigated the SFI technique and two di!erent ways of implemen-
ting interpolation by cubic splines into the discrete-ordinates method. As before [20], the SFI
technique was found to yield much better results than spline interpolation [23].

Our work has two purposes. First, we report in Sections 4 and 5 our proof that the SFI technique
and the technique based on dummy-node inclusion (referred to as the DNI technique in this
paper) both give the same results when implemented as angular interpolation techniques for the
Wick}Chandrasekhar method in plane geometry. This equivalence has been observed numerically
in a recent work [24]. Secondly, we discuss in Section 6 the results of our application of both of
these techniques to some model problems in atmospheric radiative transfer that led us to conclude
that the DNI technique can be implemented in a more e$cient way than the SFI technique.

2. Formulation of the problem

We consider a problem where the particle distribution function G(q, m) satis"es, for q3(0, q
0
) and

m3[!c, c], the equation of transfer [13]

m
L
Lq

G(q, m)#G(q, m)"
L
+
l/0

f
l
%

l
(m)P

c

~c
((m@)%

l
(m@)G(q,m@) dm@#Q(q, m) (1)

and the boundary conditions, for m3(0, c],

G(0, m)"¸(m) (2a)

and

G(q
0
,!m)"R(m). (2b)

Here, the source term Q(q, m) and the incident distributions ¸(m) and R(m) are assumed to be known.
We note that in this work, by adopting the general formulation introduced in Ref. [13] to de"ne

our problem, we are covering all of the Fourier-component (m50) problems basic to the standard
(azimuthally dependent) problem in radiative transfer [5] and a model used in studies of scattering
with complete energy redistribution [25,26], with the exception of the conservative case [13]. For
brevity, we do not elaborate on the functions ((m) and M%

l
(m)N and the constants c and M f

l
N that

appear in Eq. (1); we believe that the meaning of these functions and constants for the intended
applications has been made su$ciently clear in the cited works.

To de"ne our discrete-ordinates version of the problem posed by Eqs. (1) and (2), we begin by
introducing a quadrature of order N with nodes Mm

j
N and weights Mw

j
N to approximate the integral

in Eq. (1). As in Ref. [13], we do not impose any restrictions on the adopted quadrature scheme, so
that we can have, for example, a non-symmetrical quadrature or, in the more general case,
a composite scheme where the integration interval [!c, c] is subdivided into any number of
sub-intervals of arbitrary size, with a quadrature of arbitrary order assigned to each of them. Our
only restricting assumption is that the adopted quadrature scheme should not contain a null node.
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Continuing, we set m"m
j
, j"1, 2,2,N, in Eq. (1) to write the discrete-ordinates equations
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j
), j"1, 2,2, N. (3)

Finally, to specify the boundary conditions needed to complete the de"nition of our discrete-
ordinates version of the problem, we assume that the nodes of the quadrature scheme are ordered
in such a way that the "rst J nodes are positive and the remaining N!J nodes are negative. Thus,
we can write our discrete-ordinates versions of Eqs. (2) as

G(0, m
j
)"¸(m

j
), j"1, 2,2,J, (4a)

and

G(q
0
, m

j
)"R(!m

j
), j"J#1,J#2,2, N. (4b)

3. The discrete-ordinates solution

Making use of the elementary solutions of the discrete-ordinates equations and their ortho-
gonality property developed in Ref. [13], we can now write the general discrete-ordinates solution
of order N to the problem formulated by Eqs. (3) and (4) in the form
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for j"1, 2,2,N. Here, l
k
, k"1, 2,2, K, and !l

k
, k"K#1,K#2,2,N, denote, respectively,

the inverses of the positive and the negative eigenvalues of the N]N matrix N~1(I!W), where
N"diagMm
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N, I is the identity matrix of order N, and W is an N]N matrix with elements
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In passing, we note that the analysis of Ref. [13] that we follow here is valid only under the
assumption that none of the Ml

k
N or the M!l

k
N coincides with one of the nodes Mm

j
N. In addition,

the elementary solutions '(l
k
, m

j
) and '(!l

k
, m

j
) that appear in Eq. (5) are, respectively, the jth

components of the eigenvectors U(l
k
) and U(!l

k
), associated, respectively, with the eigenvalues
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k
. Finally, the coe$cients of the particular solution to Eq. (3), MA
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can be expressed as [13]
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with
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and the coe$cients of the homogeneous solution MA
k
N and MB

k
N can be found by solving the system

of N linear algebraic equations obtained from the requirement that the general solution expressed
by Eq. (5) satis"es the boundary conditions expressed by Eqs. (4), viz.,
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for j"J#1,J#2,2, N. We conclude this section by pointing out that once the linear system
formulated by Eqs. (9a) and (9b) is solved for MA

k
N and MB

k
N, we have at hand all quantities

necessary to evaluate Eq. (5) for any q3[0, q
0
].

4. The SFI technique

As discussed in the Introduction, the source-function integration (SFI) technique provides a way
of evaluating the particle distribution function G(q, m) whenever m does not coincide with any of the
nodes in the approximating quadrature. To obtain the desired result for G(q, m), we need to consider
the cases m3[0, c] and m3[!c, 0] separately.

Starting with m3[0, c], we can use the general discrete-ordinates solution expressed by Eq. (5) on
the right-hand side of the equation that is obtained by using our quadrature scheme to approxim-
ate the integral in Eq. (1) and integrate the resulting equation over space from 0 to q to obtain, for
q3[0, q

0
] and m3[0, c],
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where
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Next, with the help of the integral inversion formulas
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we can evaluate the integrals over x in Eq. (10) to obtain our "nal result for G(q, m), q3[0, q
0
]

and m3[0, c], viz.,

G(q, m)"¸(m)e~q@m#
1
m P

q

0

Q(x, m)e~(q~x)@mdx#
N
+
i/1

w
i
((m

i
)C

L
+
l/0

f
l
%

l
(m

i
)%

l
(m)D

]G
K
+
k/1

l
k
A

k
'(l

k
, m

i
)C(q : l

k
, m)#

N
+

k/K`1

l
k
B

k
'(!l

k
, m

i
)e~(q0~q)@lkS(q : l

k
,m)

#

K
+
k/1

l
k
'(l

k
, m

i
)

N(l
k
)

N
+
j/1

w
j
((m

j
)'(l

k
, m

j
)P

q

0

Q(x, m
j
)C(q!x : l

k
, m) dx

!

N
+

k/K`1

l
k
'(!l

k
, m

i
)

N(!l
k
)

N
+
j/1

w
j
((m

j
)'(!l

k
, m

j
)C P

q

0

Q(x,m
j
)e~(q~x)@mS(x : l

k
, m) dx

#S(q : l
k
, m)P

q0

q
Q(x, m

j
)e~(x~q)@lk dxDH. (13)

Similarly, for m3[!c, 0], we can use the general discrete-ordinates solution expressed by Eq. (5)
on the right-hand side of the equation that is obtained by changing m to !m in Eq. (1) and using
our quadrature scheme to approximate the integral in that equation, and integrate the resulting
equation over space from q to q

0
, to obtain, for q3[0, q
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Again, using the integral inversion formulas
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we can evaluate the integrals over x in Eq. (14) to obtain our "nal result for G(q,!m), q3[0, q
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and m3[0, c], viz.
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In conclusion, we note that our results for G(q,$m), q3[0, q
0
] and m3[0, c], expressed by

Eqs. (13) and (16), could be made more explicit by introducing into these equations the speci"c
representations of the source Q(q, m) for the two classes of problems considered in this work and by
performing the indicated integrations analytically, when possible. However, since in this work we
are interested mainly in demonstrating the equivalence between the SFI and the DNI techniques
and, as we will see, this equivalence is independent on the speci"c form of the source term, we do
not report here the simpli"cations of Eqs. (13) and (16) that can be worked out for our intended
applications.

5. The DNI technique

As mentioned in the Introduction, this technique is based on adding a set of nodes associated
with zero weights, denoted here as m

j
, j"N#1,N#2,2,N#M, to the regular quadrature

E.S. Chalhoub, R.D.M. Garcia / Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 517}535 523



scheme of order N adopted in Section 2. Thus, in addition to Eqs. (3) subject to Eqs. (4), we consider
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for j"N#I#1,N#I#2,2, N#M. Clearly, to write the additional boundary conditions as
in Eqs. (18a) and (18b), we have assumed that the M dummy nodes are ordered so that the "rst I are
strictly positive and the last M!I strictly negative.

Before proceeding with our presentation, we note that, since the dummy nodes are associated
with zero weights, they do not contribute to the scattering term in Eqs. (17). Therefore, if the
problem were solved in two steps, i.e. "rst for the regular ordinates, exactly as done in Section 3,
and then for the dummy ordinates, by simply integrating Eqs. (17) over space and using the
boundary conditions expressed by Eqs. (18a) and (18b), the DNI technique could be viewed as
a mere discretized version of the SFI technique discussed in the preceding section. The equivalence
between these techniques would then be evident. Here, however, we are interested in investigating
what happens when the problem is solved simultaneously for the regular and the dummy ordinates,
as is the case with transport codes based on numerical implementations of the discrete-ordinates
method.

De"ning the particle-distribution vectors
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for i"1, 2,2, M and j"1, 2,2, N, and using the matrices N and W de"ned in Section 3, we can
write our enlarged set of discrete-ordinates equations consisting of Eqs. (3) and (17) in matrix-block
notation as
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GK (q)B#A
I!W 0

!WK IBA
G(q)

GK (q)B"A
Q(q)

QK (q)B. (22)
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Now, trying exponential solutions of the form [13]

A
G

h
(q)

GK
h
(q)B"A

U(l)

UK (l)Be~q@l (23)

for the homogeneous version of Eq. (22), we "nd that the separation constant l and the enlarged
vector of elementary solutions

F(l)"A
U(l)

UK (l)B (24)

must satisfy the enlarged eigensystem of order N#M

A
N~1(I!W) 0

!NK ~1WK NK ~1BF(l)"
1
l
F(l). (25)

As Eq. (25) is equivalent to

N~1(I!W)U(l)"
1
l
U(l) (26a)

and

NK ~1[UK (l)!WK U(l)]"
1
l
UK (l) (26b)

and Eq. (26a) is precisely the eigensystem that must be solved when dummy nodes are not present,
we conclude that the "rst N of a total of N#M separation constants we are looking for are those
of Section 3, i.e. the union of the set of positive separation constants l

k
, k"1, 2,2, K, with the set

of negative separation constants !l
k
, k"K#1,K#2,2,N. Using Eq. (26b), we can show that

the corresponding enlarged vectors of elementary solutions are given by

F(l
k
)"A

U(l
k
)

DK (l
k
)WK U(l

k
)B (27a)

for k"1, 2,2, K, and

F(!l
k
)"A

U(!l
k
)

DK (!l
k
)WK U(!l

k
)B (27b)

for k"K#1,K#2,2, N. In these equations, U(l
k
), k"1, 2,2, K, and U(!l

k
),

k"K#1,K#2,2,N, are the eigenvectors that satisfy Eq. (26a), respectively, for the positive
eigenvalues M1/l

k
N and for the negative eigenvalues M!1/l

k
N (see Section 3), and DK (l) is a M-

diagonal matrix de"ned as DK (l)"diagMl/(l!m
N`1

), l/(l!m
N`2

),2, l/(l!m
N`M

)N.
To determine the remaining M separation contants, we "nd it convenient to consider the

transposed eigensystem. Thus, denoting as (X(l) XK (l)) a left eigenvector of the matrix in Eq. (25), we
consider the auxiliary eigensystem

A
(I!WT)N~1 !WK TNK ~1

0 NK ~1 BA
X(l)

XK (l)B"
1
lA

X(l)

XK (l)B, (28)
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which can also be written as

(I!WT)N~1X(l)!WK TNK ~1XK (l)"
1
l
X(l) (29a)

and

NK ~1XK (l)"
1
l
XK (l). (29b)

Eq. (29b) shows clearly that the dummy nodes themselves provide the remaining M separation
constants required, i.e. l

N`k
"m

N`k
for k"1, 2,2,M. In regard to the corresponding enlarged

vectors of elementary solutions, we "rst note that the eigenvectors MXK (l
N`k

)N associated with the
eigenvalues M1/l

N`k
N in Eq. (29b) have their kth component equal to unity and all other compo-

nents equal to zero. In addition, on comparing Eqs. (26b) and (29b) and considering Eq. (26a), we
can easily see that U(l

N`k
)"0, and so UK (l

N`k
)"XK (l

N`k
), for k"1, 2,2, M. Thus, the enlarged

vectors of elementary solutions associated with the separation constants that coincide with the
dummy nodes are given, for k"1, 2,2, M, by

F(l
N`k

)"A
0

D
k
B, (30)

where the M-vector D
k

is de"ned as D
k
"(d

k,1
d
k,2

2 d
k,M

)T.
Summarizing our results for the separation constants and the elementary solutions required to

implement the discrete-ordinates method in the presence of dummy nodes, we have shown that the
determination of these quantities can be reduced to the solution of the eigensystem for the case
where dummy nodes are absent and the calculation of the vector blocks DK ($l

k
)WK U($l

k
) in Eqs.

(27a) and (27b), to complement the elementary solutions reported in Ref. [13] and used in Section 3.
We have also shown that the new separation constants arising from the inclusion of dummy nodes
are the dummy nodes themselves and that the corresponding elementary solutions can be readily
expressed by means of Eq. (30). We note that similar results are reported in a recent work that uses
the discrete-ordinates method for solving a class of problems in rare"ed-gas dynamics [27].

In view of the form of the vector F(l
N`k

) given by Eq. (30), we conclude that the general
discrete-ordinates solution at a regular node is not a!ected by the dummy-node modes and
therefore is still given by Eq. (5), with the coe$cients A

k
and A

k
(q), for k"1, 2,2, K, and B

k
and

B
k
(q), for k"K#1,K#2,2, N, being computed as discussed in Section 3. On the other hand,

de"ning f
j
"Dm

j
D for j"N#1,N#2,2, N#M, we conclude that the general discrete ordinates

solution at a positive dummy node m
j
"f

j
, j"N#1,N#2,2,N#I, can be written as

G(q, f
j
)"

K
+
k/1

A
k
'K (l

k
, f

j
)e~q@lk#

N
+

k/K`1

B
k
'K (!l

k
, f

j
)e~(q0~q)@lk#A

j
e~q@fj

#

K
+
k/1

A
k
(q)'K (l

k
, f

j
)#

N
+

k/K`1

B
k
(q)'K (!l

k
, f

j
)#A

j
(q) (31a)
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and at a negative dummy node m
j
"!f

j
, j"N#I#1,N#I#2,2, N#M, as

G(q,!f
j
)"

K
+
k/1

A
k
'K (l

k
,!f

j
)e~q@lk#

N
+

k/K`1

B
k
'K (!l

k
,!f

j
)e~(q0~q)@lk#B

j
e~(q0~q)@fj

#

K
+
k/1

A
k
(q)'K (l

k
,!f

j
)#

N
+

k/K`1

B
k
(q)'K (!l

k
,!f

j
)#B

j
(q). (31b)

Here, the elementary solutions 'K ($l
k
,$f

j
) can be computed by using l"l

k
or !l

k
and f"f

j
or !f

j
, as required, in the expression

'K (l, f)"
l

l!f
N
+
i/1

w
i
((m

i
)C

L
+
l/0

f
l
%

l
(m

i
)%

l
(f)D'(l, m

i
), (32)

which denotes a component of the vector block DK (l)WK U(l) that appears in Eqs. (27a) and (27b). In
addition, as already noted, the coe$cients A

k
and A

k
(q), for k"1, 2,2, K, and B

k
and B

k
(q), for

k"K#1,K#2,2,N, can be determined as discussed in Section 3. Thus, only the coe$cients
A

j
,B

j
,A

j
(q) and B

j
(q) are still unknown in Eqs. (31a) and (31b).

The coe$cients A
j
(q), for j"N#1,N#2,2, N#I, and B

j
(q), for j"N#I#1,

N#I#2,2, N#M, can be found by modi"ying the in"nite-medium Green's function solution
reported in Ref. [13] to take into account the presence of dummy nodes (see a detailed derivation of
the required modi"cations in the appendix). The resulting expressions for A

j
(q) and B

j
(q) can be

written as

A
j
(q)"

1
f
j
P

q

0

Q(x, f
j
)e~(q~x)@fj dx

!

K
+
k/1

'K (l
k
, f

j
)

N(l
k
)

N
+
i/1

w
i
((m

i
)'(l

k
, m

i
)P

q

0

Q(x, m
i
)e~(q~x)@fj dx

!

N
+

k/K`1

'K (!l
k
, f

j
)

N(!l
k
)

N
+
i/1

w
i
((m

i
)'(!l

k
, m

i
)P

q

0

Q(x,m
i
)e~(q~x)@fj dx (33a)

for j"N#1,N#2,2, N#I, and

B
j
(q)"

1
f
j
P

q0

q
Q(x,!f

j
)e~(x~q)@fj dx

#

K
+
k/1

'K (l
k
,!f

j
)

N(l
k
)

N
+
i/1

w
i
((m

i
)'(l

k
, m

i
)P

q0

q
Q(x,m

i
)e~(x~q)@fj dx

#

N
+

k/K`1

'K (!l
k
,!f

j
)

N(!l
k
)

N
+
i/1

w
i
((m

i
)'(!l

k
, m

i
)P

q0

q
Q(x, m

i
)e~(x~q)@fj dx (33b)

for j"N#I#1,N#I#2,2,N#M.
The coe$cients A

j
, for j"N#1,N#2,2,N#I, and B

j
, for j"N#I#1,

N#I#2,2, N#M, can be determined by imposing that the solution expressed by Eq. (31a)
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satis"es Eq. (18a) for q"0 and that the solution expressed by Eq. (31b) satis"es Eq. (18b) for q"q
0
.

We "nd

A
j
"¸(f

j
)!

K
+
k/1

A
k
'K (l

k
, f

j
)!

N
+

k/K`1

B
k
'K (!l

k
, f

j
)e~q0 @lk!

N
+

k/K`1

B
k
(0)'K (!l

k
, f

j
) (34a)

for j"N#1,N#2,2, N#I, and

B
j
"R(f

j
)!

K
+
k/1

A
k
'K (l

k
,!f

j
)e~q0 @lk!

N
+

k/K`1

B
k
'K (!l

k
,!f

j
)

!

K
+
k/1

A
k
(q

0
)'K (l

k
,!f

j
) (34b)

for j"N#I#1,N#I#2,2,N#M.
Finally, on substituting Eqs. (7a), (7b), (33a) and (34a) into Eq. (31a), we "nd that the general

discrete-ordinates solution at a positive dummy node f
j

can be written as

G(q, f
j
)"¸(f

j
)e~q@fj#

1
f
j
P

q

0

Q(x, f
j
)e~(q~x)@fj dx#

K
+
k/1

A
k
'K (l

k
, f

j
)[e~q@lk!e~q@fj]

#

N
+

k/K`1

B
k
'K (!l

k
, f

j
)e~(q0~q)@lk[1!e~q@lke~q@fj]

#

K
+
k/1

'K (l
k
, f

j
)

N(l
k
)

N
+
i/1

w
i
((m

i
)'(l

k
, m

i
)P

q

0

Q(x, m
i
)[e~(q~x)@lk!e~(q~x)@fj] dx

!

N
+

k/K`1

'K (!l
k
, f

j
)

N(!l
k
)

N
+
i/1

w
i
((m

i
)'(!l

k
, m

i
)

]GP
q

0

Q(x, m
i
)e~(q~x)@fj[1!e~x@lke~x@fj] dx

#[1!e~q@lke~q@fj]P
q0

q
Q(x, m

i
)e~(x~q)@lk dxH (35)

for j"N#1,N#2,2, N#I. Similarly, on substituting Eqs. (7a), (7b), (33b) and (34b) into
Eq. (31b), we "nd that the general discrete-ordinates solution at a negative dummy node !f

j
can

be written as

G(q,!f
j
)"R(f

j
)e~(q0~q)@fj#

1
f
j
P

q0

q
Q(x,!f

j
)e~(x~q)@fj dx#

K
+
k/1

A
k
'K (l

k
,!f

j
)e~q@lk

][1!e~(q0~q)@lke~(q0~q)@fj]#
N
+

k/K`1

B
k
'K (!l

k
,!f

j
)[e~(q0~q)@lk!e~(q0~q)@fj]

#

K
+
k/1

'K (l
k
,!f

j
)

N(l
k
)

N
+
i/1

w
i
((m

i
)'(l

k
, m

i
)G[1!e~(q0~q)@lke~(q0~q)@fj]P

q

0

Q(x, m
i
)

]e~(q~x)@lk dx#P
q0

q
Q(x, m

i
)e~(x~q)@fj[1!e~(q0~x)@lke~(q0~x)@fj] dxH
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!

N
+

k/K`1

'K (!l
k
,!f

j
)

N(!l
k
)

N
+
i/1

w
i
((m

i
)'(!l

k
, m

i
)

]P
q0

q
Q(x, m

i
)[e~(x~q)@lk!e~(x~q)@fj] dx (36)

for j"N#I#1,N#I#2,2,N#M.
Clearly, if we use Eq. (32) to express the hatted elementary solutions that appear in Eqs. (35)

and (36) in terms of the non-hatted elementary solutions, we can conclude that the resulting
equations are the same as the equations obtained from Eqs. (13) and (16) when the continuous
variable $m is restricted to the set of dummy nodes M$f

j
N in these equations. Thus, the

equivalence between the DNI technique and the SFI technique is established.

6. The computational e7ciency of the techniques

Having concluded that SFI and DNI are formally equivalent techniques of angular interpolation
when applied to the Wick}Chandrasekhar method in plane-parallel geometry, we now report in
this section the results of a study aimed at determining the most e$cient of these techniques,
computationally speaking. However, before discussing our "ndings, we believe it important to give
the reader an idea of the main aspects of our computational implementation.

We begin by noting that the implementation of the SFI technique consists essentially in
introducing the expressions given by Eqs. (13) and (16) into the discrete-ordinates code being used.
Of course, for computational e$ciency, some care must be exercised in order to properly nest the
`DOa loops that translate into computer language the summations that appear in these equations,
but, in general, the task is straightforward.

On the other hand, in regard to the DNI technique, there are various possible ways of
performing its implementation. We have found that the most e$cient of these ways makes use of
some of the simplifying results developed in Section 5. Thus, in our computer code, instead
of considering the enlarged eigensystem expressed by Eq. (25), we considered the smaller eigensys-
tem expressed by Eq. (26a), used the fact that the additional separation constants that show up
when dummy nodes are introduced into the quadrature scheme are the dummy nodes themselves,
and used the expressions for the enlarged vectors of elementary solutions provided by Eqs. (27a),
(27b) and (30). However, to determine the additional coe$cients of the homogeneous solution that
are required when dummy nodes are present, i.e. A

j
, j"N#1,N#2,2, N#I, and B

j
,

j"N#I#1,N#I#2,2, N#M, we prefer to add Eqs. (34a) and (34b) to the linear system
de"ned by Eqs. (9a) and (9b) and solve the enlarged linear system thus obtained for all of the
coe$cients. We have found that this, in general, requires less computer time than solving the linear
system de"ned by Eqs. (9a) and (9b) and then using the explicit expressions provided by Eqs. (34a)
and (34b) to compute the additional coe$cients of the homogeneous solution. Finally, the desired
interpolated solutions are computed with Eqs. (31a) and (31b), where the additional coe$cients of
the particular solution required, i.e. A

j
, j"N#1,N#2,2, N#I, and B

j
, j"N#I#1,

N#I#2,2, N#M, are given by Eqs. (33a) and (33b).

E.S. Chalhoub, R.D.M. Garcia / Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 517}535 529



Table 2
CPU times (s) and % gain for the Haze L problem

(N"42, Z"6) (N"42, M"16)

M t
SFI

t
DNI

% Z t
SFI

t
DNI

%

2 2.8 2.7 4 1 2.9 2.9 0
4 3.1 2.8 10 2 3.1 2.9 6
8 3.7 2.9 22 4 4.0 3.0 25

16 4.8 3.1 35 6 4.8 3.1 35
32 7.3 3.6 51 8 5.7 3.2 44
64 12.6 4.6 63 10 6.6 3.2 52

Table 1
The test problems

Parameter Description Haze ¸ Cloud C
1

- Single-scattering albedo 0.9 0.9
q
0

Optical thickness of the layer 1.0 64
k
0

Cosine of the polar angle of incidence 0.5 0.2
u
0

Azimuthal angle of incidence 0.0 0.0
¸ Scattering order 82 299
N Selected quadrature order 42 220

Two test problems in atmospheric radiative transfer (see Table 1) were solved in order to
evaluate the computational performance of the SFI and DNI techniques. The scattering models
that de"ne these problems were "rst used in a comparison exercise promoted by the Radiation
Commission of the International Association of Meteorology and Atmospheric Physics more than
20 years ago [6], and for this reason we keep the original denominations Haze L and Cloud C

1
. The

phase functions that de"ne the Haze L and the Cloud C
1

problems are described by Legendre
expansions with 83 and 300 terms, respectively. As discussed in Ref. [28], the coe$cients of these
Legendre expansions were computed independently by J.F. de Haan and A.H. Karp, as a way of
establishing complete con"dence in their accuracy, and are tabulated in Refs. [28,29]. The
quadrature scheme selected to solve these problems is the double quadrature of order N"2n
obtained by applying a standard Gauss}Legendre scheme of order n to each of the half-intervals
[!1, 0] and [0, 1]. Since the selected quadrature is symmetric, a reduction in the order of the
eigenvalue problem to one half of the original size (i.e., n instead of N) can be achieved [14,30] and
was used in our computational implementation. The quadrature orders shown in Table 1 were
chosen so that the particle distribution functions obtained for both problems turned out to be
accurate to within $1 in the "fth signi"cant "gure, when compared to highly accurate numerical
results reported in other works that considered these same problems* in particular, Ref. [29] for
the Haze L problem and Ref. [14] for the Cloud C

1
problem.

We report in Tables 2 and 3 the CPU times spent by our code on an IBM compatible personal
computer equipped with a Pentium 233-MHz processor, using the SFI and the DNI techniques to
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Table 3
CPU times (min) and % gain for the Cloud C

1
problem

(N"220, Z"6) (N"220, M"32)

M t
SFI

t
DNI

% Z t
SFI

t
DNI

%

4 22.6 22.9 !1 2 23.3 23.7 !2
8 22.8 23.1 !1 4 24.6 23.8 3

16 23.9 23.3 3 6 26.0 23.9 8
32 26.0 23.9 8 8 27.4 24.0 12
64 30.0 24.8 17 10 28.9 24.0 17

128 38.3 27.7 28 20 35.6 24.1 32

compute the particle distribution function for the Haze L and the Cloud C
1

problems, respectively.
In these tables, M and Z denote, respectively, the number of polar angles and the number of spatial
positions at which the particle distribution function was computed and the % gain for the DNI
technique is de"ned as

% gain"
t
SFI

!t
DNI

t
SFI

]100, (37)

where t
SFI

and t
DNI

denote the CPU times for the SFI and DNI techniques, respectively. It is
important to note that these are the total CPU times needed to solve the problems, not just the
CPU times for performing angular interpolation.

Clearly, we can conclude from the CPU times shown in Tables 2 and 3 that, except for very low
values of M and/or Z, the DNI technique is more economical than the SFI technique, specially for
the Haze L problem, and that the % gain displays a sharp increase with increasing values of M and
Z for both problems. We should add that, for values of M and Z above those shown in the tables,
we have observed a tendency of the % gain to saturate, followed by a slight decline.

7. Concluding remarks

In this work, we have studied two techniques of angular interpolation for the Wick}Chandra-
sekhar method in plane-parallel geometry: the source-function integration (SFI) technique and the
dummy-node inclusion (DNI) technique. These techniques di!er mainly in the way their results are
expressed. The SFI technique yields expressions for the particle distribution function which are
continuous functions of the angular variable, while the DNI technique expresses the particle
distribution function at selected points. We believe that the main result of this work is the proof
that the results of the SFI technique coincide with those of the DNI technique at the selected
points, thus establishing a formal equivalence between both techniques. Looking at these tech-
niques from the perspective of computational e$ciency, we have concluded that the DNI technique
can be implemented in a way that makes it more economical than the SFI technique.
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Finally, we note that we expect soon to be able to extend our equivalence proof to the case where
the boundaries are re#ective. Since the expressions for the particle distribution function resulting
from the application of the SFI technique for this case are more complicated than those reported in
Section 4, we believe that the DNI technique will also prove to be more e$cient than the SFI
technique for this class of problems.
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Appendix

The form of the particular solution at a dummy node
In this appendix, we report the modi"cations that we had to introduce into the in"nite-medium

Green's function formalism of Ref. [13], in order to be able to develop all of the particular solutions
required in Section 5 of our work. As in Section 5, we assume that m

j
, j"1, 2,2,N, are

regular quadrature nodes (i.e., nodes associated with nonzero weights), m
j
"f

j
, j"N#1,

N#2,2, N#I, are positive dummy nodes and m
j
"!f

j
, j"N#I#1,N#I#2,2, N#M,

are negative dummy nodes. As shown in Section 5, the form of the particular solution at a regular
node reported in Ref. [13] is not a!ected by the inclusion of dummy nodes in the quadrature
scheme, and so, to avoid unnecessary repetition, we restrict this appendix to our derivation of the
form of the particular solution at a dummy node.

In our derivation of the required extension of the in"nite-medium Green's function, we seek
a solution, for j"N#1,N#2,2,N#M and a"1, 2,2, N#M, of

m
j

d
dq

G(q, m
j
: x, ma )#G(q, m

j
: x, ma)"

L
+
l/0

f
l
%

l
(m

j
)

N
+
i/1

w
i
((m

i
)%

l
(m

i
)G(q,m

i
: x, ma ), (A.1)

subject to the `jumpa condition

m
j
lim
e?0

[G(x#e, m
j
: x, ma )!G(x!e, m

j
:x, ma )]"d

j,a (A.2)

and bounded as qP$R. Using the results for the separation constants and elementary solutions
that were derived in Section 5, we "nd that we can write the in"nite-medium Green's function for
a positive dummy node f

j
as

G(q, f
j
:x, ma)"

K
+
k/1

A
k,a'K (lk , fj )e~(q~x)@lk#A

j,ae~(q~x)@fj , q'x, (A.3a)

and

G(q, f
j
:x, ma)"!

N
+

k/K`1

B
k,a'K (!l

k
, f

j
)e~(x~q)@lk , q(x. (A.3b)
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On substituting Eqs. (A.3) into Eq. (A.2) for m
j
"f

j
, we obtain

f
j

K
+
k/1

A
k,a'K (lk , fj)#f

j
A

j,a#f
j

N
+

k/K`1

B
k,a'K (!l

k
, f

j
)"d

j,a , (A.4)

where the coe$cients A
k,a , k"1, 2,2,K, and B

k,a , k"K#1,K#2,2, N, have been determined
in Ref. [13] and are given by

A
k,a"

wa((ma )'(l
k
, ma)

N(l
k
)

(A.5a)

and

B
k,a"

wa((ma )'(!l
k
, ma)

N(!l
k
)

(A.5b)

with N($l
k
) as de"ned by Eq. (8) of Section 3. It follows that Eq. (A.4) can be solved for A

j,a ,
and thus we have, for j"N#1,N#2,2,N#I,

A
j,a"

d
j,a
f
j

!wa((ma )C
K
+
k/1

'K (l
k
, f

j
)'(l

k
, ma)

N(l
k
)

#

N
+

k/K`1

'K (!l
k
, f

j
)'(!l

k
, ma)

N(!l
k
) D. (A.6)

In a similar way, we can write the in"nite-medium Green's function for a negative dummy node
!f

j
as

G(q,!f
j
: x, ma)"

K
+
k/1

A
k,a'K (lk ,!f

j
)e~(q~x)@lk , q'x, (A.7a)

and

G(q,!f
j
: x, ma)"!

N
+

k/K`1

B
k,a'K (!l

k
,!f

j
)e~(x~q)@lk!B

j,ae~(x~q)@fj , q(x, (A.7b)

and substitute these equations into Eq. (A.2) for m
j
"!f

j
to obtain

!f
j

K
+
k/1

A
k,a'K (lk ,!f

j
)!f

j

N
+

k/K`1

B
k,a'K (!l

k
,!f

j
)!f

j
B

j,a"d
j,a . (A.8)

As the coe$cients A
k,a , k"1, 2,2, K, and B

k,a , k"K#1,K#2,2, N, are explicitly known [see
Eqs. (A.5a) and (A.5b)] for B

j,a to "nd

B
j,a"!

d
j,a
f
j

!wa((ma )C
K
+
k/1

'K (l
k
,!f

j
)'(l

k
, ma )

N(l
k
)

#

N
+

k/K`1

'K (!l
k
,!f

j
)'(!l

k
, ma )

N(!l
k
) D. (A.9)

Having found all quantities necessary to construct the in"nite-medium Green's function at
a dummy node, we can now express our particular solution to Eq. (17) of Section 5 for positive and
negative dummy nodes $f

j
as

G
p
(q,$f

j
)"P

q0

0

N`M
+
a/1

G(q,$f
j
: x, ma)Q(x, ma ) dx. (A.10)
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For a positive dummy node f
j
, we substitute Eqs. (A.3) into Eq. (A.10) and use Eqs. (A.5) and (A.6)

in the resulting equation to obtain

G
p
(q, f

j
)"

K
+
k/1

A
k
(q)'K (l

k
, f

j
)#

N
+

k/K`1

B
k
(q)'K (!l

k
, f

j
)#A

j
(q), (A.11)

where A
k
(q) and B

k
(q) are given by Eqs. (7a) and (7b) of Section 3, and

A
j
(q)"

1
f
j
P

q

0

Q(x, f
j
)e~(q~x)@fj dx

!

K
+
k/1

'K (l
k
, f

j
)

N(l
k
)

N
+
a/1

wa((ma)'(l
k
, ma )P

q

0

Q(x,ma )e~(q~x)@fj dx

!

N
+

k/K`1

'K (!l
k
, f

j
)

N(!l
k
)

N
+
a/1

wa((ma)'(!l
k
, ma )P

q

0

Q(x, ma)e~(q~x)@fj dx. (A.12)

For a negative dummy node !f
j
, we substitute Eqs. (A.7) into Eq. (A.10) and use Eqs. (A.5) and

(A.9) in the resulting equation to obtain

G
p
(q,!f

j
)"

K
+
k/1

A
k
(q)'K (l

k
,!f

j
)#

N
+

k/K`1

B
k
(q)'K (!l

k
,!f

j
)#B

j
(q), (A.13)

where, again, A
k
(q) and B

k
(q) are given by Eqs. (7a) and (7b) of Section 3, and

B
j
(q)"

1
f
j
P

q0

q
Q(x,!f

j
)e~(x~q)@fj dx

#

K
+
k/1

'K (l
k
,!f

j
)

N(l
k
)

N
+
a/1

wa((ma )'(l
k
, ma )P

q0

q
Q(x, ma)e~(x~q)@fj dx

#

N
+

k/K`1

'K (!l
k
,!f

j
)

N(!l
k
)

N
+
a/1

wa((ma)'(!l
k
, ma)P

q0

q
Q(x,ma )e~(x~q)@fj dx. (A.14)

Eqs. (A.12) and (A.14) are the results that were used without proof in Section 5.
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