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Abstract
In this paper some examples of application of a general Bond Graph approach
for CFD problems, developed in a previous paper by the authors, are shown.
One dimensional examples of heat conduction and advection-diffusion prob-
lems are presented, and the results are compared to the analytical ones. It can
be shown that with very simple (constant) shape functions for entropy, diffusion
effects can be modelled rigorously with the aid of generalized (delta) functions.
For advection-diffusion problems, upwind schemes can be introduced naturally
by means of the weight functions. The treatment of different boundary condi-
tions for these problems in terms of Bond Graph elements is presented. The

results obtained with this formalism show excellent agreement with the analyt-
ical solutions.

Keywords: Computational Fluid Dynamics, boundary conditions, advection-
diffusion problems, upwinding.
1. Introduction

In recent years, it was observed an increasing interest in formulating
system models in which fluid dynamic and heat transfer effects are
important. In order to solve multidimensional problems with the aid
of computer programs, it is important that these models can be im-
plemented numerically. This task, main concern of the area of Com-
putational Fluid Dynamics (CFD), is performed by systematically dis-
cretizing the continua, that is, by replacing the continuous variables by
a combination of a finite set of nodal values and interpolating func-
tions. The result is a (generally nonlinear) algebraic problem, instead
of the original differential or integro-differential one.

The Bond Graph formalism allows a systematic approach for represent-
ing and analyzing dynamic systems [1] . Dynamic systems belonging
to different fields of knowledge, like Electrodynamics, Solid Mechan-
ics, Fluid Mechanics, etc., can be described in terms of a finite number
of variables and basic elements.

An interesting type of problems are those in which heat transport are
due to heat conduction and fluid flow. These situations define what are
known as advection-diffusion problems [4] . The main characteristic
of these problems is that the velocity field and the density are given.

2.  Bond Graphs and Heat Transport

The transport of thermal energy due to heat conduction can be writ-
ten as a product of an absolute temperature # times an entropy flow
S. The absolute temperature plays the role of generalized effort vari-
able in Bond Graph notation, while the entropy flow plays the role of
generalized flow variable.

Entropy generation and irreversibility in heat conduction under finite
temperature drop were modelled with the aid of transformers [5] , be-
ing the transformer modulus dependent on the operating conditions, or
with generalized, power conserving resistance fields [6] [1] [7] . All
these representations starts from relatively simple lumped parameter
systems and satisfy the conservation of thermal power energy and (with
the appropriate definition of parameters) the Second Law of Thermo-
dynamics, this is, entropy production in irreversible processes.

The thermal energy transport associated with the mass flow was not
modeled, up to now, in a general fashion. The applications made so
far dealt with problem restrictions such as the neglect of inertia terms
(which amounts for the major non-linearities) [8] [9] , very simple flow

geometries [10] [11] or the use of the so-called “pseudo bond graphs”
[12] [13] [14] [15] .

Bond Graph modeling procedures reported in the literature start from
lumped-parameter systems, so integration in space and also assump-
tions related to the resolution scheme are made beforehand.

In [8] the concept of convection bond is presented. A convection bond
has one flow (the mass flow) and two efforts (stagnation pressure and
stagnation enthalpy). Causal strokes refer to the pair stagnation pres-
sure and mass flow only, leaving the enthalpy determined both physi-
cally and computationally for the values defined upstream, this is, as-
suming a full upwind numerical scheme.

In a recent work [2] [3] a theoretical development of a general Bond
Graph approach for CFD was presented. Density, entropy per unit vol-
ume and velocity were used as discretized variables; in this way, time-
dependent nodal values and interpolation functions were introduced to
represent the flow field. Nodal vectors were defined as Bond Graph
state variables, namely mass, entropy and velocity. It was shown that
the system total energy can be represented as a 3-port IC field. The
conservation of linear momentum for the nodal velocity is represented
at the inertial port, while mass and entropy conservation equations are
represented at the capacitive ports. All kind of boundary conditions are
handled consistently and can be represented as generalized modulated
effort sources at the inertial port or modulated flow sources at the ca-
pacitive ports. In this paper we shall follow this approach, in which
the heat conduction and advection terms influence the capacitive port
corresponding to the IC field representing the total energy stored in
the system.

The motivation of this paper is the application of the theoretical de-
velopment described above to advection-diffusion problems. Unless
stated, the nomenclature used here has to be taken from the companion
paper [3].

3. System Equations

In the following it will be assumed that the velocity field is known and
the density is constant, this is:

V=V(r,t)
3.1 System Bond Graph and State Equations

The resulting system Bond Graph is shown in Fig. 1. At the 0 junction
with common © we add all the nodal entropy changes per unit time;
in this way, the flow balance represents the thermal energy conserva-
tion equation for the nodal entropy values. The modulated sources are
needed to represent the different boundary conditions established in
the problem, as well as to represent volumetric sources. The resulting
Bond Graph is a simplification of the one obtained in [3] , in which
there is power flow only at the capacitive port and, since the veloc-
ity field is known, the terms S_c and gg come from generalized flow
sources. From here, the resulting state equations are:
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Figure 1: System Bond Graph for advection-diffusion problems.

4. Some exact solutions

In this section we shall obtain and analyze some exact solutions for
the entropy per unit volume in advection-diffusion, one-dimensional
problems.

4.1  Nondimensional balance equation

The power balance equation for the C field port is [3] :
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Assuming valid Fourier’s law and considering the state equation

6 = 0 (s, p) it can be shown that the heat conduction term can be
written as:
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From Eq. (4) it can be seen that the power conservation equation is not
linear when expressed in terms of the entropy per unit volume. The
following nondimensional variables are defined:
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With these definitions we get, for the non dimensional entropy conser-
vation equation:
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where we define a Peclet number and the Reynolds number correspond-
ingly as:
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4.2 Some one dimensional solutions

Let us consider a steady, one dimensional problem with constant ther-
mophysical properties. Assuming that the velocity field is uniform
(V = U 1) and neglecting volumetric heat sources, we have:

as3\%  8%s: ds,
z — P Z = 15
oz* Oz* 2 L Bz g 1)
The solution of Eq. (15) with the boundary conditions:
sy (z" =0) = s (16)
sy (z* =1)=sy, an
is:
8y — Su0 = In[exp (z* Per + As}) + exp (Per)
—exp (Asy) —exp (¢ Per)] — (Per — 1) (18)
where:
Asy =85 — Suo (19)
For a pure diffusion problem (Pez = 0) Eq. (18) reduces to
sy — 38y =In{l1+z" [exp(Asy) — 1]} (20)

Eqgs. (18) and (20) look strange because of the nonlinear nature of Eq.
(15). Nevertheless, it is easy to recover the solutions in terms of tem-
perature when the thermodynamic state relations are introduced. For a
pure substance evolutioning at constant density we have [16] :
0 =0r exp(sy) 21)
* * * 01

exp (A'Sv) = exp (svl - 31}0) = 0_0 (22)

In Eq. (21) g is areference temperature for which the entropy is zero.
Replacing Eq. (22) correspondingly in Eqgs. (18) and (20), we get the

well known solutions for the advection-diffusion and heat conduction
problems:

0 —0p exp(z” Per)—1

= 2
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0_ 00 -
= 24
06, ° (24

For small values of the parameter Asj, Egs. (18) and (20) reduce cor-
respondingly to:

8y —8ho o exp(z” Per)—1
exp (Per) — 1

* *
Sy — S0

» * (25)
Sv1 ~ Swo

*

. o = & (26)

Sy1 — Swo
Comparing Eq. (23) with (25) and Eq. (24) with (26), we observe that
the approximate entropy solutions coincide with the temperature solu-
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tions. The condition As;, < 1 can be used as a criterion to linearize
the balance equation when expressed in terms of the entropy.

5. Examples

In the following, we apply the formalism to the one-dimensional prob-
lem corresponding to heat conduction and advection-diffusion in a slab.
We assume a uniform velocity field and constant thermophysical prop-
erties. Considering n, entropy nodes, the general system Bond Graph
shown in Fig. 1 reduces to the one shown in Fig. 2. It can be observed
that the elements of the vector S’g) , related to the boundary conditions,
can be nonzero only for nodes 1 and n,.
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Figure 2: System Bond Graph for one dimensional advection-diffusion prob-
lems.

5.1 Heat conduction in a slab

For an inner node (1 < [ < n,), we consider the following shape and
weight functions:

0 I<—%
P =1 1 -3<ez<} @7
0 z>12‘-
0 z< —h
_ ) 1+ % —h<z<0
. — I 0<z<h 28)
0 z>h

In Eq. (27) and (28), z is a local coordinate with origin at the entropy
node [, as shown in Fig. 3. It is important to notice that, according
to the chosen shape function, the element S; of the entropy vector is
coincident with the entropy corresponding to the control volume lo-
cated at -—% <z< % Besides, the shape function is discontinuous at

T= —% and z = % From here we get:
00ut _ (5 +5)—6(c—4) 29)
oz 2 2
0 z < —h
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Figure 3: Shape and weight functions for an inner node. The weight function is

shown in a continuous line.
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For the first entropy node (I = 1) we have:
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For the last entropy node (I = n,) we have:

_Jo T< —%
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For these shape and weight functions, we have:
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The temperature ratios in Eqs. (48) to (50) can be written in terms of
the entropy per unit volume by means of Eq. (22). Finally, the state
equations can be obtained by using Eq. (45).
From the analysis made above, it can be seen that the diffusion effects
can be modelled rigorously using the simplest shape function (constant)
for entropy, with the aid of generalized (delta) functions.
With the shape and weight functions defined above, different problems
were solved numerically. We present results for heat conduction in the
region 0 < z < L, with boundary conditions:

“n

Sy l—l)

(48)

SQFl = T

49
SQan =
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00
—A5 (L ) = H [0 (L, ) - o] (52)

and initial condition #(z,0) = 6o. For this problem, it can be shown
[3] that the flow sources needed to establish the boundary conditions
at nodes 1 and n; are, correspondingly:

858, =0 (53)
852w, =—H (1 - -z:‘i) (54)
Ny

The numerical and exact solutions [17] for the nondimensional temper-

ature, shown in Fig. 4, are compared in terms of the following nondi-
mensional parameters:

- 6—0
6= i
R, (55)
. HL
Bi = 5 (56)
agt 5
Fo=2, 57

where Bz and F'o are correspondingly the Biot and Fourier numbers.
In Eq. (57) oy is a thermal diffusivity, defined as:

o= = (58)

pPCy
The numerical results shown in Fig. 4 correspond to a fairly large num-
ber of nodes (i.e. 201); this has been done on purpose to show that
the formulation is indeed spatially consistent. Although good accuracy

was also obtained with much coarser grids, this particular problem is

Figure 4: Heat conduction in a slab. Analytical solutions are shown in continu-
ous lines, while calculated values are shown for selected nodes.

very tough for uniform grids, due to the steep temperature profiles that
appear for Flo << 1.

52 Advection-diffusion in a slab
5.2.1

For an inner node (1 < I < n,), we have:

Linear weight function

So1 = —/wszov.(st) Pig)
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For the first and last entropy node correspondingly we have:
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We present results for the advection-diffusion problem in the region
0 < z < L, with boundary conditions:

0 (0, t) = 6o (63)

6 (L, t)=06r (64)
and initial condition 8(z,0) = 6. For this problem, it can be shown
[3] that the flow sources needed to establish the boundary conditions
at nodes 1 and n, are, correspondingly:
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The numerical and exact solutions for steady state are shown in Fig. 5,
where the nondimensional temperature is defined as:
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Figure 5: Advection-diffusion in a slab, steady state. Linear weight function,
no upwind. The analytical solution is shown in a continuous line.
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The solutions obtained show a known behavior: for grid Peclet num-
bers greater than a critical value (Pep. = 2), the numerical results
present oscilations and are no longer a good approximation of the ana-
lytical solution (see Fig. 7).

522 An upwind scheme

A remedy for these unrealistic oscilations in the solution obtained with
the linear weight function in advection-diffusion problems is the in-
troduction of upwind schemes. Upwind schemes basically weight un-
evenly the advected properties corresponding to the points located up-
stream, compared to the points located downstream. We have found
that, in the Bond Graph formalism, the introduction of upwind schemes
can be performed naturally through the weight functions.

As an example of an upwind scheme [18] , we propose the following
weight function at an inner node (1 < I < n,) (see Fig. 6):

0 z < —h
_ ) 1+F#+8 —h<z<0
e = 1—%— 0<z<h (68)
0 z>h
0 z < —h
Bé(x+h) z=-—h
Sy * % —h<z<0
A -2 0 6(x) z=0 (69)
- 0O<z<h
L 0 z>h

where (3 is a parameter independent of position, which must be opti-
mized in order to satisfy a specified condition, regarding the accuracy

of the solution given by the numerical scheme compared to the exact
solution.

For the first and last entropy node we have:

1-2-8 0<z<h
mlz{o " z>h (70
-1 O0<z<h
81 ) Bale—H) me= 1)

9z 0 55 &
0 < —h
Wen, = z (72)
{1+;+ﬁ —h<z<0
5 0 T < —h
'?"*: B6(z + h) z=—h (73)
z % —h<z<0
1+B
"L""“:%,
-1 ! I+1 x
w2 | hi2
| —h i |

Figure 6: Shape and weight functions with upwind for an inner node. The
weight function is shown in a continuous line.

One of the advantages of this upwind scheme is that the conduction

term remains unchanged, so Egs. (48), (49) and (50) are still valid.
The entropy advection term results:

: 6:—
Sci1 = %U{;Oll (348) (sv1—8v1-1)

+(3+8) (sv1—8vi-1)
+(% —ﬁ) (Sv I4+1 — Su l)

5 (g omn)f 09
801230 (3-0) (1+3) Gea=sn) 09
Som =30 (G +0) (=2 +1) Gon=svmmr) 09

The calculation of the optimal value of 3 is performed by setting the
condition that the numerical scheme has to give the exact steady state
value for the entropy at the node [ for given values of the entropy at the
nodes | — 1 and [ 4 1. Therefore, regarding Eq. (18) we have:

se1-1 =5 (z" =0) amn
syi=sy(z" =3) (78)
sy =8, (2" =1) (79)
We define the following quantities:
Asy ~ = 3:;1 — 8511 (80)
Asyt =851 =800 @1)
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Taking into account Eq. (18) and Egs. (77) to (81), and since the char-
acteristic length L in Eq. (18) corresponds to 2 h we have:

Asy In [exp (Pen + Asy ~ + Asy +)
+exp (2 Pen) — exp (Asy ~ + Asy, +)

—exp (Pen)] — (2 Pen — 1) (82)

Ast T In [exp (2 Pen + Asy ™ + As} +)
—exp (Asy ™ + Asy )]

—In [exp (Pen + Asy ™ + As;, +)
+exp (2 Pe) —exp (As;, ™ + As;, +)

—exp (Pen)]

Uh =
pCy

is the Peclet number based on the grid spacing.

Taking into account Eq.(22), the state equation corresponding to node
l considering steady state can be written as:

where Pej, =

0 = —As;” exp(—As,7) + (Asy *_ Asl 7)
+As; T exp (Asy )

—Pen [(3+8) Asy ™ exp(—As;7)
+(3+8) As; ™ + (% —ﬂ) Asyt

+(3—0) Asy ™ exp (Asy *)] (84)
Elimination of As} ~ and As}, * can’t be performed analytically from
Eqs. (82) and (83). Nevertheless, for As} ~ < land As] * <« 1it
can be shown that:

Asst

ﬁg_ 2 exp(Pen) (85)
~ 1 1exp(Pes)+1 (36)
T Pen 2 exp(Pen)—1

It can be verified that 3 is an antisymmetric function, with the asymp-
totic values + 3 for Pep — + o0o. For 8 = 1, the properties located
downstream have no influence in the integration, and viceversa. With
the optimal value of 3 it was observed that the solutions obtained are

all consistent, even for very high Peclet numbers, as shown in Fig. 7.
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Figure 7: Advection-diffusion in a slab, steady state. Linear weight function,
upwind. The analytical solution is shown in a continuous line.

6. Conclusions

The methodology based on Bond Graphs developed by the authors in a
companion paper was succesfully applied to one dimensional diffusion
(heat conduction) and advection-diffusion problems. It can be shown
that with very simple (constant) shape functions for entropy, diffusion
effects can be modelled rigorously with the aid of generalized (delta)
functions. For advection-diffusion problems, upwind schemes can be
introduced naturally by means of the weight functions. The numerical
results obtained show excellent agreement with the analytical solutions.
Although only one-dimensional cases were presented here, the pro-
posed methodology is completely general, and can be applied as well
to multidimensional problems. We authors certainly believe that this
work and the companion theoretical paper is the foundation of a bridge
between Bond-Graphs and Computational Fluid Dynamics, two fields
that have been following almost separate paths until now.
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