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Application of Neural Networks for unfolding neutron spectra
measured by means of Bonner Spheres
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Abstract

A Neural Network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere

Spectrometer set. The present work used the ‘‘Stuttgart Neural Network Simulator’’ as the interface for designing,
training and validation of a MultiLayer Perceptron network. The back-propagation algorithm was applied. The Bonner
Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation

foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to
10MeV. Two types of neutron spectra were numerically investigated: monoenergetic and continuous. Good results
were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron

spectrum unfolding methodologies. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A system commonly used for neutron field
dosimetry is the Bonner Sphere Spectrometer
(BSS) set. This type of spectrometer has the
advantages of isotropic response and the ability
to measure the neutron spectrum from thermal
energies to tens of MeV. The response of each
detector of an array may be written as a
homogeneous set of Fredholm equations. When
the detector responses are known for discrete
energy groups, this set of equations may be
rewritten as a sum of products between the

neutron fluence rate, the detector response and
the energy width of the group.

Ci ¼
Xn

j¼1

fjDEjRij

where Ci is the reaction rate from the ith Bonner
Sphere; fj is the fluence rate of neutrons in the jth
energy interval; DEj is the jth energy interval; Rij is
the Bonner Sphere response function correspond-
ing to the jth energy interval.

For the case of BSS spectrometers, the decon-
volution methods applicable for solving this set of
equations are usually grouped into three cate-
gories: parametric, quadrature and Monte Carlo.
The present work adopts an approach to the
problem using a Neural Network structure [1–4].
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2. Neural Network architecture

Neural Network models are algorithms for
cognitive tasks, such as learning and optimization,
which are in a loose sense based on concepts
derived from research into the nature of the brain.
It simulates a highly interconnected, parallel
computational structure with many individual
processing elements, or neurons. In mathematical
terms a Neural Network model has the following
properties:

(a) a state variable nk is associated with each
node k;

(b) a real-valued weight wkj is associated with
each link ðkjÞ between two nodes k and j;

(c) a real-valued bias yk is associated with each
node k;

(d) a transfer function fk½nk;wkj ; yk; ðkajÞ� is
defined, for each node k; which determines
the state of the node as a function of its bias,
of the weights of its incoming links, and of
the states of the nodes connected to it by
these links.

In standard terminology, the nodes are called
neurons, the links are called synapses, and the bias
is known as the activation threshold. The transfer
function is either a discontinuous step function or
its smoothly increasing generalization known as a
sigmoidal function [5–7]. This standard network
structure with several layers is called MultiLayer
Perceptron (MLP).

Among the many interesting properties of a
Neural Network, the property that is of primary
significance is the ability of the network to learn
from its environment, and to improve its perfor-
mance through learning; the improvement in
performance takes place over time in accordance
with some prescribed measure. A Neural Network
learns through an iterative process of adjustments
applied to its synaptic weights and thresholds.

A prescribed set of well-defined rules for the
solution of a learning problem is called a learning
algorithm. There is no unique learning algorithm
for the design of Neural Networks. Basically,
learning algorithms differ from each other in the
way in which the adjustment to the synaptic weight
is formulated.

The present work used the ‘‘Stuttgart Neural
Network Simulator’’ (SNNS) as the interface for
designing, training and validation of the network.
The back-propagation algorithm was applied.

The Bonner Sphere set chosen is the one
calibrated at the National Physical Laboratory,
United Kingdom, which uses gold activation foils
as thermal neutron detectors [8]. The neutron
energy covered by the response functions goes
from 0.0001 eV to 10 MeV. Two types of neutron
spectra were investigated: monoenergetic and
continuous.

2.1. Training and test files

The network consisted of three neuron arrays:
the input, hidden and output arrays (see Fig. 1).
The input array was built of 10 neurons and
corresponds to each reaction rate of the Bonner
Sphere. The output array consisted of 52 neurons
and corresponds to each energy bin chosen for the
neutron spectrum. A sigmoid activation function
was used normalized in the interval from �2 to 2.
Several neutron spectra were chosen for training:
monoenergetic, Maxwellian, Watt, 1=E and a

Fig. 1. Multilayer Perceptron 10-50-52 used for unfolding

neutron spectra.
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combination of these. All spectra were normalized
to unity neutron fluence.

The first simulation considered only monoener-
getic neutrons. Fifty-two spectra were chosen,
corresponding to each of the energy bins available
from the Bonner Sphere response function table.
The training has been performed with 44 mono-
energetic spectra randomly selected from the group
of 52. The remaining eight spectra were used for
testing. The training was repeated until the
Standard Error was 0.0019 which was achieved
after 3� 105 iterations. The training rate was 0.2
and the momentum constant parameter was 0.06.
The final network consisted of 10 : 50 : 52 neurons
in the input, hidden and output layers, respectively.

The second simulation considered a new net-
work trained for continuous neutron spectra.
Twenty-one spectra were chosen: Watt, Maxwell,
1=E and combinations of these with different cut-
off energies. The training was repeated until the
Standard Error was 0.0016 which was achieved
after 3� 105 iterations. The training rate was 0.4
and the momentum constant parameter was 0.1.
The final network had the same structure as
before: 10 : 50 : 52 neurons in the input, hidden
and output layers, respectively. A typical training
spectrum is shown in Fig. 2.

3. Results and discussion

The present work investigated numerically some
Bonner Sphere problems occurring in practice.

Excellent results were obtained with monoener-
getic neutrons. The network was able to predict
precisely the results for all the eight unknown
spectra presented to the network. Since the input
data for the network comes from counting rates,
they are subjected to statistical fluctuations. For
this reason, an additional test has been performed
simulating a Normal distribution of counting rates
around the expected mean. The relative standard
deviation has been varied from 5% to 10%. The
output spectrum distribution showed a spread
around the true energy value, as shown in Fig. 3,
indicating that statistical changes in the counting
rates result in a moderate loss of energy resolution.
However, the output mean value matched the
expected neutron energy.

For continuous spectra, despite the small
number of training cases, the network was able
to predict with good accuracy the unknown
neutron spectrum presented to the network, as
shown in Fig. 4. The network output integral
fluence rate was 1.0026 which is in good agreement
with the unity value from the normalized integral
fluence rate of the test case.

In both simulations, the network predicted
precisely the energy bin and the neutron fluence.
It was observed that as the Standard Error became
smaller, the network was able to predict the results

Fig. 2. Typical neutron spectrum for training the Neural

Network (Maxwell, 1=E and Watt).

Fig. 3. Neural Network output spectrum for eight different

monoenergetic neutron beams. The input data corresponding to

the Bonner Sphere counting rates were allowed to spread, in

order to simulate a Normal distribution with 5% relative

standard deviation.

C.C. Braga, M.S. Dias / Nuclear Instruments and Methods in Physics Research A 476 (2002) 252–255254



with better accuracy. Therefore, the accuracy is a
function of the number of iterations, momentum
constant parameter and learning rate parameter.
These results indicate that the Neural Network can
be considered an interesting alternative for neu-
tron spectrum unfolding using a BSS. Further
studies must be performed in order to obtain the
spectrum shape as a function of the neutron
lethargy and to compare the Neural Network with
other unfolding methodologies.
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