ANÁLISE QUANTITATIVA DE SOLO POR ESPECTROMETRIA DE FLUORESCÊNCIA DE RAIOS X (WDXRFS)

Marcos A. Scapin*, Vera L. R. Salvador, Nelson B. Lima e Valdirene O. Scapin.

Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP Av. Lineu Prestes 2.242 05508-900 Butantã, São Paulo, SP, Brasil

RESUMO

O desenvolvimento de novas tecnologias tem empregado muitas substâncias compostas por metais, consequentemente gerando rejeitos para o meio ambiente. Existe hoje uma preocupação muito grande em gerenciar e controlar processos que contribuem para a degradação ambiental. Este trabalho tem como objetivo estabelecer um método de análise para a determinação quantitativa de macros e micros constituintes do solo, utilizando-se a Técnica de Espectrometria de Fluorescência de Raios X por Dispersão de Comprimento de Onda (WD-XRFS) e o Método de Parâmetros Fundamentais, que não utiliza curvas de calibração individuais em suas determinações. As vantagens desta metodologia são: utilização de pequena quantidade de amostra, alta precisão e sensibilidade nas determinações dos analitos estudados; não utilização de tratamentos químicos na preparação de amostras; rapidez e custo relativamente baixo. A metodologia foi validada analisando-se cinco materiais de referência certificados, CRM-2704 - Buffalo River Sediment (NIST), JB2, JG1 e JG1a - Geological Survery of Japan (GSJ) e SL-3 -Lake Sediment (AIEA). Utilizou-se um espectrômetro de fluorescência de raios X RIGAKU, modelo RIX 3000, 1996 do Laboratório de Fluorescência de Raios X, Centro de Química e Meio Ambiente do Instituto de Pesquisas Energéticas e Nucleares de São Paulo. O limite de determinação para os macroconstituintes estão compreendidos entre 0,01 a 0,2 % e para os micro-constituintes 5 µg/g, a 100 μg/g. Os analitos estudados foram: SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Ag, As, Cd, Ce, Cr, Cu, Ga, Hg, La, Nd, Ni, Pb, Rb, Se, Sr, V, Y, Zn e Zr. Esta metodologia foi desenvolvida para apoiar estudos de impactos ambientais, porém, está também, fornecendo suporte para a caracterização de argilominerais em processos de altas tecnologias.

Keywords: x-ray, soil.

LINTRODUÇÃO

A existência de metais pesados em solos tem despertado grandes preocupações aos pesquisadores com relação às suas influências na vida animal e vegetal. Com o crescimento tecnológico, tem aumentado substancialmente o uso de muitos elementos metálicos como V, Cr, Fe, Co, Ni, Cu, Mn, Zn, As, Pb, Al, Se, Cd, Hg, U e outros, nos processos químicos, conseqüentemente gerando rejeitos para o meio ambiente.

A detecção e o controle desses elementos permitem avaliar suas influências ao meio ambiente, monitorar e controlar seus ciclos na biosfera.

Análises químicas precisas e exatas combinadas com uma amostragem adequada são essenciais para os estudos científicos, de metais causadores da poluição ambiental.

O presente trabalho propõe avaliar os teores de SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , MnO, MgO, CaO, Na_2O , K_2O , P_2O_5 , (macro-constituintes) e Ag, As, Cd, Ce, Cr, Cu, Ga,

Hg, La, Nd, Ni, Pb, Rb, Se, Sr, V, Y, Zn e Zr. microconstituintes do solo, por fluorescência de raios X, usando o método de Parâmetros Fundamentais, o qual não necessita de curvas de calibração individual para a determinação quantitativa dos analitos citados acima.

A Técnica de Fluorescência de Raios X é multielementar, baseando-se nas medidas das intensidades dos raios X secundários ou característicos, emitidos pelos elementos constituintes da amostra. Apresenta para os elementos de número atômico superior a vinte, alta precisão, sensibilidade e exatidão sendo comparável às técnicas de absorção atômica e emissão com fonte de plasma. Esta técnica é provavelmente a mais versátil de todas as técnicas químicas analíticas instrumentais no que se refere a variedades de formas, tamanhos e estados físicos das amostras, pois, amostras metálicas são analisadas diretamente sem tratamento químico, os pós podem ser analisados diretamente, compactados, fundidos e/ou vitrificado e pó suportado e as amostras líquidas

diretamente ou suportada sobre papel de filtro, o qual é conhecido como filme fino.

Devido a sua grande versatilidade, esta técnica vem destacado-se com muita eficiência em análises ambientais, biológicas e alimentícias mostrando-se bastante atrativa nas análises de materiais particulados e sólidos em suspensão.

IL PARÂMETROS FUNDAMENTAIS

O Método de Parâmetros Fundamentais (FP) permite obter uma curva de sensibilidade do equipamento, (Figura 1), consiste em calcular a intensidade teórica para os elementos químicos a partir de amostra de composição conhecida, (cuja composição podendo ser próxima ou não da amostra a ser analisada), submetida aos parâmetros instrumentais bem definidos como excitação do tubo de raios X e geometria óptica.

Relacionando-se a intensidade fluorescente teórica calculada e a intensidade fluorescente medida para cada elemento químico, pode-se obter uma curva de sensibilidade do equipamento e assim determinar a composição e as impurezas do material analisado.

O Método de Parâmetros Fundamentais foi apresentado em 1955 por Sherman e passando por modificações em 1966 por Shiraiwa e Fujino. Nestes últimos algoritmos foi introduzida uma correção para a radiação fluorescente secundária, devido ao advento dos modernos computadores, que possibilitaram cálculos mais refinados. Em 1968, Criss and Birks conseguiram quantificar matematicamente a intensidade fluorescente em termos de parâmetros físicos fundamentais e parâmetros instrumentais, que são as bases para as correções do efeito da matriz. As maiores dificuldades encontradas referem-se às expressões que constavam de integrais múltiplas, laboriosas de serem resolvidas na prática. Outra dificuldade consistia também na obtenção do espectro primário do tubo de raios X com precisão. A partir de 1977, o método começou a ser utilizado para filmes finos e atualmente é utilizado para qualquer tipo de amostra.

O cálculo da intensidade fluorescente de raios X teórica baseia-se nos seguintes critérios:

- · todos elementos devem estar uniformemente distribuídos na amostra;
- · a intensidade fluorescente característica é geralmente proporcional à concentração;
- · os efeitos de intensificação ou absorção da matriz podem ser calculados usando-se o coeficiente de absorção de massa;
- · a intensidade fluorescente de raios X proveniente da amostra é dependente da configuração do equipamento e das condições de medida.

Dessa forma, a intensidade fluorescente teórica é calculada por meio de relações matemáticas que levam em conta o coeficiente de absorção de massa, rendimento de fluorescência, coeficiente de absorção fotoelétrica, barreira de absorção, tensão aplicada ao tubo de raios X e a eficiência do equipamento.

A sensibilidade é uma função do sistema óptico do equipamento, da eficiência de reflexão do cristal analisador, da eficiência das contagens do detector e varia para cada elemento químico.

A curva de sensibilidade do equipamento é obtida utilizando-se a relação entre a intensidade fluorescente medida e a teórica em função de cada elemento químico. Para tanto, são utilizadas amostras puras de composição química bem conhecida e do programa de software de Parâmetros Fundamentais instalado no espectrômetro.

Figura 1 – Curva de sensibilidade para o espectrômetro RIX 3000 usado neste trabalho.

Para a construção da curva de sensibilidade deste trabalho, utilizaram-se amostras padrões fornecidos pela RIGAKU. As amostras metálicas encontram-se na forma de discos de 40mm de diâmetro e os compostos na forma de pastilhas prensada. A Tabela 1 apresenta as amostras padrão utilizadas, linha de emissão. intensidade experimental, intensidade estimada (quando não foi possível efetuar a medida em função da ausência de material de referência), intensidade teórica e a sensibilidade, calculada através do quociente entre intensidade experimental e intensidade teórica, que foi obtida através do programa de software que acompanha o espectrômetro RIX 3000, da RIGAKU Co, modelo 1996.

As condições de medidas estão apresentadas na Tabela 11.

TABELA 1 – Substâncias, linha de emissão, intensidade experimental, intensidade estimada e sensibilidade calculada através do programa de software RIX 3000.

0						
N ⁰ _Atômico	Elemento	Sustância	Espectro	IEX*	I Teórica**	Sensibilidad
5	В	H3BO3	B-Ka	0,566	4,7632	0,11891
6	C	Grafite	C-Ka	4,925	3,0301	0,61531
7	N	Estimado	N-Ka	0,970	1,0000	0,97025
8	О	H3BO3	O-Ka	3,174	45,4560	0,06983
9	F	F	F-Ka	10,008	36,8348	0,27170
11	Na	NaCl	Na-Ka	50,019	19,0519	2,62543
12	Mg	Mg-metal	Mg-Ka	652,614	100,0000	6,52614
13	Al	Al-metal	Al-Ka	1670,103	100,0000	16,70103
14	Si	Si/Mg	Si-Ka	145,492	16,2466	8,95524
15	P	CaHPO4	P-Ka	778,856	25,4720	30,57691
16	S	S	S-Ka	1784,476	100,0000	17,84476
17	Cl	NaCl	Cl-Ka	183,000	55,2654	3,31129
19	K	KBr	K-Ka	577,841	15,1394	38,16795
20	Ca	CaHPO4	Ca-Ka	954,936	30.9673	30,83698
22	Ti	Ti-metal	Ti-Ka		,	
				417,305	100,0000	4,17305
23	V	V-metal	V-Ka	662,237	100,0000	6,62237
24	Cr	Cr-metal	Cr-Ka	349,257	36,0768	9,68093
25	Mn	Mn-metal	Mn-Ka	267,587	17,6509	15,15992
26	Fe	Fe-metal	Fe-Ka	1985,794	100,0000	19,85794
27	Co	Co-metal	Co-Ka	2513,120	100,0000	25,13120
28	Ni	Ni-metal	Ni-Ka	3123,380	100,0000	31,23380
29	Cu	Cu-metal	Cu-Ka	3699,581	100,0000	36,99581
30	Zn	Zn-metal	Zn-Ka	4376,787	100,0000	43,76787
31	Ga	Ge/Ga	Ga-Ka	387,360	7,0843	54,67873
32	Ge	Ge/Ga	Ge-Ka	426,003	7,1242	59,79647
33	As	TTAs	As-Ka	1316,440	20,1984	65,17551
35	Br	KBr	Br-Ka	5029,772	71,8680	69,98623
38		GeGa	Sr-Ka	1085,983	14,5713	74,52878
	Sr		Y-Ka			
39	Y	YBa		913,067	12,2656	74,44154
40	Zr	Zr-metal	Zr-Ka	7428,938	100,0000	74,28938
41	Nb	Nb-metal	Nb-Ka	7393,107	100,0000	73,93107
42	Mo	Mo-metal	Mo-Ka	7343,760	100,0000	73,43760
44	Ru	Estimado	Ru-Ka	33,235	1,0000	33,23456
45	Rh	Estimado	Rh-Ka	25,600	1,0000	25,60005
46	Pd	Pd/Ir	Pd-Ka	1507,125	81,1354	18,57542
47	Ag	Ag-metal	Ag-Ka	1580,871	100,0000	15,80871
48	Cd	Cd-metal	Cd-Ka	1310,608	100,0000	13,10608
49	In	In-metal	In-Ka	1120,487	100,0000	11,20487
50	Sn	Sn-metal	Sn-Ka	979,297	1628,4626	1,66289
51	Sb	Sb/Ce	Sb-Ka	291,925	33,1567	8,80439
52	Te	TTAs	Te-Ka	177,143	26,5875	6,66263
53	I	Estimado	I-Ka	5,410	1,0000	5,41049
55	Cs	Cs2O	Cs-Ka	71,913	29,1861	2,46394
56	Ba	Y/Ba	Ba-La	34,769	57,7888	0,61650
57	La	RLTS	La-La	24,940	35,2383	0,70777
58	Ce	Sb/Ce	Ce-La	25,589	28,5914	0,89498
59	Pr	Estimado	Pr-La	1,003	1,0000	1,00279
60	Nd	Nd	Nd-La	48,142	45,8729	1,04946
62	Sm	Sm/Co	Sm-Lb1	90,620	53,4627	1,69501
64	Gd	Gd2O	Gd-La	301,859	98,1961	3,07404
65	Tb	Estimado	Tb-La	3,499	1,0000	3,49894
66	Dy	DyO2	Dy-La	386,860	98,4420	3,92983
70	Yb	Yb2O	Yb-La	584,331	98,7543	5,91702
72	Hf	Hf-metal	Hf-La	591,723	100,0000	5,91723
73	Ta	Ta-metal	Ta-La	644,387	100,0000	6,44397
74	W	W-metal	W-La	686,377	100,0000	6,86377
77	Ir	Pd/Ir	Ir-La	114,789	13,2535	8,66106
78	Pt	Pt/Rh	Pt-La	848,858	93,3191	9,09629
79	Au	Au-metal	Au-La	923,266	100,0000	9,23266
80	Hg	HgCl	Hg-La	946,129	93,8663	10,07953
81	Tl	TTAs	Ta-La	500,243	45,3326	11,03495
82	Pb	Pb-metal	Pb-Lb1	1151,912	100,0000	11,51912
		ъ.	D: I o	490,635	42,6366	11,50737
83	Bi	Bi	Bi-La	490,033	72,0300	11,50757
	Bi Th	ThO2	Th-La	990,813	83,4076	11,87917

I EX* = Intensidade Experimental (kcps)

1 Teórica** = Intensidade calculada - Método de Parâmetros Fundamentais (kcps)

III. DETERMINAÇÃO DAS CONDIÇÕES DE MEDIDAS

Uma análise qualitativa do material de referência JB-2 Geological Survery of Japan (GSJ) foi realizada preliminarmente com o propósito de determinar as posições

de pico e fundo (BG), a presença de elementos traços, a intensidade de raios X e a correção de sobreposição de linhas.

As intensidades de raios X observadas são a soma dos raios X contínuo e característico. Para os elementos traços as intensidades de pico não foram observadas devido à baixa concentração, portanto, utilizou-se amostras de alta pureza. As posições de BG ótimas foram selecionadas comparando os resultados da análise qualitativa.

A Tabela 2 apresenta as condições de Operação instrumental.

TABELA 2 - Condições de medidas utilizadas para o espectrômetro Rigaku 3000. Tubo de Rh.

		esj	pecuo.	meno	Rigaku	3000	. Tubo	ue K	11.
Elemento (linha de emissão	Pico 20	BG_l	BG ₂	Cristal de Difração	Colimador	Detector	Potencia kVxmA	PHA	Filtro
Si- K_{α}	109,055	107,269	110,006	PET-001	160µm	FPC	50x50	130-280	***
Ti-K_{α}	86,1260	85,200	85,900	LiF-200	160µm	SC	50x50	90-270	***
Al- K_{α}	144,880	141,015	147,308	PET-001	480µm	FPC	50x50	120-300	***
Fe- K_{α}	57,510	57,000	58,000	LiF-200	160µm	SC	50x50	100-300	***
Mn - K_{α}	62,970	***	64,000	LiF-200	160µm	SC	50x50	100-300	***
Mg - K_{α}	45,335	43,000	47,000	TAP-100	480µm	FPC	50x50	120-280	***
Ca-K_{α}	62,050	60,650	63,373	GE-111	480µm	FPC	50x50	120-280	***
Na-K _a	55,300	53,038	56,938	TAP-100	480µm	FPC	50x50	120-280	***
K-K _α	70,060	67,969	71,985	Ge-111	480µm	FPC	50x50	150-270	***
P-K _α	141,190	139,569	142,823	Ge-111	480µm	FPC	50x50	100-300	***
Ag-K	16,010	***	16,331	LiF-200	160 u m	SC	50x50	100-300	***
As-K _B	30,470	29,654	31,308	LiF-200	480µm	SC	50x50	100-300	Ni
Cd−Kα	15,330	14,946	15,677	LiF-200	480µm	SC	60x45	100-300	Zr
$\text{Ce-L}_{t\alpha}$	78,980	78,380	79,580	LiF-200	480µm	SC	50x50	120-300	***
$\text{Co-}K_{\alpha}$	52,770	***	53,370	LiF-200	160µm	SC	50x50	120-300	***
Cr-K_{α}	69,330	68,730	69,930	LiF-200	160µm	SC	50x50	120-300	***
Cu-K_{α}	45,010	44,410	45,610	LiF-200	160µm	SC	50x50	120-300	***
Ga - K_{α}	38,900	38,300	39,500	LiF-200	160µm	SC	50x50	120-300	***
$Hg-K_{\alpha}$	35,850	***	36,850	LiF-200	160µm	SC	50x50	120-300	Zr
La-Lα	82,880	82,280	83,480	LiF-200	160µm	SC	50x50	120-300	***
$Nd-L_{\alpha}$	72,100	71,100	*olek	LiF-200	480µm	SC	50x50	120-300	***
N_i - K_{α}	48,650	48,050	49,250	LiF-200	480µm	SC	50x50	120-300	***
$Pb-L_{\beta l}$	28,240	27,640	28,840	LiF-200	480µm	SC	50x50	120-300	***
Rb - K_{α}	15,330	14,946	15,677	LiF-200	480µm	SC	50x50	120-300	***
Se- K_{α}	31,870	32,470	32,470	LiF-200	480µm	SC	50x50	120-300	***
Sr-Kα	25,130	24,530	25,730	LiF-200	480µm	SC	50x50	120-300	***
V - K_{α}	76,910	76,310	77,510	LiF-200	480µm	SC	50x50	120-300	***
$Y-K_{\alpha}$	23,780	23,180	24,380	LiF-200	480µm	SC	50x50	120-300	***
Zn - K_{α}	41,780	41,1280	42,380	LiF-200	480µm	SC	50x50	120-300	***
Zr - K_{α}	22,540	21,940	23,140	LiF-200	480µm	SC	50x50	120-300	***

 $\mbox{PHA}^* = \mbox{Analisador}$ de altura de pulso — Linha de Base x Abertura de Janela.

Para a análise do elemento As, foi selecionada a linha de emissão As- K_{β} porque ocorre sobreposição de linha do elemento Pb- L_{α} e também filtro de Ni para corrigir a interferência da linha de emissão do elemento Hg- $L_{\beta L}$

A linha de emissão do elemento Cd- K_{α} sofre sobreposição de linha do elemento Rh- $K_{\beta 2}$, (linha esta proveniente do tubo de raios X utilizado), esta interferência espectral foi corrigida utilizando-se filtro de Zr. A utilização deste filtro produz um decréscimo na intensidade, portanto, aplicou-se 60kV de tensão e 45 mA de corrente objetivando o aumento na intensidade.

O elemento Pb foi analisado utilizando-se a linha de emissão Pb-L_{\beta1}, pelo motivo de ocorrer sobreposição de linha do elemento As- K_{α} e finalmente para o elemento Hg, utilizou-se a linha de emissão Hg- L_{α} com filtro de Zr para corrigir a interferência do elemento Rh- $K_{\alpha1}$ segunda ordem.

IV. SENSIBILIDADE E LIMITE MÍNIMO DE DETECÇÃO TEÓRICO

O limite mínimo de detecção e a sensibilidade foram calculados através das Eq.(1) e (2), estão relacionados na Tabela 3.

$$LMD = \frac{3 \ddot{O} R_b}{m T_b}$$
 (1)

onde:

R_b = contagem na posição do BG

T_b = tempo de contagem na posição do BG

M = (sensibilidade)

$$c *s * \%$$

onde;

c = contagens

s = tempo de contagem

% = porcentagem do elemento na amostra.

A posição de BG foi calculada através da Eq.(3).

BG
$$I_2 = I_1(2\theta_3 - 2\theta_2) + I_3(2\theta_2 - 2\theta_1)$$

$$(2\theta_3 - 2\theta_1)$$

onde;

 $BG I_2$ = intensidade da radiação de fundo no pico da linha fluorescente.

I₁, I₃ = intensidade da radiação de fundo à esquerda e à direita do pico, respectivamente.

 $2\theta_2$, $2\theta_1$ e $2\theta_3$ = posição de ângulo (2θ) de Bragg no pico, à esquerda e à direita do pico respectivamente.

V.PREPARAÇÃO DE AMOSTRAS.

As amostras foram preparadas, na forma de pastilha prensada de dupla camada, utilizando-se como base

4,0g de ácido bórico (H₃BO₃) e 1,8g de amostra diluída em 0,2g de cera (Hoechst wax C micropowder).(Figura 2)

Para a compactação das pastilhas utilizou-se uma prensa hidráulica (HERZOG), com acessórios em aço especial, de modo a permitir que o material fosse prensado em forma de pastilha de 40mm de diâmetro. Para tanto foi aplicada uma pressão de 10 toneladas (203MPa) por 1 minuto sobre o ácido bórico, posteriormente, a adição da amostra sobre essa base aplicou-se uma pressão de 15 toneladas (304MPa) por 1 minuto. As pastilhas obtidas apresentaram uma densidade superficial de aproximadamente 100mg * cm-2.

Figura 2 - Exemplo de Pastilha Prensada de Dupla Camada

TABELA 3 – Valores calculados para os limites mínimos de detecção.

E le m e n t o	L.M.D
	%
S iO 2	0,218
T iO 2	0,013
A 1 ₂ O ₃	0,006
F e 2 O 3	0,002
M n O	0,002
М д О	0,015
CaO	0,002
N a 2 O	0,011
K ₂ O	0,001
P ₂ O ₅	0,002
μ g /	
A g	4,1
A g A s	1 4 , 2
B a	1 2 7 , 6
C d	28,4
C d C e	7,2
Ci	10,5
C o	
C o	5,0
	1 3 , 4
C u	6,0
G a	4,7
H g	1,9
N d	0,4
N i	4,3
P b	15,6
R b	2,9
S	1,3
S e	7,5
S r	2,8
V	40,0
Y	3,3
Z n	6,0
Ζr	2,3

VI.AVALIAÇÃO DA METODOLOGIA

Para a avaliação da metodologia preparou-se triplicata dos materiais de referência certificados, CRM-2704 – Buffalo River Sediment (NIST), JB2, JP1 e JG1a – Geological Survery of Japan (GSJ), seguindo o procedimento do item V.

À amostra JB2, foram adicionados 200µl e 500µl de uma solução multielementar Johnson Matthey Company (36739 e 36740) com o propósito de aumentar a concentração dos elementos Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, V e Zn, que no material original estão abaixo do limite de detecção. A concentração dos elementos da solução multielementar 36739 e 36740 encontram-se na Tabela 4. Posteriormente a esta adição, a amostra foi seca em estufa a temperatura de 105°C até massa constante. Após esse tratamento seguiu-se o procedimento citado no item V.

As Tabelas 5, 6 e 7, mostram os teores certificados, os obtidos, e o erro relativo em termos de coeficiente de variação percentual, para a amostra JB2(GSJ) natural, com adição de 200 µl e 500 µl de solução.

TABELA 4 – Teores certificados da solução multielementar Johnson Matthey Company 36739 e 36740.

Elemento	36739	36740
Elemento	$[\mu g/m1]$	$[\mu g/m1]$
Ag	300	***
As	1000	100
Cd	300	25
Со	300	100
Cr	300	100
Cu	300	100
Нg	100	5
Ni	300	100
Pb	1000	100
Se	500	25
V	300	250
Zn	300	100

TABELA 5 – Teores certificados e determinados para o material de referência JB2(GSJ) Natural.

Elemento	Certificado %	Determinado %	c.v %
SiO ₂	53,20	52,72 <u>+</u> 0,01	0,02
TiO ₂	1,19	1,10 <u>+</u> 0,01	0,90
Al ₂ O ₃	14,67	14,56 <u>+</u> 0,01	0,07
Fe ₂ O ₃	14,34	14,24 <u>+</u> 0,01	0,07
MnO	0,20	0,20 <u>+</u> 0,01	5
MgO	4,66	4,61 <u>+</u> 0,01	0,22
CaO	9,89	9,81 <u>+</u> 0,01	0,10
Na₂O	2,03	2,02 <u>+</u> 0,01	0,50
K ₂ O	0,42	0,42 <u>+</u> 0,01	2,4
P ₂ O ₅	0,10	0,10 <u>+</u> 0,01	10
1	μ	g/g	
Ag	***	***	***
As	3,0	***	***
Cd	0,1	***	***
Ce	6,5	***	***
Co	39,8	39,4 <u>+</u> 0,9	2,3
Cr	27,4	27,7 <u>+</u> 0,6	0,2
Cu	227,0	225 <u>+</u> 2	0,9
Ga	17	16 <u>+</u> 2	12,5
Hg	***	***	***
La	2,4	2,5 <u>+</u> 0,1	4
Nd	6,5	6,2 <u>+</u> 0,2	3,2
Ni	14,2	13,8 <u>+</u> 0,5	3,6
Pb	5,4	5,5 <u>+</u> 0,1	1,8
Rb	6,2	7 <u>+</u> 1	14,3
Se	0,2	***	***
Sr	178	176 <u>+</u> 1	0,6
V	578	584 <u>+</u> 5	0,9
Υ	26,0	25,7 <u>+</u> 0,3	1,2
Zn	110,0	109 <u>+</u> 3	2,8
Zr	52,0	51,6 <u>+</u> 0,4	0,8

TABELA 6 – Teores certificados e determinados para o material de referência JB2(GSJ) 200µl.

Elemento	Certificado %	Determinado %	c.v %
SiO ₂	53,20	52,72 <u>+</u> 0,01	0,02
TiO ₂	1,19	1,18 <u>+</u> 0,01	0,84
Al_2O_3	14,67	14,46 <u>+</u> 0,04	0,28
Fe_2O_3	14,34	14,28 <u>+</u> 0,09	0,63
MnO	0,20	0,20 <u>+</u> 0,01	5
MgO	4,66	4,68 <u>+</u> 0,02	0,43
CaO	9,89	9,85 <u>+</u> 0,05	0,51
Na ₂ O	2,03	2,05 <u>+</u> 0,01	0,49
K_2O	0,42	0,41 <u>+</u> 0,01	2,4
P_2O_5	0,10	0,10 <u>+</u> 0,01	10
	μ	g/g	
Ag	60	58 <u>+</u> 1	1,7
As	202,98	203 <u>+</u> 5	2,5
Cd	60,14	63 <u>+</u> 5	7,9
Ce	6,5	5 <u>+</u> 2	40
Co	99,8	99 <u>+</u> 1	1
Cr	87,4	88 <u>+</u> 3	3,4
Cu	287	280 <u>+</u> 2	0,7
Ga	17	16 <u>+</u> 1	6,3
Hg	10,004	9,5 <u>+</u> 0,3	3,2
La	2,4	2,2 <u>+</u> 0,1	9,1
Nd	6,5	6,7 <u>+</u> 0,2	2,9
Ni	74,2	74 <u>+</u> 1	1,4
Pb	205,4	208 <u>+</u> 6	2,9
Rb	6,2	6,3 <u>+</u> 0,7	11,1
Se	100,18	100,3 <u>+</u> 0,5	0,5
Sr	178	176 <u>+</u> 1	0,57
V	638	648 <u>+</u> 5	0,77
Υ	26,0	25,7 <u>+</u> 0,3	1,2
Zn	170	109 <u>+</u> 3	2,8
Zr	52,0	51,6 <u>+</u> 0,4	0,8

TABELA 7 – Teores certificados e determinados para o material de referência JB2(GSJ) 500µl

Elemento	Certificado %	Determinado %	c.v %
SiO ₂	53,20	52,50 <u>+</u> 0,20	0,38
TiO ₂	1,19	1,19 <u>+</u> 0,01	0,84
Al ₂ O ₃	14,67	14,22 <u>+</u> 0,04	0,28
Fe ₂ O ₃	14,34	14,53 <u>+</u> 0,09	0,62
MnO	0,20	0,21 <u>+</u> 0,01	4,8
MgO	4,66	4,68±0,03	0,64
CaO	9,89	9,80 <u>+</u> 0,05	0,51
Na ₂ O	2,03	1,95 <u>+</u> 0,01	0,51
K₂O	0,42	0,41 <u>+</u> 0,01	2,4
P ₂ O ₅	0,10	0,10 <u>+</u> 0,01	10
	μ	g/g	
Ag	150	158 <u>+</u> 3	1,9
As	502,98	495 <u>+</u> 8	1,6
Cd	150,14	157 <u>+</u> 3	1,9
Ce	6,5	6 <u>+</u> 1	16,7
Co	189,8	185 <u>+</u> 5	2,7
Cr	177,4	167 <u>+</u> 4	2,4
Cu	377	366 <u>+</u> 2	0,6
Ga	17	16 <u>+</u> 1	6,3
Hg	25,004	29 <u>+</u> 0,3	10,3
La	2,4	2,3 <u>+</u> 0,1	4,3
Nd	6,5	6,5 <u>+</u> 0,1	1,5
Ni	164,2	154 <u>+</u> 1	0,7
Pb	505,4	506 <u>+</u> 6	1,2
Rb	6,2	6,3 <u>+</u> 0,2	3,2
Se	250,18	251 <u>+</u> 3	1,2
Sr	178	179 <u>+</u> 2	1,12
V	728	715 <u>+</u> 5	0,70
Y	26,0	27,2 <u>+</u> 0,5	1,8
Zn	260	258 <u>+</u> 3	1,2
Zr	52,0	51,8 <u>+</u> 0,5	1,0

Os dados apresentados nas Tabelas 5, 6 e 7 demonstram que a reprodutibilidade dos elementos macroconstiuintes (elementos cujos teores estão expressos em porcentagem) é satisfatória, pois os erros relativos em termos de coeficiente de variação percentual são inferiores a 2,5% com exceção do MnO, que é \leq 5% e o P= 10%.

Para os micro-constituintes (elementos expresso em $\mu g/g$) podemos observar que o procedimento de adição da solução possibilitou detectar os elementos que estavam abaixo do limite de detecção, a reprodutibilidade dos resultados são consideravelmente significativas, podemos observar que os erros relativo em termos de coeficiente de variação percentual são inferiores a 14,3%, exceto para o elemento Ce, na amostra JB2-200 μ l, que é 40%. Tendo em vista a ordem de grandeza (5 μ g/g), podemos aceitar o erro e considerar a viabilidade da metodologia, pois neste procedimento analítico não é empregado curvas de calibração.

As Tabelas 8, 9 e 10, apresentam os resultados das amostras de referência CRM-2704 — Buffalo River Sediment (NIST), JP1 e JG1a — Geological Survery of Japan. O propósito dessa análise foi verificar a eficiência do programa de software de Parâmetros Fundamentais instalado no espectrômetro RIX 3000 para a correção dos efeitos de matriz.

As amostras analisadas apresentam a composição química completamente distinta. Podemos verificar que os resultados determinados são muito próximos dos certificados. Por se tratar de uma análise que não utiliza curvas de calibração, o que em termos de rapidez e custo é muito significativo, concluímos que a metodologia é viável.

TABELA 8 – Teores certificados e determinados para o material de referência CRM-2704 – Buffalo River Sediment (NIST)

Elemento	Certificado (%)	Determinado (%)	C.V. (%)
SiO2	62,21	62,75 <u>+</u> 0,17	0,27
TiO2	0,76	0,80 <u>+</u> 0,01	1,3
Al2O3	11,54	11,48 <u>+</u> 0,04	0,35
Fe2O3	5,88	5,84 <u>+</u> 0,07	1,2
MnO	0,07	0,09 <u>+</u> 0,01	11,1
MgO	1,99	1,87 <u>+</u> 0,03	1,6
CaO	3,64	3,82 <u>+</u> 0,03	0,79
Na2O	1,44	1,50 <u>+</u> 0,01	6,7
K2O	1,66	1,59 <u>+</u> 0,01	0,63
P2O5	0,23	0,26 <u>+</u> 0,01	3,8

TABELA 9 – Teores certificados e determinados para o material de referência JP1(GSJ).

Elemento	Certificado %	Determinado %	c.v %
SiO ₂	42,39	43 <u>,</u> 5 <u>+</u> 0,3	0,07
TiO ₂	<0,01	***	***
Al_2O_3	0,62	0,64 <u>+</u> 0,01	0,17
Fe ₂ O ₃	8,34	8,3 <u>+</u> 0,1	0,15
MnO	0,12	0,10 <u>+</u> 0,01	0,30
MgO	44,72	44,67 <u>+</u> 0,04	0,07
CaO	0,56	0,56 <u>+</u> 0,01	0,09
Na₂O	0,02	0,02 <u>+</u> 0,01	7,31
K ₂ O	***	***	***
P ₂ O ₅	***	***	***

TABELA 10 – Teores certificados e determinados para o material de referência JG1a(GSJ).

Elemento	Certificado (%)	Determinado (%)	c.v. (%)
SiO2	72,19	74,60 <u>+</u> 0,01	0,02
TiO2	0,25	0,26 <u>+</u> 0,01	0,91
Al2O3	14,22	13,06 <u>+</u> 0,01	0,04
Fe2O3	2,05	2,33 <u>+</u> 0,01	0,28
MnO	0,06	0,06 <u>+</u> 0,01	0,66
MgO	0,69	1,36 <u>+</u> 0,01	0,55
CaO	2,13	2,32 <u>+</u> 0,01	0,07
Na2O	3,41	2,98 <u>+</u> 0,01	0,21
K2O	4,01	2,67 <u>+</u> 0,01	0,00
P2O5	0,08	0,12 <u>+</u> 0,01	0,20

TABELA 11 - Condições de medidas utilizadas para a curva de sensibilidade do espectrômetro Rigaku 3000. Tubo de Rh.

 $PHA^* = Analisador de altura de pulso - Linha de Base x Abertura de Janela.$

Elemento (linha de	Ρίcο 2θ	BG_l	BG_2	Cristal de Difração	Colimador	Detector	Potencia kVxmA	PHA	Filtro
emissão B-K _α	51.120	45.075	57.110	RX-70	480µm	FPC	50x50	100-300	***
C-K _α	33.070	28.050	39.070	RX-70	480µm	FPC	50x50	100-300	***
O-K _α	132.850	130.880	134.880	TAP	4800µm	FPC	50x50	100-300	***
F-K _α	90.720	85.720	92.720	TAP	480µm	FPC	50x50	100-300	***
Na-K _α	55.230	53.500	57.120	TAP	480µm	FPC	50x50	100-300	***
Mg-K _α	45.300	43.190	47.190	TAP	480µm	FPC	50x50	100-300	***
Al-K _α	144.700	139.610	146.810	PET-001	480µm	FPC	50x50	100-300	***
Si-Kα	109.045	106.040	112.040	PET-001	480µm	FPC	50x50	100-300	***
P-K _α	141.100	139.180	143.180	Œ	480µm	FPC	50x50	100-300	***
S-K _{\alpha}	110.820	108.820	112.820	Œ	480µm	FPC	50x50	100-300	***
Cl-K _α	92.870	91.370	94.870	Œ	480µm	FPC	50x50	100-300	***
K-K _α	70.000	68.000	72.000	Œ	480µm	FPC	50x50	100-300	***
Ca-K _α	61.980	59.980	63.980	Œ	480µm	FPC	50x50	100-300	***
Ti-Kα	86.110	85.510	86.710	LiF-200	160µm	SC	50x50	100-300	***
V-K _{\alpha}	76.910	76.310	77.510	LiF-200	480µm	SC	50x50	100-300	***
Cr-K _α	69.340	68.730	69.930	LiF-200	480µm	SC	50x50	100-300	***
Mn-Kα	62.950	62.350	63.550	LiF-200	480µm	SC	50x50	100-300	***
Fe-K _α	57,500	56.900	58,000	LiF-200	480µm	SC	50x50	100-300	***
Co-K _α	52.760	52.170	53.370	LiF-200	480µm	SC	50x50	100-300	***
Ni-Kα	48.660	48.050	49.250	LiF-200	480µm	SC	50x50	100-300	***
Cu-K _α	45.020	44.410	45.610	LiF-200	480µm	SC	50x50	100-300	***
Zn-K _α	41.780	41.180	42.380	LiF-200	480μm	SC	50x50	100-300	***
$\text{Ga-}K_\alpha$	38.900	38.300	39.500	LiF-200	480µm	SC	50x50	100-300	***
Ge- K_{α}	36.310	35.720	36.910	LiF-200	480µm	SC	50x50	100-300	***
As- K_{α}	33.980	33.380	34.580	LiF-200	480µm	SC	50x50	100-300	***
$\text{Br-}K_{\alpha}$	29.950	29.350	30.550	LiF-200	480µm	SC	50x50	100-300	***
Sr - K_{α}	25.060	24.530	25.730	LiF-200	480µm	SC	50x50	100-300	***
Y - K_{α}	23.780	23.180	24.380	LiF-200	480µm	SC	50x50	100-300	***
$Zr-K_{\alpha}$	22.540	21.940	23.140	LiF-200	480µm	SC	50x50	100-300	***
Nb- K_{α}	21.390	20.790	21.990	LiF-200	480µm	SC	50x50	100-300	***
Mo - K_{α}	20.320	19.720	20.920	LiF-200	480µm	SC	50x50	100-300	***
Rh - K_{α}	17.550	16.950	18.150	LiF-200	480µm	SC	50x50	100-300	***
$\text{Pd-}K_{\alpha}$	16.750	16.150	17.350	LiF-200	480µm	SC	50x50	100-300	***
$Ag-K_{\alpha}$	16.000	15.400	16.600	LiF-200	480µm	SC	50x50	100-300	***
Cd - K_{α}	15.300	14.700	15.900	LiF-200	480µm	SC	50x50	100-300	Zr ***
In-Kα	14.640	14.040	15.240	LiF-200	480μm	SC	50x50	100-300	***
Sb-K _α	13.450	12.850	14.050	LiF-200	480μm	SC	50x50	100-300	***
Te-K _α	12.900	12.300	13.500	LiF-200	480µm	SC	50x50	100-300	***
I-Kα	12.390	11.790	12.990	LiF-200	480µm	SC	50x50	100-300	***
Cs-K _α	11.445			LiF-200	480µm	SC	50x50	100-300	***
Ba-L _α	87.130	86.530	87.730	LiF-200	480µm	SC	50x50	100-300	***
La-L _α	82.880	82.280	83.480	LiF-200	480µm	SC	50x50	100-300	***
Ce-L _α	78.980	78.380	79.580	LiF-200	480µm	SC	50x50	100-300	***
Pr-L _{B1}	68.220	67.500	68.500	LiF-200	480µm	SC	50x50	100-300	***
Nd-Lα	72.100	71.000	***	LiF-200	480µm	SC	50x50	100-300	***
Sm-L _{B1}	59.475	57.000	61.000	LiF-200	480µm	SC	50x50	100-300	***
Gd-L _α	61.080	***	***	LiF-200	480µm	SC	50x50	100-300	***
Dy-L _α	56.570	***	***	LiF-200	480µm	SC	50x50	100-300	***
Yb-L _α	49.045			LiF-200	480µm	SC	50x50	100-300	
Hf-Lα	45.860	45.260	46.460	LiF-200	480µm	SC	50x50	100-300	***
Ta-L _α	44.400	43.800	45.000	LiF-200	480µm	SC	50x50	100-300	
W-L _α	43.000	42.400	43.600	LiF-200	480µm	SC	50x50	100-300	***
Ir-Lα	39.200	37.000	41.000	LiF-200	480µm	SC	50x50	100-300	***
Pt-L _α	38.040	37.440	38.640	LiF-200	480µm	SC	50x50	100-300	***
Au-L _α	36.940	36.340	37.540	LiF-200	480µm	SC	50x50	100-300	***
Hg-L $_{\alpha}$	35.890	35.290	36.490	LiF-200	480µm	SC	50x50	100-300	Zr
Tl-Lα	34.880	34.280	35.480	LiF-200	480µm	SC	50x50	100-300	***
$Pb-L_{B1}$	28.240	27.640	28.840	LiF-200	480µm	SC	50x50	100-300	***
$Bi-L_{\alpha}$	32.990	32.390	33.590	LiF-200	480µm	SC	50x50	100-300	***
Th- L_{α}	27.450	26.850	28.050	LiF-200	480µm	SC	50x50	100-300	***
$U-L_{\alpha}$	26.130	25.530	26.760	LiF-200	480µm	SC	50x50	100-300	***

REFERÊNCIAS

- [1] Kataoka, Y., Standardless X-ray Fluorescence Spectrometry-Fundamental Parameter Method Using Sensitivity Library, The Rigaku Journal, vol.6, 33-39, 1989
- [2] Sherman, J., **The Theoretical Derivation of Fluorescent X-ray Intensities from Mixtures.** Spectrochim. Acta, vol. 7, 283-306, 1955.
- [3] Shiraiwa, T. and Fujino, N., Theoretical Calculation of Fluorescent X-ray Intensities in Fluorescent X-ray Spectrochemical Analysis, Jpn. J. Appl. Phys, vol. 5, 886-899, 1966.
- [4] Criss, J. W. and Birks, L.S., Calculation Methods for Fluorescent X-ray Spectromety, Anal Chem., vol.40, 1080-1086, 1968.
- [5] Lachance, G.R., **Defining and Deriving Theoretical Influence Coefficient Algorithm**, Adv. X-Ray Anal vol. 31, 471-478, 1988.
- [6] Goto, Atsushi and Tatsumi, Yoshiuki, Quantitative Analisis of Rock Samples by an x-Ray Fluorescence Spectrometer (II), The Rigaku Journal, vol.13, 20-39, 1996.
- [7] Savador, V.L.R.; Sato, I. M.; Scapin Jr, W.S.; Scapin, M. A.; and Imakuma, K. Chemical Characterization of U₃Si₂ Alloy by WD-XRF Technique Using Fundamental Parameters Method.4th Meeting on Nuclear Aplication. Pocos de Caldas, MG, 1997.
- [8] Scapin, M.A., Scapin, V. O.; Savador, V.L.R.; Lima, N. B.; Flues, M.S. and Sato, I. M. **Determinação De Metais Tóxicos em Argilominerais por Espectrometria de Fluorescência de Raios X (WDXRFS).** V ENAN Encontro Nacional de Aplicações Nucleares, Rio de Janeiro, RJ, 2000.
- [8] Scapin, M.A.; Sato, I. Duarte, C.L.; Sampa, M.H.O.; Salvador, V.L.R.; Borrely, S I; Rela, P.R. and Oikava, H. Determination of Na, Al, Si, P, K, Ca, Cr, Fe, Co, Ni, Cu And Zn By Wd-XRF Spectrometry In Industrial Effluents After Electron-Beam Treatment. VI Seminário Latino-Americano de Análises por Técnicas de Raios X, São Pedro, SP, 2000. XRF-16, pg 82.

ABSTRACT

Development of the new technologies has been using a lot of substances composed by metals, consequently generating reject for the environment. There is nowadays a concern in management and to control processes that contribute to the environmental degradation. This paper has the purpose to establish an analysis method for the quantitative determination of major and trace elements soil

used the Technique of Wavelength Dispersion X-ray Fluorescence Spectrometry (WDRXFS) Fundamental Parameters Method. This method allows calculating the theoretical fluorescent intensities obtained by the measured intensities of the elements present in the sample, through the instrumental sensibility. Advantages of this methodology are: use of small amount of sample, accuracy high and sensibility in the determinations studied analyte; not use of chemical treatments in the preparation of samples; speed and cost relatively low. Methodology was validated by the analysis of five certified reference materials, CRM-2704 - Buffalo River Sediment (NIST), JB2, JG1 and JG1a - Geological Survery of Japan (GSJ) and SL-3 -Lake Sediment (AIEA). An X- Ray Fluorescence Spectrometer RIGAKU was used, RIX 3000, 1996 of the Laboratory X-Ray Fluorescence, Center of Chemistry and environment of the Institute of Energy and Nuclear Researches of São Paulo. The detection limit for major elements is 0,01-0,2% and trace elements 5 g/g-100 g/g. The analytes studied were: SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5, Ag, As, Cd, Ce, Cr, Cu, Ga, Hg, La, Nd, Ni, Pb, Rb, Se, Sr, V, Y, Zn and Zr.