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ABSTRACT 

The structural integrity of nuclear reactor components has to be confirmed under 
postulated accidents conditions. The severe loading that comes from accident scenarios cause the 
stresses in structures like pressure vessels and piping to go well beyond the linear elastic limits. 
The integrity evaluation of the component tisually includes a postulated defect so that predictions 
of its load carrying capacity is generally done with a ductile fracture mechanics approach. Several 
ductile fracture mechanics approaches have been devel an app ïed to structural components 
containing defects. This paper will focus on a particular methodology developed by Landes et al.. 
the Ductile Fracture Method (DFM). A critical step in this methodology is the determination of 
the calibration function for the structural component. This work presents an alternative procedure 
to obtain this function which makes the application of the DFM much simpler and faster. This is 
an important aspect considering that in many situations a large range of geometries and loading 
conditions need to be evaluated, like in the application of the Leak-Before-Break (LBB) concept 
on nuclear piping. 

I. INTRODUCTION 

The integrity evaluation of structural components 
subjected to load levels which push the material beyond the 
linear elastic limits is generally done with a ductile 
fracture mechanics approach. Several of these approaches 
have been developed and applied to structural components 
containing defects. This paper will concentrate on a 
particular methodology originally proposed by Ernst and 
Landes [1] and further developed by Landes and coworkers 
[2-4]. the Ductile Fracture Method (DFM). 

The DFM uses the load versus displacement record 
from a fracture toughness test to develop inputs for 
predicting the behavior of the structural component. The 
principle of load separation is used to convert the test 
record into two pieces of information: calibration function 
which describes the deformation behavior and fracture  

toughness which describes the response of a crack-like 
defect to the loading. The calibration function and fracture 
toughness relative to the test specimen are then 
transformed to obtain the same kind of information for the 
structural component. In the final step. the calibration 
function and fracture toughness for the structure are used 
to predict the load versus displacement behavior of the 
structure during the ductile fracture process. 

The determination of the calibration function for the 
structural component represents a critical step in the DFM. 
The original transformation procedure as proposed by 
Landes et al. [4] is laborious and time consuming. As will 
be shown in this paper, with an additional assumption and 
without loss of accuracy, the transformation procedure can 
be accomplished in a much simpler way and consequently 
the predictions done by the DFM can be completed with 
much less effort. 
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The paper begins with a review of the DFM. 
including a detailed description of the original 
transformation procedure. Then. an alternative approach is 
presented where the coefficients of the calibration function 
for the structural component are obtained by simply scaling 
their counterparts for the fracture toughness specimen. The 
application of the DFM with this new approach is 
illustrated through a numerical example. The paper is 
concluded with a brief discussion about the convenience of 
the new simplified transformation procedure. 

IL BACKGROUND  

The Ductile Fracture Method. The general approach for 
using the DFM is illustrated in Fig. 1. The calibration 
function gives the relationship between load and 
displacement for constant values of crack length. This is 
represented by a family of curves. The fracture toughness 
(given in terms of a J-R curve) describes how the crack  
length changes as a function of J. To apply the method to a 
structure with a given crack size. the loading is represented 
by the load. P. versus displacement, v, for that defect size. 
During the loading process, the value of J applied to the 
structure is also determined. When J has increased to the 
point where a crack length change is indicated. the P 

 versus v curve is taken a step down to the one for that new 
crack length. The loading proceeds with the calibration 
function giving the relationship between P and v for a 
given crack length and the J-R curve indicating what 
current value of crack length should be used. When small 
increments in crack length are used, the loading follows a 
smooth path. 

Figure 1. Schematic of the Ductile Fracture Method 

The DFM is founded on the load separation concept 
[5.6]. According to this concept, the relationship between 
load. P. crack length. a, and plastic displacement. v y1, for 
the cracked structure can be expressed as a multiplication 
of two separable functions 

P = G(a l W) H(v P, l W) 	 (1)  

where G(a/W) is a function of geometry only and H(v,, E  IV') 
 is a function of plastic deformation only. W is a length 

dimension parameter: for test specimen geometries, W is 
usually the width, but for a structural component. it could 
be another dimension, such as the thickness. When the  

load P is divided by the G(a/W) function, the result is a 
normalized load 

PA, = P l G(a l W) = H(vv, i W) 	 (2)  

It was found that the global deformation pattern for 
many structures and for most materials can be accurately 
fitted by the following functional form 

P,. = H(v P, l W) _  

This functional form came from the work of Orange  
[7] and is now known as LMN function [8]. The  
normalized load versus plastic displacement behavior as  

represented by this function is such that when the plastic  

displacement is small. the relationship between load and  

displacement is approximated by a power law, and when it  
is large, the behavior comes near to a straight line  

representation.  
The G function is known for several geometries or  

can be obtained in a relatively easy way from a series of  
blunt notched specimens that model the structure [9].  
Thus, the critical step in the DFM is the determination of  

the calibration function, H(v j,i/W), for the structural  
component.  

Obtaining The H Function (Original Procedure). For  
those cases in which the limit load solution for the  
structural component is known, a transformation procedure  

can be used to determine the calibration function for the  

structural component directly from that for a fracture  

toughness specimen. The transformation procedure was  

derived from experimental results on an A533B steel in  

which four specimen geometries were tested: CT (compact  

tension), DENT (double edge notched tension), CCT  
(center cracked tension), and SENT (single edge notched  

tension). It was verified that when the normalized loads for  

these geometries were plotted against the normalized  
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displacement. vpyvd, all the curves appeared to have the 
same trend and the differences in the normalized load 
between the specimens could be related to the ratios of 
their limit loads. If the CT specimen is taken as a fracture 
toughness test specimen, and the other geometries are 
considered as structural components. it is then possible to 
predict the calibration function for the structural 
components from the test specimen. 

Starting from the calibration function for the test 
specimen as represented by Eq. 3. the same functional 
form is assumed for the structural component. that is 

P„ =h(vp, lW) _ 

^ 	v 
1 +m p` 

 , 
t, W vp, ` (4)  

PI tr+ —  
W  

W , 

Thus, to find the news constants 1, m. and n that define the  
calibration function, h(vp,/W), for the component, the  
transformation procedure comprises the following steps:  

(a) First, the load versus displacement record for a  
fracture toughness test specimen needs to be obtained  

from an experiment:  
(b) Then this P-v curve is converted into a normalized  

load. PN, versus normalized displacement, vp/W,  
which is the calibration function for the specimen.  

H(vp!'  1): 
(c) The abscissa, vpp 1G', is divided by ve/'W so that it  

becomes vp6 ve,:  

(d) Then each point on that curve is multiplied by a factor 
f. which is defined as 

P^  G,(aosW)  

I 
 —  PL  G(ao  W) 

 

The result is a curve for the structural component 
given in terms of its normalized load. P„, and the 
displacement ratio. v p/veI. In the above equation. PL,.  
and G..,(ao/W.,) are the limit load and geometry  

function for the structure: P L  and G(adW) are the  
limit load and geometry function for the fracture  
toughness specimen and a„ is the initial crack length.  

(e) The displacement ratio in the abscissa, v p/vet, is  
converted back to normalized plastic displacement, by  

multiplying vp/v e1  by ve/W for the structure. The 
resulting P„ versus vp/'W curve is the representation of 
the desired calibration curve for the structure. 

(f) The 1, m, and n constants can be determined by fitting 
the transformed points. This is done by choosing 1 = 
f: L. Then, only m and n need to be determined from 
the fitted curve. The best result comes from choosing 
two points. the final one and one at a small vpF'IV, and 
fitting Eq. 4 to them. 

During the process of the calibration function 
transformation, the elastic displacement. v<1, is taken as 

vel = C(a / W) P  

= C(a/W)G(a/W)H(v pr  l W)  

where C(a/W) is the elastic compliance function for the 
structure. It can be obtained by experiment, analytical 
derivation or linear finite element analysis. vet  is calculated 
at each given value of vpE/W (where H(vp//W) has a known 
value), and the product C(a/W)G(a/W) is assumed to be a 
constant. This is not completely true in the actual case. 
This product is dependent upon a/W, but in many cases it 
is not a strong function of a/W. Therefore, for a changing 
crack length, a constant value, say, the value  
corresponding to the initial crack length. can be used for  

simplicity.  

III. THE NEW TRANSFORMATION PROCEDURE  

Even though it does not involve any complex steps, 
the original transformation procedure is somewhat 
cumbersome and time consuming, requiring the user to 
make one ordinate conversion (step d, above), two abscissa 
conversions (steps c and e), and to use a new fitting to find 
the constants of the calibration function for the structural 
component (step f). 

Analyzing the philosophy of the original 
transformation procedure. we see that it basically consists 
in making a load and a normalized displacement 
adjustment on the fracture toughness specimen 
deformation curve to get the correspondent curve for the 
structural component. The load adjustment is very simple 
because it is based on a constant factor f, Eq. 5. On the 
other hand. the abscissa adjustment involves point to point 
computations of the elastic displacement using Eq. 6 and 
assuming that the product C(a/W)G(a/W) is constant. 

Applying the procedure to different test geometries, 
in which the CT specimen was taken as the fracture 
toughness test specimen and the other geometries were 
considered as structural components, it was observed that 
the ratio between the normalized elastic displacement for 
the fracture toughness specimen. (v e/W), and the 
normalized elastic displacement for the structure. (v ev/W) ..,  
almost did not change during the transformation process. 
As will be shown in the following, if we assume that this 
ratio is constant, the transformation procedure can be 
greatly simplified. 

First, define a parameter q to represent the ratio 
between the normalized elastic displacements 

(ye/  /
^e^e/^

1 
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(6) 

(7)  
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From the analysis undertaken, it can be seen that a 
representative value for q is obtained when the normalized 
elastic displacements for the specimen and the structure 
are calculated with their initial crack lengths and at their 
limit loads, that is 

(ve1)o = C(ao)PL  

(ve1)os Cs(aos)P,  

The normalized plastic displacement for the fracture 
toughness specimen, v,v=vpt'W, and the normalized plastic 
displacement for the structure, v 0 =vv1/W, can be related by  
the following expression  

(10)  

Rewriting Eqs. 3 and 4 in terms of V v  and v„, 

(L + Mv N )  
Py  = H)_ (N 

 +  v )  vN 
N  

(1 +mvn ) 
P h(  vn  ) 	v n 

(n +  vn ) 
 

Multiplying Eq. 11 by the factor f (Eq. 5) is 
equivalent to step (d) of the original procedure, which 
would give an intermediate representation P„ versus VA'  
with the constants I'=f. L. n¡ '=fM and n'=!V. that is  

• - (11 +mit,\.) t 
„ 	 (n '  + v :v  )  

Then, substituting Eq. 10 in Eq. 13, that 
corresponds to steps (c) and (e) of the original  
transformation procedure. leads to 

I ' +mI (gvn) 	) ,^ + fgMv n  

P” 	 (gv 
n'+(gvn) 	

n 	 vn 	(14)  (NIq) +vn   

Now, comparing the above expression with Eq. 4, 
we arrive at the following expressions for the 1. m. and n 

 constants of the structure calibration function 

I= f.L; m = f.g.M; n=N l q 	(15)  

Therefore. the coefficients of the calibration  

function for the structural component can be directly  

obtained from their fracture toughness specimen  

counterparts. It would suffice to compute the factors f and  
q (Eqs. 5 and 7) and use the above expressions.  

IV. APPLYING THE DFM WITH THE NEW  
TRANSFORMATION PROCEDURE  

In another paper from the authors [10], the  

effectiveness of the new transformation procedure was  

demonstrated by comparing calibration curves obtained  

using the new procedure with those obtained with the  

original procedure. Different A533B steel specimen  
geometries were used. For each type of geometry (playing  

the role of a structural component), the calibration function  

was predicted from the calibration function for a CT  

fracture toughness specimen of the same material. It was  

shown that the results obtained with both procedures were  

practically the same. As an example. Fig. 2 shows the  

results obtained for a CCT specimen (see its characteristics  

in Table 1): the experimental P„ versus v„ curve is 
compared with those obtained using the original 
transformation procedure and the simplified approach 
presented here. The points represented by crosses are those  

obtained with the original transformation procedure and 
should still be fitted in order to get the coefficients of the 
calibration function. The solid line is the curve described 
by the coefficients obtained directly by Eqs. 15 of the 
simplified transformation. As can be seen, the results 
obtained with both procedures are just about the same. 

0.002 	0.004 	0.006 	0.008 	0.01  
V0  

Figure 2. Calibration Curves for the CCT Specimen 

TABLE 1. A533B Steel Specimens (E 0Q = 206850 MPa: 
aY 	 a„, = 468.86 MPa: 3  = 620.55 MPa) 

SPECIMEN W B ao  ar 
TYPE (mm) (mm) (mm) (mm) 

CT 203.20 2.54 101.85 130.02  
CCT 406.40 2.54 101.60 115.82  

(8)  

(9)  

(12)  

(13)  

P0  
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To illustrate the application of the DFM using the 
simplified transformation procedure. the steps necessary to 
predict the load versus displacement curve for the CCT 
specimen in Table 1 are presented below (the basic input 
data come from the load versus displacement record for the 
CT specimen in Table 1: the G functions for CT and CCT 
geometries are known and the respective qp, values are 
2.15 and 1.0 [9]): 
(a) The method of normalization [8] is used to obtain the 

coefficients L. .tI, and .y' of the deformation function, 
H, and the J-R curve for the CT specimen: 

L = 28.42:M= 58.71:N= 6.17xI0"a  
J= 10.33(óa)03801  

(b) The limit load and compliance for both the CT and 
CCT specimens. for the respective initial crack 
lengths. are (these values were obtained using the limit 
load and compliance solutions tabulated in Ref. [11 I): 

= 24.33 kN: C' = 0.0702 mm/kN 
P, S  = 281.11 kN: CS  = 0.00154 mm/kN 

(C) Eqs. 8 and 9 are applied to obtain the (ve,)o  for the CT  
and CCT specimens:  

(vedo = 0.0702x24.33 = 1.708 mm  
(ve,) 0  = 0.00154x281.11 = 0.4329 mm  

(d) Computation of the factors f and q (Eqs. 5 and 7. 
 respectively): 

f = (281.11/0.8) / (24.33/0.1793) = 2.6  
q= (1.708/203.2) / (0.4329/406.4) = 7.9  

(e) Eqs. 15 are used to obtain the coefficients 1. m. n of the 
calibration function for the CCT specimen: 

1= 2.6x28.42 = 73.9  
= 2.6x7.9x58.71 = 1205.9  

n = 6.17x10-4/7.9 = 7.81x10  
(O The complete load versus displacement curve for the  

structure (in this case a CCT specimen) is then  

determined through the step by step procedure briefly  

described in Section II and depicted in Fig. 1. An  
independent variable is chosen to increment. The basic  
approach is to choose v,,, as the independent variable.  

Starting with a=oo  and with a small value for VA ,  
=vpplt '.  P (Eq. 1) and Japp  are calculated. Follows an  
iterative process. where the crack length is adjusted  

until Japp  matches J,,, from the J-R curve equation. 
For each converged iteration, the pair of values P. v 
are obtained and vp, is again incremented. The process  
continues until the complete load versus displacement  

curve is achieved. The value of Japp  is determined as a  
sum of an elastic and a plastic component  

2 	 y  
J=JeI +Jp¡ = É, +^b^o "Pdvp, 

K 2  77  

where K is the linear elastic stress-intensity factor. E' 
 is the effective modulus of elasticity. qp, is the plastic 

q-factor. B is the structural thickness. and b is an 
uncracked ligament length. The total displacement. v. 
is a sum of an elastic and a plastic component 

V =  v et +  v pt 
	 (17)  

and the relationship between v e, and P is given in 
terms of the compliance, C, that is 

v C(a / W)P  

The load versus displacement curve obtained for the 
CCT specimen is shown in Fig. 3, where it is compared 
with the experimental data. Actually, two predicted curves 
are presented in Fig. 3. one obtained with the J-R curve  
from the CT specimen and the other based on the J-R 
curve from the CCT specimen itself, which in this case 
was available. 

As we can see, the maximum load can be predicted 
reasonably well with the J-R curve from the CT specimen. 
But, using the J-R curve from the structure itself 
(represented here by the CCT specimen) is important. at 
least in this case, to capture the behavior beyond the 
maximum load. 

The basic philosophy of the DFM [4] includes a 
transformation on the J-R curve to consider the specific 
geometry characteristics of the structural component in a 
similar fashion to what is done with the calibration 
function. Unfortunately, there is still not available any 
reliable method to make the correlation between the 
fracture toughness from a test specimen and the actual 
fracture toughness for the structural component and the 
general practice has been to confer a material property 
status to the J-R curve obtained from a test specimen. 
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Figure 3. Load versus Displacement Curve for the CCT  

Specimen  

(16)  

E 	
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V. FINAL REMARKS 

When dealing with a fracture toughness specimen 
and a structural component with the same thickness 
constraint. it seems possible to transfer the deformation 
function from the specimen to the structure by considering 
two factors: a load factor, given by the ratio between their 
normalized limit loads (Eq. 5), and a deformation factor 
given by the ratio between their normalized elastic 
displacements. Both factors had already been used in the 
original transformation procedure proposed by Landes et 
al. [4]. In the present paper. it was shown that likewise the 
use of a constant load factor f (Eq. 5), it is possible to 
define a constant deformation factor q (Eq. 7), where the 
normalized elastic displacements for both the specimen 
and the structure are calculated with their initial crack 
lengths and at their limit loads (Eqs. 8 and 9). With these 
two factors. f and q. the transformation procedure gets 
much simpler since the coordinates conversions and the 
fitting operation to get the I. in. and n constants are 
eliminated. 

Considering that the determination of the 
calibration function for the structure is a critical step in the 
DFM, the simplification introduced with the new 
transformation procedure represents an important 
contribution for the method. With the new procedure, the 
whole process of predicting the structural component 
behavior can be completed in a shorter time. This is a 
determinant factor when a systematic evaluation of a large 
range of geometries and loading conditions is necessary. 
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