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a b s t r a c t

Rare earth (RE) materials present excellent properties, which importance is recognized worldwide.
Innovation approaches in energy, medicine, communication, transportation, militarism, and radiation
dosimetry consist in RE based materials. As yttrium oxide (Y2O3) exhibits intrinsic lattice characteristics
that enable doping with others RE elements (Y2O3:RE), new materials with promising characteristics can
be developed. This work aims to evaluate EPR response of europium-yttria (Y2O3:Eu) rods obtained by
bio-prototyping. Ceramic rods containing up to 10 at.%Eu were irradiated with gamma doses from 0.001
to 150 kGy and evaluated by Electron Paramagnetic Resonance (EPR) at room temperature with X-band
EPR. Based on results, Y2O3:Eu rods with 2 at.%Eu exhibited the most significant response, in which linear
behavior arose from 0.001 up to 50 kGy. Fading and thermal annealing evaluations revealed that 2 at%.Eu
improved dosimetric characteristics of yttria remarkably. These innovative findings afford that Y2O3:Eu is
a promising material for radiation dosimetry.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The Fourth Industrial Revolution characterized as global trans-
formation in which digital, physical, chemical, and biological sci-
ences converge, is in progress due to materials development [1e3].
Development of new dosimetric materials is inserted into mission-
oriented innovation policy agenda, which means identifying and
articulating new approaches to galvanize research-development,
production, distribution, and consumption patterns trough sec-
tors [4].

As rare earths (REs) exhibit expressive properties their use even
if in low concentration (atomic percentage) lead to improvement of
materials proprieties. These new materials become suitable for
application in highly advanced technologies as dosimetry mate-
rials. Dysprosium doped calcium sulphate (CaSO4:Dy) used as
thermoluminescent dosimeter is applied for beta [5], gamma [6], X
[7], electrons [8], photons [9], UV [10] and laser dosimetry [11]. The
CaSO4:Dy dosimeter exhibits excellent reproducibility, high sensi-
tivity [12], AO [13] and EPR [14] response. Therefore, the use of rare
earths as materials for dosimetry applications is on frontier
knowledge.
Santos).
Yttria (Y2O3) is a promising material for radiation dosimetry due
to its unique proprieties as, density of 5.02 g cm�3, refractive index
over 1.9, melting point of 2400 �C, band gap of 1.6eV, Young's
modulus of 160 GPa, and cubic C-type lattice composed by Ia3 space
group, sixteen formula units per unit cell, coordination number (N)
of 6, and two points symmetry (S6, C3i) and C2 [15,16]. Nian Xu et al.
[17] reported that cubic structure of Y2O3 is less closely packed,
exhibiting large vacancies of Yand O planes. These vacancies enable
incorporation of RE ions into yttria host and formation of highly
luminescent materials (Y2O3:RE) can be achieved.

Spectroscopic characteristics of yttria are improved according to
processing parameters such as, RE dopant concentration [18],
synthesis method [18], microstructure [19], crystallite-particle size
[20], and shaping [21]. Upon applications yttria is used as, thermal
coatings [22], catalysts [23], special alloys, biomaterials [24], scin-
tillators [25], luminescent devices [26], membranes [27], gas
burners [28], sintering aid [29], capacitors [30], nanocomposites
[31], and reinforcement [32]. In addition, yttria is a promising
material for dosimetry [33]. Even though yttria presents reliable
proprieties, being used in many applications, few studies on
massive processing of this promising rare earth have been carried
out.

Recently, our group reported approaches on bio-prototyping of
rare earth based ceramics [19,28,34e37], including yttria based
rods with potential application in radiation dosimetry. Ceramic
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rods of yttria and europium-yttria with dense microstructure and
homogeneous shape-size were obtained by sintering at 1600 �C for
4 h in air atmosphere [38,39]. As a step forward to obtain a new
dosimeter material, the present study purposes to evaluate EPR
response of europium-yttria rods as a function of ionizing irradia-
tion dose, in which dosimetry parameters as EPR spectra, dose-
response, fading, and thermal annealing are analyzed and
discussed.

2. Experimental

Europium-yttria rods (Y2O3:Eu) were produced by bio-
prototyping according our recent study [38], which process is
illustrated in Fig. 1. Europium content was from 0.5 up to 10 at.%.
The morphology and size evaluation of ceramic rods were per-
formed by optical microscopy (OM, Nikon SMZ1270). Besides,
microstructure formation was observed by scanning electron mi-
croscopy (SEM, Oxford Instruments).

Batches of four ceramic rodswere irradiatedwith gamma source
with dose range from 0.001 to 150 kGy in electronic equilibrium
conditions and room temperature. Crystal defects and radicals
induced by ionizing radiation were characterized by electron
paramagnetic resonance at room temperature and atmosphere
using X-band EPR spectrometer (Bruker EMX PLUS).

EPR spectra of samples were recorded using the following pa-
rameters: field frequency modulation of 100 kHz, microwave po-
wer of 2.5mW, centre field at 320mT, sweep width of 600mT,
modulation amplitude of 4G, time constant of 0.01ms and, 10
scans. The EPR response of irradiated samples was determinated as
a mean of each batch normalized by mean mass of containing
samples. EPR dose response and time decay curves were plotted
considering the mean of peak-to-peak amplitudes of irradiated
samples.

3. Results and discussion

Formation of crystalline europium-yttria micro rods for radia-
tion dosimetry depends on processing parameters as, synthesis
route, dispersion of powders, viscosity of suspension, shaping, as
well as sintering of green compacts. Bio-prototyping is an envi-
ronmental friendly shaping method, in which renewable materials
are used as preform to shape suspension of nano particles [38].
Stable suspensions provide green compacts constituted by high
packing of particles, which avoids formation of voids during drying
stage. These green compacts as sintered on suitable sintering
Fig. 1. Bio-prototyping of europium-yt
conditions exhibit dense microstructure and substantial mechani-
cal strength [40].

An optical image of europium-yttria micro rod (2 at.%Eu) with
size of 3.335� 2.271mm (diameter x height) sintered at 1600 �C for
4 h is shown in Fig. 2a. The ceramic rod exhibits rough surface, and
surface microstructure with grains like shape-rounded, which size
is higher than 2 mm (Fig. 2b). As fractured europium-yttria micro
rod presented transgranular fracture (Fig. 2c), dense-homogeneous
microstructure, and containing grains with size higher than 2 mm.
In our recent paper [39], in which yttria based micro rods were also
produced by bio-prototyping, similar microstructural characteris-
tics were observed. Moreover, the addition of 2 at.% europium into
yttria host did not provide any substantial effect on sintering of
samples.

The incorporation of europium ions into yttria gives rise to soft
rearrangement of yttria crystal lattice. Since the size of ionic radius
of Eu and Y is quite similar 0.098 nm and 0.092 nm, respectively, the
character of incorporation is substitutive. Eu ion replaces Y ion in C2
and S6 sites with no significant distortion of crystal lattice, bonds to
oxygen ion and, provides an oxygen vacancy, as shown in Eq. (1).
However, europium excess can lead to formation of second phases,
change of crystal structure and, decrease of spectroscopic charac-
teristics as luminescence. Ranson et al. [41] reported that excess of
europium into yttria provided low luminescence emission due to
europium ions are located at S6 symmetry axis of yttria host. On the
other hand, using suitable concentration of doping, europium ions
tend to be located at C3i axis and, as a consequence provide highly
luminescence emission of samples.

Eu2O3���������!Y2O3 EuY þ Ox
O þ V ::

O (1)

Cubic C-type yttria is composed by YO6 unit cells, which exhibit
two oxygen vacancies located at the corners. The cell arrangement
forms the structure of the YO radical situated in the outer surface of
cell and bounded to crystal lattice by yttrium ion as illustrated in
Fig. 3a. The interaction of YO radical with its environment is
determinant on luminescence of the material. Moreover, particle
size and shape is effective on YO radical behavior. As the size of
particle increases, its flat surface also increases and leads to weak
the interaction of YO radical with environment. Osipov et al. [42]
reported that yttria powders with particle size smaller than 3 mm
exhibited a broad cathode luminescence band at l around of
437 nm. On the other hand, particles with size higher than 5 mm
exhibited emission bands in blue, orange, red and infrared series.

Yttria exhibits intrinsically considerable number of vacancies,
tria rods performed in this work.



Fig. 2. Europium-yttria rod formed by bio-prototyping: (a) optical image of ceramic rod; (b) surface microstructure; (c) inner surface showing cleavage planes characteristic of
fragile fracture.

Fig. 3. Formation of color centre in yttria: (a) YO radical bonded to crystal lattice (bed) diffusion of electron into crystal lattice.
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which make favourable insertion of rare earth ions to improve host
material characteristics. The incorporation of Eu ions into Y2O3
lattice gives rise to rearrangement of its crystal lattice i.e. formation
of color centres, new induced crystal defects (point, linear, and
volume). In addition, this crystal rearrangement can provide new
energy levels and pairs of electrons-holes, as shown in Fig. 3b. The
interaction of ionizing radiation with matter leads to development
of radicals by means of unpaired electrons, which are detectable by
Electron Paramagnetic Resonance (EPR). Thus, EPR is useful tech-
nique to evaluate ionizing induced defects, providing substantial
information to develop new dosimetry materials.

The incorporation of europium intro yttria lattice is performed
by replacing Y3þ ions for Eu3þ ions on yttria sites C2 and C3i. The
effect of Eu content in promoting EPR response of Y2O3:Eu rods is
illustrated in Fig. 4. As discussed previously [39] “pure” yttria (0%
at.Eu) exhibits two distinct peaks c1 and c2 between 345 and
360mT. The main peak (c1) with g value of 2.00 and linewidth
around 2.3mT is ascribed to interstitial oxygen ion from environ-
mental atmosphere. The c1 peak was also observed for Y2O3-CaO
[43] samples with g value around 2.040, and for Y2O3:Er [44]
samples with g of 2.0415. On the other hand, c2 peak recorded with
linewidth around of 1.3mT and g tensor of 1.969 is assigned to Fþ

centre charged vacancy oxygen, which exhibits one remaining
electron. In addition, C-type crystal lattice of Y2O3 presents intrinsic
oxygen vacancies that can produce F centres close to c2.

The incorporation of europium into yttria lattice using at least
2 at.% provided formation of two new peaks of resonance (a) and
(b) as shown in Fig. 4a and b, respectively. The high intense peak c1
(Fig. 4c) was recorded around 360mT, with linewidth of 6mT and
gc1 of 2.0040. Moreover, EPR peaks addressed as (a, b, and c2)



Fig. 4. EPR spectra of as sintered yttria and europium-yttria rods.
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exhibited the following g values, ga 4.2159, gb 2.8507, and gc2
1.9690. Based on results, europium incorporation into yttria host
provides news resonance peaks (a, b), intensifies charge carriers
and, enhances EPR response.

The aim of doping a material consists in improving its charac-
teristics, by means of insertion of a different substance, so that the
doped material exhibits a better response than its undoped state,
e.g. mechanical strength, corrosion resistance, and luminescence.
As yttria exhibits substantial number of vacancies, as well as a
similar ionic radius like other REs, it is one of the most promising
materials to form new dosimetric materials.

Doping yttria with europium (Y2O3:Eu) is performed by
replacing Y3þ ions for Eu3þ ions on yttria lattice. The effectiveness
of europium content in enhancing EPR response of yttria rods as a
function of absorbed dose is illustrated in Fig. 5. As reported pre-
viously [45], yttria exhibits two distinct dose response slopes. The
first range is from 1 to 100Gy, and the second is from 0.1 to 70 kGy,
in which a small increase of EPR peak-to-peak was observed. Be-
sides, a new range which might corresponds to formation of new
Fig. 5. Dose response behavior of Y2O3:Eu rods as a function of europium content.
defects is likely to begin from 70 kGy. Considering that doses from
100 kGy are extremely high for dosimetry application, this range
was not evaluated in this work.

Upon on Fig. 5, it is seen that doping with 2 at.% Eu promoted a
remarkable change in dose response behavior of yttria rods, in
which ceramic rods exhibited a great increase of sensitiveness from
1 up to 10 kGy. The enhancement of EPR response can ascribed to
suitable europium content 2 at.%Eu, phase stability, increase of
luminescence centres, and higher probability of radiative recom-
bination [46,47]. These innovative findings suggest that europium-
yttria rods may be promising material for clinical dosimetry
(1Gy< dose< 1 kGy), as well as industrial application
(1 kGy< dose< 50 kGy). Controversially, doping with 5 and 10 at%
Eu were not effective in promoting higher EPR response of micro
rods.

Unsatisfactory results for micro rods samples based on 5 and
10 at%Eu can be interpreted by means of luminescence theory.
Luminescent intensity/response is based on average distance be-
tween color centres. As activators concentration increases, the
distance between activators decreases. As a consequence, activators
will interact with each other, providing concentration quenching.
On the other hand, using lower concentration as 2 at.%Eu reduces
the non-radiative relaxion, increases quenching concentration and
EPR response [48]. Govimdasamy et al. [16] reported that RE-doped
yttria exhibits higher luminescence response as RE ions (dopant)
are located at C2 sites of host.

Based on exposed previously, doping yttria host with 2 at.%
europium led to formation of a material, which dose-response
behavior is quite sensitive and linearity of EPR response is from
0.001 to 10 kGy. A second formation process of new defects takes
place from 10 up to 50 kGy and a third one occurs from 50 until
150 kGy. Therefore, apart from here all dosimetry discussion is on
Y2O3:Eu samples, in which Eu content is 2 at.%.

Fading of Y2O3:Eu rods irradiated with doses up to 150 kGy at
room temperature was evaluated considering EPR relative signal of
the centre P1 during seven days (Fig. 6). Based on results, a
moderated decay behavior is observed for all irradiated samples,
wherein samples irradiated with 10Gy exhibited fading of 10%,
whereas those irradiated with 100 kGy presented fading around of
16%. In addition, from 96 h (four days) P1 signal maintained at least
86% of its original signal for samples irradiated with doses around
100 kGy. Even though oxygen from atmosphere can form weak
bond into Y2O3:Eu lattice, the new electronic defects are quite
Fig. 6. Fading of EPR response of Y2O3:Eu rods (Eu¼ 2 at.%).



Fig. 7. Relative EPR response of paramagnetic peaks a, b, c1, and c2 as a function of
thermal annealing of Y2O3:Eu rods.
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stable over 168 h with maximum fading around of 16%
Fig. 7 illustrates the effect of thermal treatment on decreasing

EPR response of europium-yttria rods irradiated with 150 kGy. It is
observed that EPR response of peaks a, b, c1, and c2 is still high for
thermal treatment up to 500 �C (around 75%). Controversially,
Singh et al. [44] reported that Y2O3:Er samples irradiated with 5ky
exhibited low temperature decay around 160 �C. The following EPR
peaks a and b, which correspond to europium doping, presented
the most stable EPR relative signal, including thermal annealing
curves with similar decay. Besides, even though annealing tem-
perature of 800 �C samples exhibited relative EPR response at least
45%. As yttria lattice exhibits great number of vacancies, Fþ centre is
one of themost probable defects, i.e an electron trapped at an anion
vacancy as observed by Singh [44] and Hutchison [49].

Peak c2 showed the fastest decrease of EPR signal in the tem-
perature range between 400 and 650 �C around 40%. Full signal
cleaning was achieved at 1000 �C for c1 peak, whereas for a, b, and
c2 peaks EPR signal of around 10% still remain. It is believed that
irradiation with 150 kGy promoted deep traps that are complex to
clean by thermal annealing, even though in high temperature.
Using thermal annealing treatment at 1000 �C, but with longer step
may be useful to achieve this goal.

4. Conclusion

Europium-yttria rods with controlled shape, size and, dense
microstructure were successfully produced by bio-prototyping.
Doping yttria host with 2 at.% europium led to significant
improvement of EPR response of ceramic rods as a function of ra-
diation energy. Dose response behavior of rods exhibited two
distinct dose ranges, one was from 0.001 to 10 kGy, and the second
was from 10 to 70 kGy. Fading stability was achieved from 144 h.
Thermal annealing approaches show that defect centres of
europium-yttria decay significantly by thermal treatment over
900 �C in room atmosphere. The present results reveal that
europium-yttria rods exhibit innovative characteristics with po-
tential use for radiation dosimetry.
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