PROCESSAMENTO TÉRMICO POR MICROONDAS DE PÓS DE U308 PARA APLICAÇÕES EM DISPERSÕES UTILIZADAS EM COMBUSTÍVEIS NUCLEARES

 Aldo Furlan Neto, Clauer Trench de Freitas, Paulo E. O. Lainetti Departamento de Tecnologia de Combustíveis - MC Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
Travessa R, nº 400; C. Universitária, São Paulo-Capital/Brasil; CEP 05508-900 Telefone, (011) 8169377; Fax, (011) 8169394; E-mail, afneto@net.ipen.br

RESUMO

Definiram-se algumas condições relevantes para processamento ao ar de pós de U_3O_8 em fornos de microondas de pequeno porte, visando as aplicações em combustíveis nucleares. A espessura da camada, densidade e a granulometria são características importantes para a determinação de resultados. Os pós foram processados em cadinhos de alumina, em intervalos de tempo variando de 2 até 30 minutos, determinando-se as densidades finais mediante a utilização de cilindro graduado e por picnometria de hélio até valores próximos da densidade teórica do material. Para 650 W a temperatura das amostras atingiu 861° C em 30 segundos; nessas condições, com cadinhos de elevada resistência a choques térmicos, o processamento de U_3O_8 em microondas torna-se particularmente competitivo com procedimentos convencionais. Para pós com granulometria menor que 100 mesh estabeleceu-se equação relacionando temperatura T versus tempo t. A distribuição de temperaturas na superfície das amostras foi registrada usando câmara de vídeo.

L INTRODUÇÃO

A utilização de microondas no processamento de cerâmicas esta demonstrada em vários trabalhos, alguns desenvolvidos no IPEN - CNEN/SP [1, 2, 3, 4]. No concernente aos equipamentos de microondas necessários, a literatura referente a fornos e válvulas de potência [1, 5], apresenta-se bastante detalhada. De acordo com a referência [3] é possível que pastilhas de UO2+x atinjam o estágio final do processo de sinterização em microondas utilizandose atmosfera controlada constituída por N2, com eficiente isolamento térmico de fibras de alumina, e massa de no mínimo 12 g. No concernente a U₃O₈ [4] trataram-se pastilhas com massas de 2 g, em configuração similar a do caso anterior (UO2+x) em mufla cilíndrica de quartzo, mas ao ar, não tendo sido ultrapassado o estágio intermediário do processo. Pastilhas foram também sinterizadas em cadinho de alumina, sem e com isolamento térmico de manta de fibras de Al₂O₃. Nesse caso o estágio intermediário foi atingido em temperaturas inferiores a 500°C, que demonstra a considerável interação do campo de microondas com o material. Ainda para o U₃O₈, a configuração de isolamento das amostras influencia substancialmente a evolução do processo. Em relação ao UO2+x o tratamento térmico sob microondas do U₃O₈ é mais simples, pois não requer atmosfera controlada inerte ou redutora, mas exige maior energia por unidade de massa para densificação.

O objetivo deste trabalho consistiu em verificar a influência de alguns fatores relevantes no desenvolvimento do processo envolvendo U_3O_8 em pó. Foram eles: a) temperaturas e tempos; b) características das cargas: massa, densidade, espessura de camadas e granulometria. Visouse a aplicação no preparo de dispersões U_3O_8 + metal, importantes em vários tipos de combustíveis nucleares. Dessa forma deu-se continuidade a estudos anteriores realizados na CNEN-SP, desde 1993.

IL MATERIAIS, EQUIPAMENTOS E MÉTODOS DE ANÁLISE

O U_3O_8 foi obtido através de calcinação de diuranato de amônio (DUA) de pureza nuclear, produzido na CNEN-SP. Utilizaram-se fornos resistivo e de microondas, tendo sido obtidas três séries de pós S₁, S₂ e S₃. S₁ foi proveniente de calcinação em forno resistivo de 325 g de DUA em bandeja de ferro-cromo, a 600 °C, realizada em quatro operações sucessivas, para assegurar transformação completa a U₃O₈. S₂ também resultou de calcinação em forno resistivo, em cinco operações sucessivas. Para obtenção de S₃ o DUA foi previamente tratado em microondas. Para cada uma das séries S_i, detalhes operacionais das calcinações sucessivas são apresentados na Tabela 1.

TABELA 1: Operações de Calcinação Correspondentes as Séries S_i de Pós de U₃O₈.

SÉRIE S _i	C	а 13 (Е)	۲ ۳ (°C)	V₄ [●] (°C/h)	V _R ⁰ (℃/h)	FORNO	
	1	4	600	300	20		
S1	2	4				DECICTIVO	
	3	4				I ILUISIINU	
	4	4					
ŝ	1	3	600	100	12,5		
	2	4					
	3	4				RESISTIVO	
	4	3					
	5	1	700	120			
S3	1	0,93	<500	+	-	MICROONDAS ¹	
	2	1	400	400	20	RESISTIVO	
	3	1	600	600			
	4	1	~~~				

a) Número de ordem de calcinações sucessivas;
b) tempo de residência;
c) temperatura;
d) velocidade de aquecimento;
e) velocidade de resfriamento;
f) potência = 570 W.

Utilizou-se cadinho de alumina sem isolamento térmico em sua parte superior, a fim de permitir medidas de temperatura por pirometria ótica, observando diretamente a carga de U₃O₈. Foram realizadas duas séries de experiências, designadas E1 e E2. Na primeira série os cadinhos foram colocados com seu eixo de simetria inclinado de aproximadamente 30°, em relação a seu suporte refratário, possibilitando medida direta da temperatura da carga de U₃O₈, bem como filmagem por câmara de vídeo através da porta do forno. Na série E2 os cadinhos foram colocados com seu eixo de simetria na posição vertical, não tendo sido possível observar a carga de U3O8 através do pirômetro; as temperaturas registradas foram correspondentes às paredes do cadinho, na região próxima às cargas. Todos os valores de temperaturas foram corrigidos considerandose as posições dos cadinhos e absorção de radiação pela porta do forno.

Consideraram-se duas granulometrias: a fração de pó de menor tamanho foi obtida passando o U_3O_8 por peneira 100 mesh (série Tyler, abertura 0,49 mm, ASTM E-11-58-T); a fração de maior tamanho de partícula foi aquela retida entre as peneiras 35 e 100 mesh (com aberturas respectivamente de 495 e 147 μ m), após 10 min em máquina vibratória (modelo PRODUTEST). A série E_1 utilizou unicamente pó < 100 mesh; E_2 empregou U_3O_8 pós com as duas granulometrias.

Os equipamentos mais importantes utilizados foram os seguintes:

a) Forno de microondas, com cavidade de 41 l, modificado a partir de unidade comercial SANYO, (modelo EM-9003B), operando na freqüência de 2,45 GHz e com potência máxima de processamento de 650 W. Esse forno pode operar de forma pulsada ou contínua. Nas potências de 350 e 490 W o fornecimento de potência é pulsado (magnetron respectivamente ligado por 30 e 45 s, e desligado por 30 e 15 s). Em 650 W a potência é fornecida permanentemente.

b) Forno resistivo tipo mufla com controle por termopar de cromel-alumel (temperatura máxima 1100°C).

c) Picnômetro a gás (modelo ACCU PYC 1330 da MICROMERITICS) computadorizado, operando com hélio e dotado de registro automático de dados. Sua precisão com compostos de urânio é da ordem de 0,01%.

d)Pirômetro ótico (modelo MINOLTA-LAND CYCLOPS C152/52) ajustado para emissividade igual a 0,4, conforme recomendado pelo seu manual de instruções para o material considerado.

e) Câmara de vídeo (modelo SONY CCD-TR 50 BR) operando com distância focal de 7 mm e aumento de 8x, a 1,20 m de distância do cadinho.

f) Cadinho tronco-cônico de alumina com altura interna de 4,82 cm, espessura de parede de 0,39 cm, diâmetros internos superior e inferior respectivamente iguais a 3,81 e 2,13 cm.

Quarenta e duas experiências foram realizadas. Selecionaram-se vinte e uma para análise pormenorizada.

Experiências realizadas com pares termelétricos metálicos de uso corrente, demonstraram ser inviável a medida de temperatura no forno de microondas, devido à interação do termopar com o campo elétrico produzido pelo magnetron. O recurso de desligar o magnetron para realizar as medidas de temperaturas com tais pares inseridos nas amostras não é praticável, devido a rapidez com que se processam o aquecimento e o resfriamento do U_3O_8 . Recorreu-se por essa razão à pirometria ótica, com leituras de temperaturas obtidas observando-se as amostras através da porta semitransparente do forno. Foi necessário corrigir as temperaturas observadas considerando-se absorção da radiação pela porta. A calibração correspondente do pirômetro (modelo MINOLTA-LAND) foi realizada por determinação das diferenças entre as indicações de um par termelétrico tipo K, na cavidade de forno resistivo, e aquelas correspondentes à pirometria ótica, através de orificio existente na porta desse forno, com interposição da porta do forno de microondas. As correções foram determinadas no intervalo de 810° a 950°C, tomando-se o valor 0.4 para a emissividade. Dessa forma, foi verificada uma diferença média para menos de (158 ± 29)°C relativamente às temperaturas determinadas pelo pirômetro ótico. Tomou-se esse valor como correção aditiva às leituras pirométricas realizadas na série E1. Para a série E2 determinou-se com a correção aditiva o valor $(158 \pm 42)^{\circ}$ C, no intervalo de temperaturas entre 520° e 980°C.

Por meio de registro da imagem das cargas de U_3O_8 , usando câmara de vídeo, foi possível determinar a curva da temperatura versus tempo, de forma contínua, a evolução da temperatura das amostras durante o tratamento por microondas. A calibração foi feita mediante filmagem através do orifício da porta de forno resistivo, controlado por par termelétrico entre 805° a 950°C. As leituras fotométricas realizadas pela câmara de vídeo foram registradas em computador TEKWARE destinado a análise e processamento de dados obtidos pelas imagens do vídeo. Desta forma tornou-se viável estimar diferenças de temperaturas na superfície de uma mesma amostra, durante a operação, com erros inferiores a 50°C para zonas de aproximadamente 0,25 mm².

III. RESULTADOS E DISCUSSÕES

As medidas de densidades d_p por picnometria com gás hélio foram feitas para a maioria das amostras antes e após o processamento por microondas. O erro relativo percentual dos valores obtidos foi 0,14%. As densidades aparentes dos pós da experiência E1 foram calculadas por determinação de seus volumes em cilindro graduado de 1 cm de diâmetro, com erro relativo percentual da ordem de A densidade solta d, corresponde ao volume do pó 2% depositado através de um funil de vidro no cilindro; a densidade batida do foi obtida deixando o cilindro cair de 1 cm de altura sobre base rígida por vinte vezes; determinou-se a densidade limite d_i deixando o cilindro cair da mesma altura, até tornar-se constante o valor da densidade, com um desvio admissível de 2%. Abaixo estão as Tabelas 2 e 3 para as séries de experiências E1 e E2 respectivamente.

TABELA 2: Densidades d, Massa M, Espessura e' de Camada no Cadinho, Temperaturas Finais T_f para Amoștras da série E_1 .

A#ª	Der	sidade	(g/cm ³	М	e'	T _f	
						= C	
	ď	ď	đ۵°	ď	grama	mm	°C
A _{F0}	8,43	1,33	2,00	2,40	9		~25
A _{F1}	8,41	1,33	1,70	1,90	6	9	<500
A _{F2}	8,40	1,60	1,90	1,93	12	15	738
A _{F3}	8,39	1,81	2,11	2,19	18	21	856
A _{F4}	8,43	1,96	2,39	2,42	24	25	870
A _{F5}	8,45	1,94	2,36	2,40	30	29	706
A _{F6}	-	-	-	1	24	25	838
A _{F7}	8,45	1,98	2,51	2,68	24	25	888

 a) Amostras da série E₁; b) pó antes do processamento; c) densidade com cilindro graduado; e) densidade com pionometria de hélio.

De acordo com a Tabela 2 o pó com granulometria menor que 100 mesh (amostra A_{F4}) chegou a atingir 870°C em 4 min de aquecimento. Esta temperatura T está bem acima da requerida para se atingir o estágio intermediário de sinterização do U₃O₈ [3]. O pó com granulometria maior que 100 mesh (Tabela 3, amostra B₁) interagiu menos com o campo de microondas do que o material com granulometria menor que 100 mesh (Tabela 3, amostra A₁), indicando haver influência da granulometria na interação.

TABELA 3: Tempo de Processamento t, Massas M, Densidade Picnométrica d_p e Temperaturas Finais T_f para Pós da Série E₂.

t min	M	d,	T.					
min			. ∔f	B#"	t	M	d,	T _f
	g	g/cm ³	°C		min	g	g/cm 3	°C
0		7,74	~25	Bo	0		5,59	~25
5	10	8,32	~1000	B ₁	5	10	7,63	829
5	7	8,28	>500	B ₂	5	7	7,86	788
2	18	8,24	>800	B ₃	2	18	8,21	>500
4	18	8,27	>500	B 4	4	18	8,22	>500
6	18	8,25	1025	B ₅	6	18	8,18	>500
8	18	8,20	>500	B ₆	8	18	8,16	>500
10	18	8,19	>800	B ₇	10	18	8,16	1064
-	0 5 2 4 6 8 10	0 5 10 5 7 2 18 4 18 6 18 8 18 10 18	0 7,74 5 10 8,32 5 7 8,28 2 18 8,24 4 18 8,27 6 18 8,25 8 18 8,20 10 18 8,19	0 7,74 ~25 5 10 8,32 ~1000 5 7 8,28 >500 2 18 8,24 >800 4 18 8,27 >500 6 18 8,25 1025 8 18 8,20 >500 10 18 8,19 >800	0 7,74 ~25 B ₀ 5 10 8,32 ~1000 B ₁ 5 7 8,28 >500 B ₂ 2 18 8,24 >800 B ₃ 4 18 8,27 >500 B ₄ 6 18 8,25 1025 B ₅ 8 18 8,20 >500 B ₆ 10 18 8,19 >800 B ₇	0 7,74 ~25 B0 0 5 10 8,32 ~1000 B1 5 5 7 8,28 >500 B2 5 2 18 8,24 >800 B3 2 4 18 8,27 >500 B4 4 6 18 8,25 1025 B5 6 8 18 8,20 >500 B6 8 10 18 8,19 >800 B7 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

c), d) Designações das amostras respectivamente de po com granutomaria menor que 100, menor que 35 e maior que 100 mesh.

A Figura 1 mostra os resultados do aquecimento de amostras da série E_1 . A relação temperatura versus tempo pode ser feita pela fórmula $T = C - a * e^{b t}$, com parâmetros e coeficiente de correlação R^2 apresentados na Tabela 4. Essa equação corresponde a uma função de Gompertz modificada [6] e é válida para os ensaios (referendados como #2 a #7 na Tabela 4) das amostras A_{F2} até A_{F7} (ver Tabela 2), que correspondem a pós com granulometria menor que 100 mesh.

FIGURA 1: Variação da Temperatura T com o Tempo t para os Ensaios de #2 a #7. Para clareza os pontos experimentais e barra de erros só estão indicados respectivamente para os ensaios #4 e #7.

Encontro de Aplicações Nucleares, Águas de Lindóia, p.494-499, Agosto 1995.

[5] Turner, L. W., Manual do Engenheiro Eletrônico, v. 2, p. 7-56 a 7-79, Hemus, São Paulo, SP, 1982.

[6] Spiegel, M. R., Theory and Problems of Statistics, Shaum's Outline Series, Mac Graw - Hill Book Company, October, 1961, p. 218.

VL ABSTRACT

Some of the significant conditions for the microwave processing of U₃O₈ powders in laboratory furnaces were defined, considering nuclear fuel applications. The results demonstrated that powder layer thickness, density particle size are important characteristics. The and powders were processed in alumina crucibles, for times varying between 2 and 30 minutes; the final densities were determined using a graduated tube and helium picnometry, up to values near the material theoretical density. At 650 W furnace power the sample temperatures reached 861°C in 30 seconds. In these conditions, using high thermal shock resistance crucibles, U₃O₈ processing is particularly competitive with conventional procedures. An equation relating temperature T and time t was established for powders with < 100 mesh granulometry. The temperature distribution on the samples surfaces was registered using a video camera.