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Raman lasers are recognized for their wavelength flexibility, providing emission ranging from infrared 

pulsed lasers to continuous wave (cw) intracavity frequency converted Raman lasers operating in the visible 
wavelength range [1-4]. Broadening of the fundamental laser line in intracavity Raman lasers has been observed 
and it influence on the efficiency has been studied [5].  

Here we study nine intracavity Nd:YLF-KGW lasers by variation of crystal lengths, while keeping the mode 
sizes constant in each of the crystals. The strength of the fundamental field, Stokes output power at 990 nm and 
spectral behavior is recorded, see Fig. 1. An extremely large broadening of the fundamental emission line of up 
to 4 nm is observed, making the laser operate in the wings of the 4F3/2  4I9/2 three-level, σ-transition at 908 nm, 
which has a fluorescence linewidth  of less than 3 nm (FWHM). 

 

a)  b) 
Fig. 11a. Measured fundamental (black) and Stokes (gray) output powers, and b emission spectra of the fundamental 
field at various powers. 

  
Although a stronger Stokes coupling provides more Stokes output power in all our experiments, it also causes 

more losses to the fundamental emission line, broadening the spectrum of the fundamental field. A mathematical 
model has been developed and a first version has shown good agreement with experimental data, predicting 
significant improvements in laser efficiency when restricting the fundamental spectrum using etalons [6, 7]. The 
combination between the available mathematical laser models and the experimental data enables us to unravel 
the laser processes into great detail. 
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