

PREPARAÇÃO DE 18 F EM REATOR DE PESQUISA A PARTIR DE CARBONATO DE LÍTIO IRRADIADO

Haroldo Taurian Gasiglia e Constância Pagano Gonçalves da Silva

PUBLICAÇÃO IEA 501 CPMR - AP 5

JANEIRO/1978

PREPARAÇÃO DE ¹⁸F EM REATOR DE PESQUISA A PARTIR DE CARBONATO DE LITIO IRRADIADO

Harroldo Taurian Gasiglia e Constância Paga to Gonçalves da Silva

#ENTRO DE PROCESSAMENTO DE MATERIAIS RADIOATIVOS
(Área de Processamento)

INSTITUTO DE ENERGIA ATÔMICA SÃO PAULO - BRASIL

APROVADO PARA PUBLICAÇÃO EM DEZEMBRO/1977

CONSELHO DELIBERATIVO

MEMBROS

Klaus Reinach — Presidente Roberto D'Utra Vaz Helicio Modesto da Costa Ivano Humbert Merchasi Admar Carvellini

PARTICIPANTES

Regine Elisabete Azuvedo Beretta Flávio Gori

SUPERINTENDENTE

Râmulo Ribeiro Pleroni

INSTITUTO DE ENERGIA ATÔMICA
Celixa Postel 11.049 (Pinheiros)
Cidade Universitário "Armando de Sellos Oliveira"
SÃO PAULO — BRASIL

1

PREPARAÇÃO DE 18 F EM REATOR DE PESQUISA A PARTIR DE CARBONATO DE LÍTIO IRRADIADO

Haroldo Taurian Gasiglia e Constância Pagano Gonçalves da Silva

RESUMO

Descreve-se um método para a preparação de flüor-18 livre de carregador. O flüor-18 é obtido por irradiação do carbonato de lítio com neutrons e separario, por percolação do carbonato dissolvido, em óxido de alumínio calcinado a 1000°C. O rendimento é de 90% aproximadamente, o teor de trício é de 2%, não sendo encontradas outras impurezas radioativas no produto final. A pureza radioquímica é de cerca de 93% e o conteúdo de lítio é menor do que 0,2 ppm.

1 - INTRODUÇÃO

De todos os radioisótopos de flúor o único que pode ser usado como traçador é o ¹⁸F, emissor de pósitron com energia de 0,65 MeV e meia-vida de 139,7 minutos. Os outros radioisótopos: ¹⁷F, ²⁰F, ²¹F e ²²F possuem meias-vidas de 66,6, 15,56, 4,35 e 4,0 segundos, respectivamente.

O flúor-18 pode ser prod-izido por diversas reações nucleares, a saber: ^{1.6}O (α,pn), ^{1.6}O (pn), ^{1.7}F (η,2n), ^{1.7}F (γn), ^{1.6}O (tn) entretanto, esta última tem sido utilizada freqüentemente por ser possível obter atividades altas com o uso de reatores nucleares. Os tritons produzidos pela reação Li⁶(nα)t a partir de alvos de lítio natural (abundância isotópica em Li-6 de 7,5%) têm energia suficiente (2,73 MeV) para penetrar a barreira coulombiana do oxigênio e então produzir ^{1.8}F pela reação ^{1.6}O (tn) ^{1.8}F.

Compostos contendo, simultaneamente, lítio e oxigênio são preferidos à mistura de compostos, por causa do alcance pequeno dos tritons.

Nitrato de lítio, carbonato de lítio, aluminato de lítio, óxido de lítio e hidróxido de lítio têm sido usados para a preparação de flúor-18⁽¹⁻⁸⁾.

O carbonato de lítio é mais vantajoso por causa de sua estabilidade térmica alta e pureza elevada.

O flúor-18 encontra aplicação na química (reações de troca), na biologia e na medicina (detecção de lesões ósseas).

Diversos métodos têm sido apresentados para a separação do flúor-18 obtido por irradiação do arbonato de lítio:

- a) coprecipitação com cloreto de chumbo⁽³⁾, com sulfato de bário⁽⁶⁾ ou com hidróxido de lantânio⁽⁵⁾
- b) destilação (7)
- c) adsorção em alumina^(4,9,10), óxido de zircônio⁽⁸⁾ e ôxido de magnésio⁽⁴⁾

Este trabalho apresenta um metodo de preparação de ¹⁸ F a partir do carbonato de lítio aradiado e separação em coluna de alumina segundo o método de Stang⁽¹⁰⁾.

Introduzem-se, entretanto, modificações no sentido de aumentar a concentração radioativa do produto e sua pureza radioquímica.

2 - PARTE EXPERIMENTAL

2.1 - Irradiações

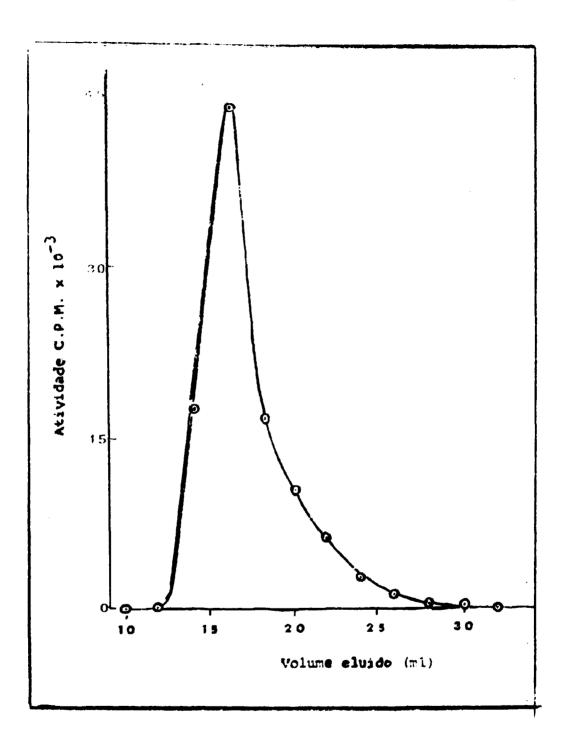
Amostras de um grama de carbonato de lítio natural, marca "Merck" foram colocadas em recipientes de polietileno e irradiadas durante trinta minutos no Reator IEAR-1 em fluxo de nêutrons térmicos de 6 x 10¹¹ n/cm².seg, aproximadamente.

2.2 - Preparação das Colunas de Alumina

Utilizaram-se colunas de vidro de 1,5 cm de diâmetro e 2 cm de altura contendo cerca de três gramas de alumina cromatográfica Brockmann, previamente tratada com ácido clorídrico 0,5 N e água, desprezando-se as partículas finas do sobrenadante.

2.3 — Dissolução do Carbonato de Lítio Irradiado e Percolação pela Alumina

Dissolveu-se o carbonato de lítio em HCl 6 N e acertou-se o pH entre 5 e 6. A solução obtida foi percolada através da coluna de alumina com vazão entre 0,5 e 1,5 ml por minuto. Em seguida, lavou-se a coluna com 30 ml de água destilada acidulada con HCl em pH 3 a 4. A fixação do ^{1 8} F na alumina é de 100%, não ocorrendo perdas durante a lavagem com água.


2.4 — Eluiu-se o ^{1 8} F com hidróxido de sódio 0,1 N, em temperatura ambiente e vazões iguais as usadas na fixação. A Figura 1 mostra uma curva de eluição típica.

3 - RESULTADOS

3.1 - Rendimentos de Eluição

Calculou-se o rendimento de eluição pela relação:

Para o cálculo de rendimento mediu-se a atividade de 1 ml das soluções influente, efluente, égua de lavagem e eluido, no pico de 0,511 MeV (radiação de aniquilação) num espectrometro de raios γ, com detector de Nal (TI) e analisador de 400 canais. O rendimento de eluição, em 15 experiências, variou de 85 a 93% nas frações coletadas de 20 ml.

Finura 1 — Curva de Eluição do ^{1.8}F de Alumina Tratada Segundo Stang. Eluente: NaOH 0,1 N, vazão 0,5 - 1,5 ml por minuto.

3.2 -- Pureza Radioativa

Os espectros de raios y de uma alíquota da solução de ¹⁸ F não purificado mostrou a presença de ²⁴ Na proveniente de sódio no carbonato de lítio. Essa impureza não foi detectada no produto final.

As Figuras 2a e 2b mostram o espectro da solução do carbonato de lítio irradiado e do produto purificado de ¹⁸ F. respectivamente

3.3 - Pureza Radioquímica

Determinou-se a pureza radioquímica das soluções de ¹⁸ F pela técnica de cromatografia em papel, utilizando-se papel Whatman N? 1 e solvente: n-butanol, metanol e água 30:40:30 v/v.

Os valores de R_r para o con fluoreto e fluoraluminato foram determinados, primeiramente com soluções inativas desses ânions e revelação das manchas com solução de acetato de chumbo 1% e gás sulfidirico.

A Tabela I apresenta os valores para os R_q dos ions fluoreto e fluoraluminato encontrados em vinte experiências.

Fizeram-se diversos cromatugramas com soluções de carbonato de lítio irradiado e com soluções do produto purificado de ¹⁸ F. Verificou-se que no primeiro caso o ¹⁸ F aparecia apenas como (on fluoreto, entretanto a solução após percolação pela coluna de alumina mostrou a presença de fluoraluminato, este em porcentagem entre 30 a 60%.

A Tabela II mostra os valores encontrados para o $R_{\rm f}$ do $^{18}{\rm F}$ em forma de fluoreto e fluoraluminato e as porcentagens deste último.

4 - TRATAMENTO TÉRMICO DA ALUMINA BROCKMANN

Calcinou-se a alumina a uma temperatura de 1000°C durante cinco horas sendo em seguida, fervida em HCl 2N por 30 minutos e lavada com água destilada até pH 5-6, decantando-se e desprezando-se as partículas em suspensão. Fizeram-se novas experiências com a alumina calcinada, nas mesmas condições que as indicadas no (tem 2.3 acrescida de lavagem final com 20 int de água destilada.

4.1 - Resultados Obtidos

4.1.1 — Redução de Volume da Fração Eluida Contendo ¹⁸ F Quando Comperada com Alumina não Tratada Térmicamente

Utilizou-se hidróxido de sódio 0,01, 0,05 e 0,1 N para eluição do ^{1,8}F retido em alumina pré-aquecida a 1000°C. A Figura 3 apresenta a curva de eluição nas três concentrações do eluente. Verificou-se que o hidróxido de sódio nessas três concentrações permite a eluição do ^{1,8}F em volume menor (10 ml) do que aquele usado (20 ml) com alumina não aquecida para obtenção de rendimentos de 82-93%.

4.1.2 - Teor de Alumínio

Determinou-se o teor de alumínio por espectrofotometria usando-se aluminon como complexante, sendo as leituras feitas em 525 nm.

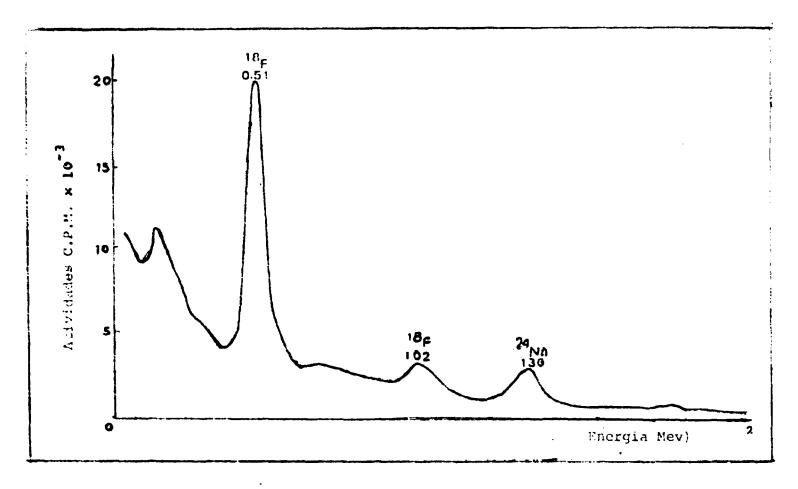


Figure 2.a — Espectro de Raios de uma Solução de Carbonato de Lítio Irradiado 30 minutos em Fluxo de 6 x 10¹¹ n.cm⁻².seg⁻¹. Tempo de Decaimento 30 horas, Cristal Nal(Tl) 5 x 3,20 cm. Analisador 400 canais. Tempo de contagem: 40 minutos.

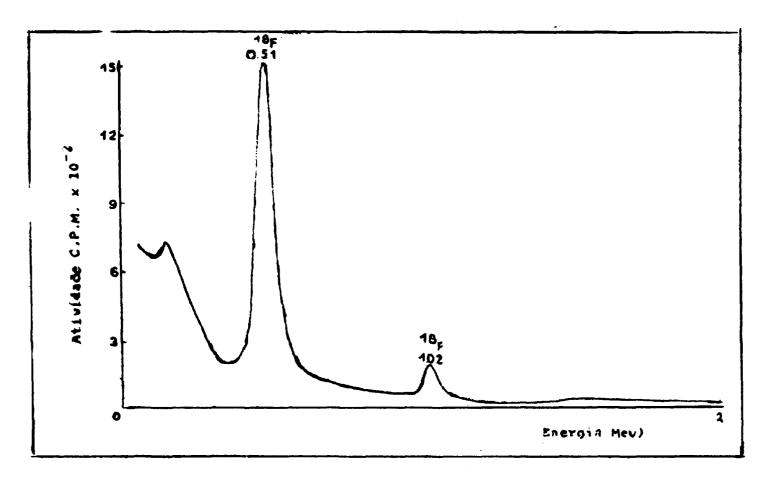


Figura 2.b — Espectro de Raios Gama de uma Solução de 18 F Purificado, Após Decamento de 28 horas. Cristal Nal (TI) 5 x 3,2 cm. Analisador 400 canais, Tempo de contagem: 40 minutos

Tabela I

Valores do R₁ para Fluoreto e Fluoraluminato Inativos Determinados por Cromatografia Ascendente em Papel Whatman nº 1

Solvente: n-butanol, metanol, água (30,40,30 ml)

Tempo de Corrida; 2 horas

Experiência Nº	R, do F	R, do Flúor	
	n _g do i	Complexo	
1	0,44	0	
2	0,43	0-0,04	
3	0,43	0	
4	0,42	0-0,03	
5	0,43	0	
6	0,43	0-0,05	
7	0,44	0	
8	0,46	0	
9	0,42	0-0,05	
10	0,43	0	
11	0,44	0	
12	0,42	0	
13	0,45	0	
14	0,45	0-0,04	
15	0,44	0	
16	0,43	0	
17	0,44	0	
18	0,43	0,02	
19	0,43	o o	
20	0,45	0	

Tabela II

Valores Encontrados para o Rf do ¹⁸F em Forma de Fluoreto e Fluoraluminato por Cromategrafía Ascendente em Papel Whatman Nº 1

Solvente: n-butanol, ramanal, água; 30,40,30 Tempo de Corrida: 02,00 horas

Cromatografia Nº	Soluções do al- vo irradiado		Soluções de ¹⁸ r sepera na segundo Stang	ido em coluna de alumi
	Rf do ¹⁸ F	Rf do 18F	Rf da Forma Complexa	% da Forma Complexa
1	0,44	0,43	0	51
2	0,45	0,44	0	62
3	0,43	0,43	0,05	31
4	0,45	0,43	0	54
5	0,43	0,44	0	42
6	0,44	0,46	0,04	31
7	0,44	0,43	0,03	47
8	0,46	0,44	O	34
. 9	0,43	0,43	0,06	50
10	0,45	0,46	0,07	42
11	0,43	0,43	O	44
12	0,43	0,43	0	38
13	0,43	0,45	0,03	39
14	0,45	0,45	Ó	42
15	0,44	0,44	0	36

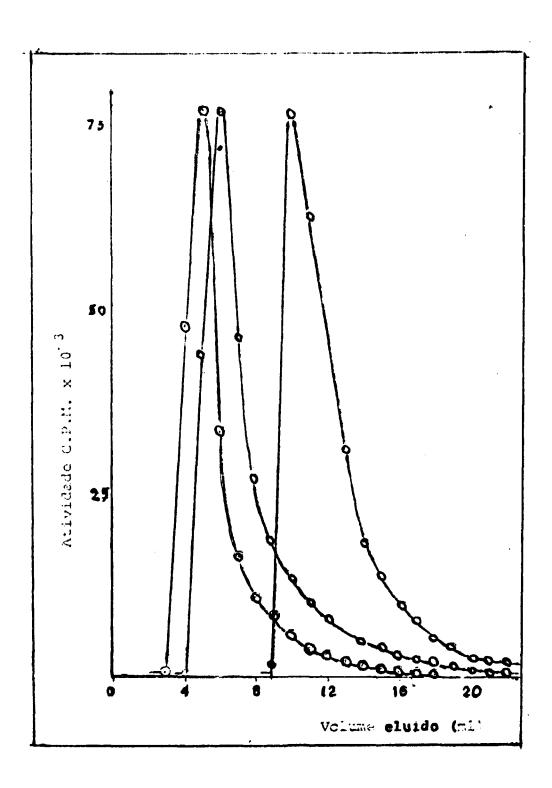


Figure 3 -- Curves de Eluição do ¹⁸F de Alumina Celcineda a 1000°C, Eluente: NaOH ● 0,1 N ·· ◆ 0,05 N ·· ○ 0,01 N

Encontrou-se um teor de alumínio de 172 a 230 µg Al/mi de solução quando se usou alumina não calcinada.

Quando se trabalhou com alumina calcinada a 1900° C usando-se NaOH 0,01 N para eluição do 1.8 F, os teores de alumínio variaram de 6 a 12 μ g Al/ml. Nesses casos as porcentagens de fluoraluminato não*ultrapassam a 10%. Quando se usou NaOH ou 0,05 N os teores de alumínio subiram até 30 μ g Al/ml.

A Tabela III mostra os rendimentos de eluição obtidos com JaOH 0,01, 0,05 e 0,1 N e os teores de alumínio nas soluções do ¹⁸ F.

Tabela III

Rendimentos Obtidos e Teores de Alumínio Encontrados em Soluções de ¹⁸F

Separado em Coluna de Alumina Calcinada a 1000°C

Eluente: NaOH

Volumes Coletados: 10 ml

Experiência Nº	Concentração de NaOH					
	0,10 N		0,0	05 N	0,01 N	
	Rendimento %	μg Al/mi	Rendimento %	μg Al/ml	Rendimento %	μg Al/mi
1	90	34	85	24	82	8
2	91	36	84	19	86	10
3	87	29	83	31	84	7
4	87	30	82	27	84	12
5	89	27	84	27	83	10
6	90	32	85	29	82	8
7	92	36	86	25	85	11
. 8	91	28	85	23	85	9
S	89	31	93	20	82	8
10	92	· 34	84	24	83	12

4.2 - Irradisção do Carbonato de Lítio Enriquecido em 6 Li

Visando a uma produção rotineira de ¹⁸ F, tornou-se necessário o uso do carbonato de lítio enriquecido em ⁶ Li a fim de evitar irradiação de massas grandes de alvo natural.

Fizeram-se as experiências com carbonato de lítio enriquecido em 6 Li 95% e massas variando de 0,5 gramas a 2 gramas irradiadas em tubo de quartzo de dimensão 4 mm de diâmetro interno e comprimento de 7,5 a 12,5 cent/metros e colocadas na guia de irradiação do Restor IEAR-1 e fluxo de nêutrons de 6,6 x $10^{1.2}$ a $10^{1.3}$ n/cm 2 .seg.

Para a separação do ¹⁸ F utilizou-se a alumina calcinada a 1000°C e a técnica descrita nos parágrafos anteriores.

4.2.1 - Determinação de Impurezas

Para a verificação de eventuais impurezas radioativas utilizou-se u técnica de espectrometria de raios γ com detectores de Nal (TI) ou Ge-Li acoplados e analisadores multicanais.

As soluções de ¹⁸F foram examinadas após decaimento de 30 horas, não se encontrando qualquer impureza emissora de radiação gama.

A determinação de trício nas soluções de ^{4 H}F foi feita pelo uso de cintilador líquido fabricado pela Nuclear Chicago, modelo 300. O teor de trício não excedeu a 5% em relação à atividade do ^{1 B}F.

A Tabela IV mostra as atividades de ¹⁸F obtidas bem como as porcentagens de trício encontradas no produto.

Tabela IV
Atividades de ¹⁸F Obtidas no Final dos Processamentos e Teores Rosiduais de Trício

Alvo Nº	Massa (g)	Tempo de Irradiação (h)	mCi de ¹⁸ F por grama de alvo	μCi de ³ H por mCi de ¹⁸ F	% ³ Н
1	0,5	2	2,8	34,1	3,4
2	0,5	2	2,5	56,4	5,6
3	0,5	2	2,4	22,4	2,2
4	0,5	3	3,2	19,4	1,9
5	0,5	4	3,5	45,6	4,6
6	1,0	4	4,3	16,4	1,6
7	1,0	4	4,2	63,8	6,4
8	0,5	4	4,4	48,2	4,8
9	0,5	3	4,8	28,5	2,9
10	1,0	4	5,4	19,2	1,9
11	1,0	4	6,4	21,2	2,1
12	0,5	4	6,6	28,3	2,8
13	2,0	4	6,2	25,6	2,6
14	2,0	4	7,2	25,2	2,5
15	1,0	4	7,1	31,2	3,1
16	2,0	4	6,9	22,8	2,3

Os teores de flúor em forma complexa foram determinados por cromatografía em papei conforme a técnica descrita em 3.3.

O teor de alumínio foi determinado conforme descrito em 4.1.2 e são apresentados na Tabela V.

A presença de lítio nas soluções de ¹⁸F foi determinada por espectrometria de absorção atômica e os resultados encontram-se na Tabela VI.

Tabela V

Teores de Alumínio e Percentagens de Flúor em Forma Complexa
Encontradas em Soluções de ¹⁸F Obtido em Diversos Processamentos

Processamento	μg Al/ml	% ¹⁸ F
N°	solução	complexo
1	9	6,5
2	12	-
3	11	9,5
4	8	6,2
5	10	8,5
6	7	5,4
7	8	5,8
8	12	8,8
9	6	4,9
10	11	7,8
11	10	9,3
12	7	5,8
13	7	4,7
14	6	5,1
15	12	9,6
16	10	7,5

Tabela VI

Teor de Lítio nas Soluções de ¹⁸F

Determinado por Espectrufotometria de Absorção Atômica

Amostra Nº	μg de Lítio por ml de solução	
1	1,12	
2	0,3	
3	0,3	
4	0,35	
5	0,23	
. 6	0,33	
; 7	0,36	
8	0,57	
9	0,36	
10	< 0,2	
11	< 0,2	
12	< 0,2	
13	< 0,2	
14	< 0,2	
15	< 0,2	
16	< 0,2	

5 - CONCLUSÃO

O método de separação do ^{1 a} F em coluna de alumina permitiu obter este radioisótopo puro, por processamento químico simples.

A oblização de alumina calcinada a 1000°C possibilitou a obtenção de ¹⁸ F com concentração radioativa duas vezes maior do que quando separado por alumina não aquecida.

Ainda, com alumina calcinada fui possível o uso de eluente, para o ¹⁸F, de concentração mais baixa, sem prejuízo do rendimento de separação.

listo permittu reduzir os teores de alumínio o conseqüentemente, a obtenção do produto com maior porcentagem em forma complexa.

A pureza do produto possibilita a utilização de ^{LR}F para fins médicos.

ABSTRACT

A procedure for preparation of carrier-free fluorine-18 is described. The ¹⁸F is produced by neutron irradiation of fithium carbonate and is separated by passing the dissolved material through a 1000°C calcinated aluminum oxyde column.

The yield is about 90%, the tritium content 2%; other radioactive impurities are not found.

The radiochemical point is about 93% and the lithium content of the solution is <0.2 ppm.

REFERÊNCIAS BIBLIOGRAFICAS

- 1. BANKS JR, H. O. Production of fluorine-18. Nucleonics, New York, 13(12):62, 1955.
- BEG, K. & BROWN, F. Production of carrier-free radio fluorine-18 and determination of its half-life. Int. J. appl. Radiat. Isotopes, Oxford, 14:137-41, 1963.
- BERNSTEIN, R. B. & KATZ, J. J. Fluorine-18: preparation, properties, uses. Nucleonics, New York, 11(10):46-51, 1953.
- 4. BRESESTI, M.; DEL TURCO, A. M. & OSTIDICH, A. Preparation of ¹⁸F in a nuclear reactor. Radiochimica Acta, Frankfurt, 2(2):49-52, 1963.
- DWORKIN, H. J. & LA FLEUH, P. D. Fluorine-18: a production by neutron activation and pharmacology. In: U. S. ATOMIC ENERGY COMISSION, Oak Ridge. Redioactive pharmaceuticals: proceedings of a symposium held at the Oak Ridge Institute of nuclear Studies, 1-4, November, 1965. Oak Ridge, 1966. (Conf. 651111). p.635-48.
- MUNZE, R. & BARANIAK, L. Die Herstellung des tragerfrein Na ¹⁸ F. Kernenergie, Berlin, DDR, 3(10/11):989-91, 1960.
- NIKOLOV, K.; KOLEV, Z.; MAZHKAROV, S. & MUTATCHIEV, K. On a method for the production of carrier-free ¹⁸ F from neutron irradiated lithium carbonate. *Isotopenpraxis*, Berlin, 2:433-5, 1986.
- 8. SCHOLZ, K. L. & SOOD, V. J. A kit for the production and fast isolation of medically useful fluorine-18. Int. J. appl. Radiat. Isotopes, Oxford, 23:465-8, 1972.

- SHIKATA, E. Preparation of fluorine-18: separation in alumina column, and the chemical form of ¹⁸F obtained. J. nucl. Sci. Technol., Tokyo, <u>1</u>(6):183-8, 1964.
- STANG JR, L. G. Manual of isotope production processes in use at Brookhaven National Laboratory Associated Universities. Upton, N. Y., Brookhaven National Lab., Aug. 1964. (BNL-864). p.24-6.