PERSISTENT LUMINESCENCE OF CADMIUM SILICATES

<u>Lucas C.V. Rodrigues</u>^{1,2}, Mika Lastusaari^{1,3}, Hermi F. Brito², Maria C.F.C. Felinto⁴,

José M. Carvalho², Jorma Hölsä¹⁻³, Oscar L. Malta⁵

¹University of Turku, Department of Chemistry, Turku, Finland, ²Universidade de São Paulo,

Instituto de Química, São Paulo-SP, Brazil, ³Turku Center for Materials and Surfaces (MatSurf),

⁴Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo-SP, Brazil, ⁵Universidade

Federal de Pernambuco, Departamento de Química, Recife-PE, Brazil

e-mail of presenting author: lucascvr@iq.usp.br

The most studied persistent luminescence phosphors contain Eu^{2+} as the emitting center [1,2]. In some systems, persistent luminescence is observed to originate from trivalent rare earths (R³⁺), instead. CdSiO₃:R³⁺ presents persistent luminescence arising from the R³⁺ ions (Tb³⁺, Pr³⁺), from defects (La³⁺, Gd³⁺, Lu³⁺) or from both (Dy³⁺, Sm³⁺) [3]. Cd₂SiO₄, however, does not show persistent luminescence when doped with *e.g.* Tb³⁺. To understand this anomaly, the position of R^{2+/3+} levels in the band gap was

Fig. Location of the $4f^n$ ground and excited levels of $R^{2+/3+}$ in Cd_2SiO_4 .

determined based on the synchrotron radiation (SR) VUV-UV-Vis spectroscopy yielding the band gap and charge transfer energies. For Tb^{3+} , the emitting excited levels are inside CB, and, thus, no persistent luminescence is observed. The position of Pr^{3+} levels suggests that $Cd_2SiO_4:Pr^{3+}$ material should show persistent luminescence, what is observed after ceasing the 300 nm irradiation. Finally, based also on structural data and other SR techniques as XANES/EXAFS, the mechanisms of the R^{3+} doped CdSiO₃ and Cd₂SiO₄ persistent luminescence were developed. A better understanding of the mechanisms may be achieved by simultaneous theoretical DFT studies.

References

1. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc., 1996, 143, 2670-2673.

2. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B, 2006, 110, 4589-4598.

3. H.F. Brito, J. Hölsä, M. Lastusaari, M.C.F.C. Felinto, J.M. Carvalho, L.C.V. Rodrigues, 8th International Conference on f-Elements (ICfE8), August 26-31, 2012, Udine, Italy.