Magnetic Hyperfine Field at ¹¹⁹Sn and ¹¹¹Cd probes in Gd₅Ge₄ Studied by Mössbauer and PAC Spectroscopy V. I. Krylov^{1,2}, B. Bosch-Santos¹, G. A. Cabrera-Pasca¹, A. W. Carbonari¹, R. N. Saxena¹, and O. F. S. Leite Neto¹ ¹Instituto de Pesquisas Energéticas e Nucleares, IPEN, São Paulo, SP, Brazil ²Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia E-mail: rnsaxena@ipen.br The magnetic structure of Gd_5Ge_4 belonging to the family of giant magnetocaloric $Gd_5(Si_1 Ge_x)_4$ alloys [1] has been examined by magnetization measurements in single crystal [2, 3], X-ray resonant magnetic scattering (XRMS) [4], and neutron powder diffraction (NPD [5]. Gd_5Ge_4 crystallizes in the orthorhombic structure (space group *Pnma*) having three non-equivalent Ge-sites. At low temperatures, the Gd magnetic moments are ferromagnetically (FM) aligned within the slabs along the c-direction, while their stacking in the *b*-direction is antiferromagnetic (AFM) below 127 K [2, 4]. In this work, the temperature dependence of the magnetic hyperfine field (HF) and electric quadrupole interaction on 119 Sn and 111 Cd probe nuclei in Gd₅Ge₄ compound have been investigated by Mössbauer and perturbed angular correlation (PAC) spectroscopy. At the saturation, the HF magnitudes reach of B_{hf} =28.0(5) T and B_{hf}= 12.6(5) T for 119 Sn and 111 Cd, respectively, which correspond to the FM local magnetic environment for these probes. It was found that 119 Sn probes are placed in two Ge positions, whereas 111 Cd probes are located in only one of the three Ge positions in Gd₅Ge₄. Temperature dependence of B_{hf} for both 119 Sn and 111 Cd probes in Gd₅Ge₄ present anomalous behavior. In the range from 20 K to 120K, the HF decreases almost linearly when temperature increases. These anomalous behavior of $B_{hf}(T)$ for ^{119}Sn and ^{111}Cd probes are in agreement with the temperature variation of the magnetic (070) and (010) peak intensities that have been found in XRMS [3] and NPD [4] studies. The AFM ordering temperature of Gd_5Ge_4 , $T_N=129(1)$ K, found from the $B_{hf}(T)$ is in agreement with previous results of [2 - 5]. Changes of the values and sign of the quadrupole shift of Mössbauer spectra for ¹¹᠑Sn atoms with the increase of temperature from 30 to 50 K confirm the spin-flop transition in Gd₅Ge₄ [2, 4]. - [1] V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett., **1997**, 78, 4494. - [2] E. M. Levin et al. Phys. Rev. B, 2004, 69, 114428. - [3] Z. W. Ouyang et al. Phys. Rev. B, **2007**, 76, 134415. - [4] L. Tan et al., Phys. Rev. B, 2005, 71, 214408. - [5] D. H. Ryan et al., Phys. Rev. B, 2010, 82, 224405.