Submicro-crystals of BaWO4:Eu³⁺ and BaMoO4:Eu³⁺ synthetized by Pechini Method

M. C.F.C. Felinto¹, R. P. Moreira^{1*}, E. Bonturim¹, H. P. Barbosa², H. F. Brito², E. E. S, Teotonio³, O. M. L. Malta^{3,4}

¹Instituto de Pesquisas Energéticas e Nucleares, São Paulo-SP, Brazil,
²Universidade de São Paulo, Instituto de Química, São Paulo-SP, Brazil,
³Universidade Federal da Paraíba, Instituto de Química, João Pessoa-PB, Brazil,
⁴Universidade Federal de Pernambuco, Instituto de Química, João Pessoa-PB, Brazil.
* Corresponding author: <u>rpaes@live.com</u>

In the scheelite-related red phosphors, molybdate and tungstate are respectable high-quality host material. The central metal ions, Mo⁶⁺ and W⁶⁺, are coordinated to four oxygen atoms in tetrahedral symmetry (Td). Then, molybdate and tungstate demonstrate be chemically stable, red-emitting phosphors, very suitable for in lightening and bio-application.[1] Additionally, molybdate and tungstate phosphors have broad absorption bands owing to charge transfer (CT) from oxygen to metal in the near-UV region. Scheelite BaMoO₄ and BaWO₄ have almost ideal structure of the MO_4^{2-} and display excellent thermal and hydrolytic stability [2-3]. Rare Earth Molybdates and Tungstate x%Eu:(BaMO₄)₃ submicron materials with smart photoluminescent properties were prepared using Pechini method. The powders were characterized by XRD. infrared absorption spectroscopy, thermal analyses, Scanning Electronic Microscopy and a criterions study of PL properties. These rare earth doped materials present highly intense red (Eu³⁺), luminescence under UV radiation. The structure change with the concentration of dopand, in this case concentration of Eu^{3+.} The excitation spectra of these compounds presented broad bands arising from ligand-to-metal charge transfer ($O \rightarrow Mo^{6+}$, $O \rightarrow W^{6+}$ and $O \rightarrow Eu^{3+}$) and narrow bands related to 4f-4f intraconfigurational transitions. The emission spectra exhibited the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J= 1–4) transitions, for the systems doped with Eu³⁺, while a broad band assigned to the LMCT $(O \rightarrow Mo; W)$ are observed when the excitation is monitored on the O→Mo;W LMCT state around 286 nm

Fig. 1. XPD patterns of the BaWO₄: Eu^{3+} materials prepared by Pechini method (left) and emission spectra of the BaWO₄: Eu^{3+} under excitation at (right)

Keywords: Europium luminescence, Molybdate and tungstate, lightining.

Acknowledgements

This work was supported by CNPq, CAPES and FAPESP.

References

- [1] A. M. Kaczmarek, R. Van Deun, Chem. Soc. Rev., 42 (2013) 8835–8848.
- [2] H. P. Barbosa , J. Kai, I.G. N. Silva, L. C. V. Rodrigues, M. C. F. C. Felinto, J. Hölsä, O.
 - L. Malta, H. F. Brito, J. Lumin., 170 (2016) 736–742.

18th International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.