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Abstract-This paper presents a large-signal analysis of a klystron
amplifier. It is used lagrangian approach and disk model theory in
a one-dimensional analysis with emphasis in the effects of the
presence of the space-charge force. After showing the result in the
free space without considering the space-charge force, is added one
that consider this force based on the Green's function approach.
Finally, some results for a cylindrical electron beam inside a
circular waveguide are shown.
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I. INTROD UCTION

It is well-known that, in most practical situations involving
ensemble of electrons, where it has finite transverse cross section
and it may be enclosed in an envelope that could be a drift tube,
as found in microwave tubes, like klystrons, traveling-wave
amplifiers and gyrotrons, there is a reduction of the plasma
frequency by a factor called plasma-frequency reduction factor
[1]. Ratifying its importance, it is used in a one-dimensional
numerical code for the study of amplifiers klystrons, based in
large-signals conditions and lagrangian approach [2]. There, the
plasma-frequency reduction factor is a parameter that is
necessary to know before the simulation.

It is possible to avoid the use of this factor if the calculation
of the space-charge field already considers that the ensemble of
electrons has finite transverse cross section and it is enclosed in
an envelope (drift tube, e.g.). One option of space-charge
calculation is based on the Green's function approach [3], which
is a convenient method ofcalculating the electrostatic potential in
the problems involving distributions of charge as well as
boundary values for the potential (i.e., solutions of Poisson's
equation).

The assumptions used in the model are:
i) the electron beam is focused by an external static axial

magnetic axial which the strength is high enough to guarantee
the electron motion be just in axial direction;

ii) the de velocity of the electron beam is small if compared
with light speed. In this conditions the retard potential created by
the charge disk motion can be considered as equals to that
motionless. Also in this situation the induced magnetic field can
be neglected;
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iii) the electron beam, considered like a pencil beam, is
described by a movement of charge disks, of radius a, without
thickness. Each disk is launched in the interaction region,
beyond the input plane, considered z = o. Each disk is identified
in terms of the relative initial time to to a period of the RF
modulation signal;

iv) the beam space-charge effects are considered by carried
out the electric force over each disk due to the contribuition of
all the other disks in the interaction region;

v) the dynamics of each individual disk in time t is evaluated
considering the space distribution ofall other disk in intante time
t - L1t , where L1t is a given integration time step. This approach
is know as leap frog; and

vi) the electric charge in each disk is considered uniformly
distributed and rigid.

This paper is organized as follows. Section II presents the
mathematical formulation of the problem. The numerical results
for free space and for an electron beam inside of a circular
waveguide are shown in Section III. Finally, the conclusion is
presented in Section IV.

II. MATHEMATICAL FORMU LATION

The physical interest problem is constituted of an infinite
cylindrical electron beam of circular cross section with radius a
enclosed in a circular waveguide of radius b. A disk of charge,
representative of the set of macro-particles in which the electron
beam is divided, is shown in Fig. 1.

It is convenient to assume cylindrical coordinates and
propagation in the z direction, due to the geometry.
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Fig. 1. A disk ofcharge of radius a inside ofa circular waveguide
of radius b.
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A. The Lagrangian Model

The dynamics of the electron beam can be described from the
knowledge of the dynamics of ensemble of disks, and for this
purpose, the Newton motion law for each disk must be used.

For this purpose the disk velocity Vi (t, tOi ) and its axial
position Zi (t, tOi ) ' for all time instant t, need to be determined.
From Newton motion law Vi and Zi are solutions of the first
order ordinary differential equation system

B. The Space-Charge Force

In order to carry out the space-charge forces due to charged
disks, the Poisson equation for the electrostatic potential ep(r)
must be solved,

(6)

dVi (t, tOi ) F zi

dt md

dzi (t, tOi) _ ( ) ,
-~--'- - v. t,to·

dt 1 1

(1)

subjected to the boundary conditions

(7)

The charge distribution, o;(r) is given by

The term in parenthesis denotes the force which is a function of
relative positions of each pair of disks. The initial conditions to
integration of (1) are:

where Uo is the initial velocity of the disk. The velocity
modulation can be include in the model by using the expression
for initial velocity,

(9)

(8)
-+ {-.!L8(Z - Z.) if P s a

pv(r)= rca 2
J

o if a < p s b

where G(r, r') is the Green function for (6) and it satisfies the

equation

where q is the electric charge of the j-th infinitely thin disk with
radius a at the axial position Zj and to is free space electric
permittivity.

The solution of Poisson equation (6) for boundary conditions
(7) and the charge distribution (8) is given, according the Green
theorem, by

(2)

(3)

FZi = IFij~Zi(t,tO;)-Zj~,tOj~].
j=l,i-*j

where md is the disk mass and F zi is the total electric force on
the i-th disk due to all others disks, in time instant t, in axial
positions Z j~' tOj ) . So FZi can be written as

(4) o(p - p'} o(cp - cp')o(z - z'},
p

(10)

where fa is the frequency of the RF field modulation in the first
microwave cavity, ep is the modulation index, and the initial time
of disk is given by

where To = 1/fo is the RF field period.
From the solution of (1) under the electric force (2), some

relevant field quantities like electron density can be obtained just
by taking into account the number of disks located in the position
Z and Z +..1z in the time instant t.

is an eigenfunction for the boundary value problem. So in this
way the Green function, following the expansion theorem, can be
represented as

subjected to homogeneous boundary conditions. In (10) the Dirac
delta function 8(r - r') is written in a cylindrical coordinate
form. A solution of (10) can be found in terms of the ordinary
Bessel functions, J m ? of the first kind and m order and its n-th
zero, xmn ' by noting that

(11)I' ( ) - J ( pJ imu:J mn p,qJ - m xmnb e ,

(5)( . ) Tot Oi = z-1 -,
N d

00 00

G(r,r') =L Lgmn(z,p',qJ',z')fmn(P,qJ) , (12)
n=l m=-oo
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where gmn(z,p',qJ',z') , the projection of GCr, r') in a particular
eigenfunction, fmn' is given by

Fig. 2 presents the electric force (19) for b / a = 2 and as
function of the normalized distance I(Z j - Z j ) / al·

b 2"

gmn(Z,p',qJ',z')= f fG(rY)!'(p,q»PdPdq>. (13)
a a

The superscript means a complex conjugation. The Green
function is written as "~:". ~,:;s··

t~

8
.~ c.o
~."
il

The electric potential can, by integrating (9) using (8) and
(14), be expressed as

J (x ~)
F(r)=-q-i: 1 On b 2JO(XonE.-)e-x:"lz-zjl1'.15)

ane; n =1 [x J (x )J bOn I On

The electric field can be expressed as the negative gradient of
the electric potential (15) as

I ,~

Fig. 2. Graph of thJ electric f?rre (19) for b / a = 2 and as function of the
nonnalizcd distance (Zi - Zi )I a .

Equation (19 constitute the electric force acting on one disk
charge due another disk inside the circular waveguide of radius b.
This equation is used to calculate the space-charge forces in this
true-ID analysis.

Finally, the electrical force acting on the i-th disk charge at Z j

due to the j-th disk at Z j can be calculated by

Substituting (15) in (16) and carrying through the
calculations, observing due to the problem symmetry the only
relevant component of the electric field is the axial component,
one has

( a)J x -
00 1 On b ( ) XOnI .1q P -hlZ - Z

Ez (r )=- - 2: [( )yJoXon-e b J (17)
abne; n=1 X On J 1 X On b

Table I presents the quantities [4] used in the numerical code.

III. NUMERICAL R ESULTS

The numerical method must be capable of, for a set of
N[) disks, calculate the derivatives of (1) at each step, presenting

the new values of each one of the variables. Besides, in the cases
where the space-charge field is considered, the force presented in
(1) is calculated using (19) at each step, taking into account that
the resultant space-charge force on one disk involves the
summation of the contributions of all disks (superposition
principle).

A. Free Space, with modulation and without space-charge
force

In this case, there is a process of modulation in velocity
whose responsible for exciting the electron beam is an electric
field. At the moment of modulation (z = 0 ), some disks have the
velocity increased because they found the electric field in the
opposite direction with relation to their directions of propagation
and, as consequence, they had been sped up. On the other hand,
the disks that found the electric field in the same direction had
been decelerated and they have the velocity decreased. Therefore,
after the velocity modulation, there are two groups: one is the
slow disks and the other is the fast disks. It is emphasized that the
velocity of all disks remains constant and equals its modulation
value during the entire simulation interval.

(19)

(16)

(18)

E(r) = -VF (r).

where the electric charge dqi(r)= p/r)d3r , and pier) is given
by (8), but now the infinitely thin disk with radius a and charge q
is at the axial position z; After the calculation one gets, for the
force (2), the expression,
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OuaniiiV Svmbol Value

d.c.beam velocity, m / s Uo 4,59 x 10'

d.c. beam charge density, C / m' Po 6,78x 10-3

d.c. beam current, A f o 0,6

frequency, Hz fa 1,85 x 10'

disks entrance time interval, s !it 1,3 5xIO- 12

permitt ivity offrec space, F / m £ 0 8,85 xIO- 12

electron beam radius , mm a 7,83 x 10-1

waveguide radius , mm b 15,66 x 10-1

lenght for dens ity calculation, mm III 12,42 xlO- 1

number of disks ND 1001

modulation index £p 0,1
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Fig. 4. Trajec tories of some disks in the interaction region.
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Q UANTITIES USED IN TIl E NUMERICAL CODETABLE I.

In the interaction region, as the group of fast disks is
modulated by last, these reach the slow group, even without
considering the space-charge effect, as it can be seen in the phase
space in Fig. 3. As consequence, the density increases until
forming one bunch that it is very narrow and has a high current
associated with it. Later, the bunch becomes wider and has the
highest density associated with the edges [5].

in the interaction region, as it can be seen in the phase space
in Fig. 5.

Again, as consequence of two groups of disks (slow and fast),
the density increases until forming one bunch that it is very
narrow as it can be seen in the Fig. 5 but, in this case, the highest
density occurs later and it is higher than the previous case. Later,
the bunch becomes wider and has the highest density associated
with the edges.
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Fig. 3. Phase space of some disks and densit y in the interaction region for the
normalized times: 1.0,2.0,3 .0,4.0, 5.0 and 6.0.

Beyond of electron bunch, as the consequence of disks
approach one to others, FigA shows the occurrence of the
electron overtaking.

B. Free Space, with modulation and space-charge force

In this case, the disks try, in z = 0, the modulation in velocity
and, after that, in the interaction region, they move under the
action of the space-charge force as the resultant force. It should
be noted that the disks have their velocities changing

-; .
?:J ?_~ :!:: a:c '11

,:0!-0'. {/~::! s~.)

Fig. 5. Phase space of some disks and density in the interaction region for the
normali zed times: 1.0,2.0,2.5,3 .0,4.0, 5.0 and 6.0.

Fig. 6 shows the electron bunch and the electron overtaking.
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Fig 7 shows that, at the moment which the distances between
all disks become relevant, there is a significant decrease of the
density. Besides, it is possible to infer from the graph of Fig. 8
that there is not electron bunching.
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Fig. 8. Trajectories of some disks in the interaction region.

D. Waveguide, with modulation and space-charge for ce

In this case, the disks try, in z =0, the modulation in velocity
and, after that, in the interaction region, they move under the
action of the space-charge force, which is the resultant force. It is
important to observe that the disks have its velocities changing in
the interaction region, as it can be seen in the phase space in fig.
9. Again, as consequence of two groups of disks (slow and fast),
the density increases until forming one bunch that it is very
narrow and, therefore, has a high current associated with it, as it
can be seen in the Fig. 9 but, in this case, the highest density
occurs earlier and it is lower than the item B (free space). Later,
the bunch becomes wider and decreases in different way them
previous cases.
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Fig. 6. Trajectories of some disks in the interaction region.

1.20 ~
1.15

].1 .10

~ :.C';

i
i~

ii~ -.I..·';--·""'-,.,..· .. ~

'~',r:: ---- •

C. Waveguide, without modulation and with space-charge
force

In this case, the disks move, in the interaction region, under
the action of the space-charge force, which is the resultant force.
It is verified clearly in Fig. 7 that throughout the time some disks
that have entered first in the interaction region are sped up
because its resultant space-charge force has the same direction
related to their directions of propagation. On the other hand,
some disks are decelerated because its resultant space-charge
force has the oposite direction related to its direction of
propagation. As consequence, the density decreases, as it can be
seen in the Fig. 7. It should be noted that initially the decrease is
more intense with extreme disks. At the same time, the distances
between these disks increase from the entrance (z = 0 ), as it can
be seen in the Fig. 8.

Fig. 7. Phase space of some disks and density in the interaction region for the
normalized times: 1.0,2.0,3 .0,4.0,5.0 and 6.0.

Fig. 9. Phase space of some disks and density in the interaction region for the
normalized times: 1.0,2.0,2.3,3 .0,4.0, 5.0 and 6.0.
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Fig. 10. Trajectories of some disks in the interaction region.

Fig. 10 shows that the electron bunch phenomenon occurs in
this case as well as the electron overtaking.
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