

Dolores R. R. Lazar -drlazar@ipen.br Valter Ussui – vussui@ipen.br José Octavio A. Paschoal – paschoal@ipen.br

PROCEL - CCTM

⇒ SOFC – Componentes e Princípio de Funcionamento Eletrólitos Sólidos Eletrólitos à base de zircônia

⇒ Estudos em desenvolvimento no IPEN Síntese dos pós - Processamento - Caracterização

⇒ Resultados Obtidos

Otimização das etapas de síntese e processamento Influência dos elementos de terras raras pesadas

Requisitos para Seleção dos Materiais

- Condutividade iônica elevada na T_{operação}
- Densidade elevada evitando permeabilidade dos gases (H₂ e O₂)
- Estabilidade química em atmosfera redutora e oxidante
- Estabilidade térmica
- Compatibilidade química e térmica com os demais componentes da CC

➤ YSZ

zircônia estabilizada com ítria

ScSZ zircônia estabilizada com escândia

≻ LSGM

galato de lantânio dopado com estrôncio e magnésio

➢ GDC

céria dopada com gadolínia

YDB óxido de bismuto dopado com ítria

> Yamamoto, O. Electrochim. Acta v.45, p.2423-2435 (2000).

Características dos Eletrólitos Sólidos

10-YSZ

- Estabilidade em atm redutora e oxidante
 Operacionalidade testada por 40.000 h
 - (SWH)
 - Material amplamente estudado
 - Baixo custo da matéria-prima

Características dos Eletrólitos Sólidos

⇒ 10-ScSZ

- Estabilidade em atm redutora e oxidante
- \otimes > Custo elevado do Sc₂O₃

LSGM

(;

- Boa compatibilidade com materiais do catodo
 - Evaporação do Ga em baixa pO₂ (região do anodo)

 - Custo elevado do Ga

Características dos Eletrólitos Sólidos

GDC

- Boa compatibilidade com materiais do catodo
- ➢ ➤ Redução de Ce⁴⁺ a Ce³⁺ na região do anodo Consequências: condutividade mista → curto circuito da célula Expansão da rede → Tensões mecânicas

YDB

- \succ maior σ_{ionica} entre os materiais citados
- S ➤ Redução de Bi ³⁺ a Bi ²⁺ na região do anodo

Critérios adotados para Seleção de Eletrólitos de Zircônia estabilizada com óxidos de Terras Raras

Eficiência comprovada em sistemas implantados (material considerado "estado da arte")

Âmbito do IPEN: Domínio da Tecnologia do Zircônio e de Terras Raras em decorrência da experiência na área Nuclear

- 1899 \Rightarrow descoberta dos Eletrólitos Sólidos (Nernst)
- 1937 \Rightarrow 1º operação de uma SOFC (Baur & Preis)
- $\begin{array}{rl} 1962 \implies & 1^{\underline{a}} \text{ SOFC Westinghouse Electric} \\ & (catado e anodo de Pt) \end{array}$
- $\begin{array}{ll} 1975 \implies & \text{SOFC tubular com várias unidades modulares} \\ & (\text{Brown Boveri}) \end{array}$
- $1980 \implies 1^{\underline{a}} \text{ SOFC tubular sem selantes -Westinghouse}$ (catodo: LSM e anodo : YSZ-Ni)
- 2003 ⇒ 40 empresas desenvolvem SOFC (Siemens-Westinghouse, Global Thermoelectric, Cermatec, ...)

Diagrama de fase

Mecanismo de Estabilização

Wagner (1943):

cátions dopantes ocupam posições dos íons de zircônio, criando vacâncias de oxigênio para manter neutralidade elétrica.

posição do Zr⁴⁺ ocupada pelo Y³⁺

SOFC – Eletrólitos de Zircônia-Í tria

Porcentagem molar de Y₂O₃

Tenacidade à Fratura x Composição

SOFC – I PEN - Obtenção de I nsumos à base de zircônio e TR

Matérias - primas

- Solução de oxicloreto de zircônio, produzida no IPEN
- Concentrado de ítrio obtido por extração com solventes 85% Y_2O_3 , 8,7% Dy_2O_3 , 4,2% Er_2O_3 , 1,9% Ho_2O_3 , 0,3% Yb_2O_3 , 0,2% Tb_4O_7 (em massa)
- Soluções clorídricas de ítrio e de terras raras pesadas (99,9% em massa – Aldrich)

Lazar, D.R.R. Tese de doutoramento – I PEN – 2002.

SOFC – I PEN – Obtenção de Cerâmicas Y-TZP e Y-CSZ

Caracterização dos pós cerâmicos Y-TZP e Y- CSZ

Microscopia Eletrônica de Varredura

Y - CSZ

- Tamanho médio de aglomerados em torno de 2 μm
- Área específica na faixa de 52 a 83 m². g⁻¹

Lazar, D.R.R. et al. J. Eur. Ceram. Soc. v.22, p.2813-2820 (2002). Caracterização dos pós cerâmicos Y-TZP e Y- CSZ

Microscopia Eletrônica de Transmissão

Y - TZP

Y - CSZ

Lazar, D.R.R. Tese de doutoramento – I PEN – 2002.

Caracterização das cerâmicas Y-TZP

Microscopia Eletrônica de Varredura

Superfície de fratura

Superfície polida e submetida a ataque térmico

[fase tetragonal] =96 – 98 % em massa

 $\rho_{relativa} > 95\%$ Tamanho de grão = 0,3 - 0,4 µm K_{1C} = 6,0 MPa.m^{1/2}

Lazar, D.R.R. et al. Mater.Sci.Forum v.416-418, p.555-560 (2003). Caracterização das cerâmicas Y-CSZ

Microscopia Eletrônica de Varredura

Superfície de fratura

Superfície polida e submetida a ataque térmico

[fase cúbica] =100 % em massa $\rho_{relativa}$ = 93 - 96% Tamanho de grão = 3,0 - 4,6 µm

Lazar, D.R.R. et al. 47º CBC (2003).

Caracterização das cerâmicas Y-TZP

Microscopia Eletrônica de Transmissão

Grãos de estrutura tetragonal

Grãos de estrutura monoclínica

Lazar, D.R.R. et al. 47º CBC (2003).

Microscopia Eletrônica de Transmissão

Nucleação de precipitados de estrutura tetragonal em grãos de estrutura cúbica

Lazar, D.R.R. et al. 47º CBC (2003).

Caracterização das cerâmicas Y-TZP e Y-CSZ

Determinação da Resistividade Elétrica por Espectroscopia de Impedância Gráficos de Arrhenius

Caracterização das cerâmicas Y-TZP e Y-CSZ

Determinação da Resistividade Elétrica por Espectroscopia de Impedância Gráficos de Arrhenius

Lazar, D.R.R. et al. PTECH 2003.

Energia de ativação e condutividade iônica

Amostra	E	σ ₄₀₀ ₀ _C	σ ₁₀₀₀ ° _C
	(eV)	(10 ⁻⁴ Ω ⁻¹ .cm ⁻¹)	(Ω ⁻¹ .cm ⁻¹)
Este trabalho	1,0 – 1,2	0,6 – 1,9	0,4 – 1,9
Literatura	1,0	0,4	0,2

Lazar, D.R.R. et al. PTECH 2003.

A técnica de co-precipitação de hidróxidos, associada a etapas de tratamento dos precipitados com solventes orgânicos e de moagem em meio alcoólico, permite a síntese de pós de zircônia estabilizada constituídos por partículas nanométricas, agrupadas na forma de aglomerados fracos.

Condições otimizadas de processamento cerâmico para atingir densidade superior a 95% DT:

- calcinação a 800 °C / 1h,
- moagem em moinho de bolas em meio alcoólico,
- conformação por prensagem uniaxial (100MPa) e
- sinterização a 1500 °C / 1h.

A estabilização da zircônia com 3 mol% de ítria mostra-se adequada para obtenção de cerâmicas com estrutura predominantemente tetragonal, tamanho reduzido de grãos (0,4 μm) e valores elevados de dureza e tenacidade à fratura (13 GPa e 6 MPa . m^{1/2}).

 O emprego de 9 mol% de ítria possibilita a estabilização da fase cúbica com tamanho de grão da ordem de 4 μm e condutividade iônica superior a dos materiais preparados a partir de pós comerciais. A proximidade dos valores de raio iônico dos íons trivalentes de ítrio e de terras raras pesadas permite o emprego de concentrado contendo 85% em massa de ítria, para estabilização de cerâmicas à base de zircônia.

O bom desempenho das cerâmicas de zircônia estabilizadas com concentrados de ítria possibilita a redução de custo desses materiais.

Estudos de técnicas de processamento visando a obtenção de filmes finos de Y-CSZ. Técnicas selecionadas: colagem de barbotinas (slip casting) e colagem de fitas (tape casting)

Melhorar a resistência mecânica das cerâmicas Y-CSZ Alternativas:

- I ncorporação de alumina à matriz Y-CSZ
- Co-dopagem: YSc-YSZ