Neutron Photoproduction in ²³²Th and ²³⁸U Nuclei ODAIR LELIS GONÇALEZ

Instituto de Estudos Avançados/CTA - São José dos Campos, SP - C. Postal 6044, CEP 12231-970
FERMIN GARCIA VELASCO, JOEL MESA HORMAZA, J. D. T. ARRUDA-NETO
Instituto de Física da Universidade de São Paulo, São Paulo, SP - Caixa Postal 66318 - CEP 05315-970
LUIZ PAULO GERALDO, RENATO SEMMLER

Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP - Caixa Postal 11049 - CEP 05422-970

Measurements of neutron photoproduction cross sections for 232 Th and 238 U at 30 discrete values of excitation energies, within the interval from 5607.75 to 10829.18 KeV, were recently carried out[1], using gamma rays with high resolution in energy (5 to 20 eV), produced by thermal neutron capture in an experimental arrangement at the IPEN-IEA-R1 2 MW research reactor. In this energy interval, the neutron photoproduction cross section $\sigma_{\gamma,N}(E)$ is expressed by: $\sigma_{\gamma,N}(E) = \sigma_{g,n}(E) + \nu(E)\sigma_{\gamma,f}(E)$ where $\sigma_{\gamma,n}(E)$ is the photoneutron emission cross section, $\nu(E)$ is the average number of prompt neutrons per fission, $\sigma_{\gamma,f}(E)$ is the photofission cross section and E is the excitation energy.

The neutron photoproduction cross sections at the main gamma line energies were determined after appropriately unfolding [2] the set of experimental results obtained with the gamma ray spectra produced by the 30 capture targets. The experimental data obtained for ²³²Th and ²³⁸U are shown in Figures 1 and 2 respectively, together with the smooth curves fitted to the results reported by Caldwell [3] and Dickey[4].

In the present work it was performed an statistical calculation for the neutron photoproduction cross section using the expression:

$$\sigma_{\gamma,N}(E) = \sigma_a(E) \left[\frac{\Gamma_n(E)}{\Gamma_{\gamma}(E) + \Gamma_f(E) + \Gamma_n(E)} + \nu(E) \frac{\Gamma_f(E)}{\Gamma_{\gamma}(E) + \Gamma_f(E) + \Gamma_n(E)} \right]$$
(1)

where

 $\sigma_a(E)$ is the photoabsorption cross section from the giant dipole resonance (GRD)[3], $\nu(E)$ is the photofission prompt neutron multiplicity[5] and $\Gamma_i(E)$ is the partial width for gamma scattering $(i=\gamma)$, fission (i=f) and neutron emission (i=n). The partial widths have been calculated by means of a modified version of the STAPRE[6] code, which was adapted for photonuclear reactions. The level densities at the equilibrium state and at the saddle points deformations were calculated through a combined semi-microscopic method [7,8]. The nuclear deformation parameters used in the calculation of the quasi-particle states in a deformed potential are presented in Table I. For the transmission coefficients calculation, the level densities have been integrated within energy intervals of 250 KeV and 150 KeV for the 232 Th and 238 U targets respectively, as a means to simulate the energy resolution of the experiments of Caldwell[3] (250 KeV) and Dickey[4] (100-400 KeV). The parameters of the double-humped fission barriers (three parabola smoothly joined) used for the fission width calculation were:

a) For ²³²Th : $E_I = 5.8 \text{ MeV}$; $\hbar w_I = 1.04 \text{ MeV}$; $E_{II} = 6.2 \text{ MeV}$ and $\hbar w_{II} = 0.60 \text{ MeV}$.

b) For ^{238}U : $\text{E}_{I} = 5.9 \text{ MeV}$; $\hbar \text{w}_{I} = 1.18 \text{ MeV}$; $\text{E}_{II} = 6.1 \text{ MeV}$ and $\hbar \text{w}_{II} = 0.63 \text{ MeV}$.

Table I Nuclear Deformation Parameters

Nuclide	Equilibrium State		First Saddle Point		Second Saddle Point			
	ε	$lpha_4$. E	$lpha_4$	ε	α_3	α_4	
$^{238}\mathrm{U}$	0.23	0.06	0.38	-0.07	0.70	0.11	***************************************	0.03
$^{237}\mathrm{U}$	0.23	0.06						
²³² Th	0.22	0.07	0.44	-0.03	0.71	0.11		0.04
$^{231}\mathrm{Th}$	0.21	0.07						

All parameter calculations were based on a microscopic description of the nuclear structure, except for $\sigma_a(E)$ and $\nu(E)$ which were taken from the literature. The results obtained in the present work are compared with the experimental data in Figures 1 and 2. As can be seen, the theoretical data are in reasonable agreement with the experimental measurements performed with gamma ray sources of gross energy resolution [3,4]. For gamma source of high energy resolution (capture gamma rays) they represent approximately an average trend of the experimental data points.

References:

1) O. L. Gonçalez et al., Nucl. Sci. Eng. (submitted to publication on Apr 30, 1998)

- 2) O. L. Gonçalez, PhD Thesis, Instituto de Pesq. Energéticas e Nucleares, USP, S.Paulo (1998)
- 3) J. T. Caldwell et al., Phys.Ver..,C21,1215-1231(1980)
- 4) P. A. Dickey and P. Axel, Phys. Ver., 35,501-503(1975)
- 5) J. T. Caldwell et al., Nucl. Sci. Eng., 73, 153-163(1980)
- 6) M. Uhl, B. Strohmaier: Report IRK-76/01, IRK Vienna (1976)
- 7) F.Garcia et al., J.Phys.G: Nucl. Part. Phys.19,2157-2166(1993)
- 8) F. Garcia et al., Computer Physics Communications, 86, 129-146(1995).

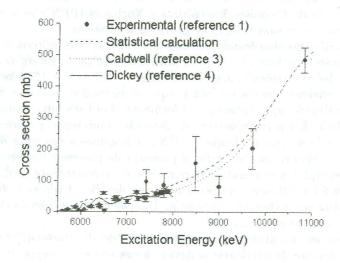


Figure 1: Neutron Photoproduction Cross section for ²³²Th

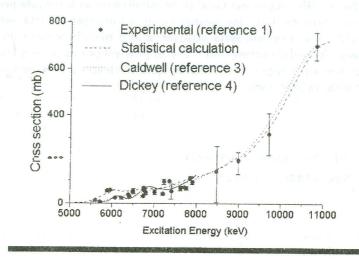


Figure 2: Neutron Photoproduction Cross Section for ²³⁸U.