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ABSTRACT 

 
The application of multivariate techniques to experimental results requires a responsibility on behalf of the 

researcher to understand, evaluate and interpret their results, especially the ones that are more complex. In this 

work, the impact of three standardization techniques on the formation of clusters by the SOM (self-organizing 

map) neural network were studied. The techniques studied were logarithm (log10), generalized-log and improved 

min-max. The studies were performed using two databases consisting of 298 and 146 samples and containing 

the mass fractions of As, Na, K, La, Yb, Lu, U, Sc, Cr, Fe, Cs, Eu, Tn, Hf and Th, determined by neutron 

activation analysis. The results were evaluated using validation indices.  

  

 

 

1. INTRODUCTION 

 

 

The future advancement of physicochemical techniques means that the quantity of results 

generated will increase significantly. For results analysis, it is necessary to use more 

sophisticated methods, such as multivariate techniques. In general, multivariate statistical 

methods allow one to evaluate a set of samples in terms of the correlations between variables. 

These techniques consider that each sample can be represented as a point in multidimensional 

space, where each dimension of hyperspace corresponds to an axis determined by the 

physicochemical composition of the samples. One of the ways to verify the existence of 

similar behaviors between the samples in relation to the different variables is by carrying out 

a clustering analysis. A problem that arises during cluster analysis involves the decision to 

standardize the samples before calculating the distance measurements, while the existence of 

several standardization techniques complicates this decision further. The present article 

proposes to study the effect of three standardization methods on cluster analysis:  log10, 
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generalized-log [1], and improved min-max [2]. After applying data standardization, they are 

submitted to a SOM neural network which aims to gather samples to create clusters, so that 

there is internal homogeneity in the clusters and external heterogeneity among them [3]. The 

SOM network is a self-organizing map of unsupervised training: the central idea of the SOM 

network is competitive learning, since when presenting the sample to the network, the 

neurons compete with each other and the winner has their weights adjusted to better answer 

to network stimuli [4]. In addition, there is a process of cooperation between neurons and 

their neighbors, who also receive adjustments. The characteristics contained in the sample 

will stimulate a special region of the network associated with a particular group. 

 

The purpose of this paper was to compare, using experimental results, three standardization 

methods: log10, generalized-log and improved min-max prior clustering. The study was 

performed using two databases. Named B1 and B2 with 298 and 146 samples, respectively. 

In both, the mass fractions of As, Na, K, La, Yb, Lu, U, Sc, Cr, Fe, Cs, Eu, Tn, Hf and Th 

were determined by neutron activation analysis. To evaluate the results obtained in 

normalization, were used three validation indices Jaccard [5], Rand [6] and Fowlkes-Mallows 

[7]. 

 

 

2. THEORETICAL ASPECTS 

 

2.1 Standardization Techniques 

 

In many cluster analysis applications, raw data, or actual measurements, are not used directly 

unless a probabilistic model for pattern generation is available [8]. Thus, there is a need to 

prepare the data for cluster analysis through a transformation aimed at standardizing the data.  

 

2.1.1. Log10 

 

Several authors studied whether the chemical elements for geological samples are distributed 

normally or lognormally [9]. The results showed that composition data are distributed 

lognormally by two reasons. First, was observed that more often that for trace elements, the 

data appear to be more normally distributed when treated as logarithms of the measured 

concentrations. The second reason is that transformation of concentration data into logarithms 

compensates for the differences in the magnitudes between the major elements, such as K, Fe, 

and the trace elements, such as rare earth elements. The transformation to logarithms effects a 

quasi-standardization that is convenient and facilitates the use of cluster analysis and other 

multivariate methods. The log10 standardization to improve symmetry of the datasets. A 

common strategy in the analysis of datasets chemical compositions, with measurements 

strictly positive, is the log10 standardization, which emphasizes clusters without introducing 

spurious effects [10]. 
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2.1.2. Generalized-log 

 

Generalized-log standardization is based on the q-logarithm function which is a 

generalization of  logarithmic function and is used as the intermediate domain between the 

log and linear domain [1], the generalized-log function is defined as: 

 

                                                           
 
 
      

   
 

 
     
   
     

   
 

 
     
   
     

                                                

 

where    is the standardized data, N is the number of samples and     is the raw data and the 

q-logarithm is defined as follows: 

 

                                                                 
 
     

    

 
     

            

                                                        

 

and the inverse of the q-logarithm, the q-exponential is defined as the following:  

 

                                                                      
 
      

           

                                                          

  

2.1.3. Improved Min-Max 

 

In the improved min-max standardization [2] a set of Rk is constructed for each column that is 

composed of values that occur more than once. The mean and standard deviation of Rk are 

summed to obtain RKA. At the end, the improved min-max standardization is applied using 

the expression: 

                                                                     

          

              
       

     
      

           
       

                                               

      

where:                                                   (standard 

deviation). 

 

2.2 Validation Indexes 

 

The indices described below are used to evaluate the effect of standardization techniques in 

cluster analysis, comparing the results obtained from the SOM neural network with 

predefined information. The existence of two partitions is assumed, one obtained by the SOM 

neural network and the other with additional information about the base [11]. 
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2.2.1 Jaccard 

 

The Jaccard index also named coefficient of similarity, is a well known measure of similarity 

between clusters described by the presence or absence of samples, used in cluster analysis. It 

counts the number of pairs of samples belonging to the same group in partitions A and B, and 

the number of pairs of samples that belong to the same group on at least one of the partitions. 

The Jaccard index is give by [5]: 

                                                                         
 

     
                                                                     

where a is the number of pairs of samples belonging to the same cluster, in A and B; b is the 

number of pairs of samples belonging to different groupings in A, but same group in B; c is 

the number of samples belonging to the same group in A, but different clusters in B. 

 

2.2.2 Rand 

 

The Rand index is a statistical measure of the proportion of pairs of samples belonging to the 

same or different clusters in both partitions and is defined by [6]: 

 

 

                                                                     
   

       
                                                                 

 

where  a, b, and c are the same as the previous index, and d is the number of samples 

belonging to different clusters in A and B. 

 

2.2.3 Fowlkes-Mallows 

 

The Fowlkes-Mallows index [7] is a geometric mean of the proportion of pairs of samples 

belonging to the same group in both partitions. Let A and B be two partitions, with the same 

number of samples. Let m = [mij], i, j = 1, ..., k, where mij is the number of samples in 

common with the ith cluster of A and the jth cluster of B. The similarity measure proposed by 

[7]: 
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3. RESULTS 

 

The tests were performed using two databases, one containing 298 samples and the other with 

146 samples, named B1 and B2, respectively, in which the mass fractions of As, Na, K, La, 

Yb, Lu, U, Sc, Cr, Fe, Cs, Eu, Tn, Hf and Th, were obtained using the method of neutron 

activation analysis. Figures 1 and 2 show the scatter plot of bases B1 and B2, respectively. 

The scatter plot was obtained after applying the principal component analysis (PCA) in the 

raw data. The PCA is a transformation of correlated variables to pairwise uncorrelated 

variables in the lower dimensional space [12]. It is often used to display structure in the data. 

This article was used the first two transformed variable PC1 and PC2 to generate the scatter 

plot.The scatter plot was obtained after applying the PCA to the raw data. 

 

 

 
Figure 1: Scatter plot of the principal components, base B1 

 
Figure 2: Scatter plot of the principal components, base B2 

 

3.1 Neural Networks 

 

Neural networks are made up of basic processing units called neurons. The figure below 

shows a neuron of an artificial neural network [4]. 
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Figure 3: Artificial neuron 

  

The artificial neuron, similar to the natural neuron, receives input signals and returns a single 

output signal, which may be the output of the network or the input signal to one or more 

neurons in the back layer. 

 

The inputs of a neural network x1, x2, ..., xi are multiplied by the corresponding synaptic 

weights W1j, W2j, ..., Wij generating the following weighted sum: 

 

                                                                    

 

   

                                                                                

 

This function is called the activation function. The weighted sum is presented to a transfer 

function whose purpose is to avoid the progressive addition of output values [4]. 

 

The artificial neural model can also include an input bias (bj) in order to increase the degree 

of freedom of the activation function [4]. 

  

An artificial neural network is a combination of neurons, their connections, and the algorithm 

used in training. The neural network has two stages of processing: learning and network 

application. In learning, the adjustment of weights occurs in response to data presented to the 

network. In the application of the network, one has the way in which the network responds to 

the data without there being changes in the weights. 

 

3.1.1. SOM Network 

 

The SOM network is a self-organizing map model of unsupervised training [13,4]. In this 

structure, the neurons are arranged in a normally two-dimensional grid, which can be square, 

rectangular, triangular, and so on. What characterizes the SOM network is the formation of a 

topological map of input data patterns in which the locations of the neurons indicate the 

characteristics of the input data. 
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The central idea of this model is competitive learning, because when presenting an input 

sample to the network, the neurons compete with each other and the winner has their weights 

adjusted to better respond to the stimulus presented to the network. In addition, there is a 

process of cooperation between neurons and their neighbors, who also receive adjustments. 

The characteristics contained in the input sample will stimulate some special region of the 

network and the sample is assigned to the corresponding group. 

 

The evaluation of the impact that standardization causes in clustering analysis using self-

organizing maps was performed through the validation indexes of Jaccard [5], Rand [6] and  

Fowlkes-Mallows [7] the higher the index, the better result obtained by the SOM neural 

network. 

 

The results obtained after cluster analysis of the transformed data corresponding to databases 

B1 and B2 are shown in Table 1. 

 

Table 1: Validation indices obtained after the application of the standardization 

techniques in the B1 and B2 databases 

 

 Jaccard Rand Fowlkes-Mallows 

Standardization B1 B2 B1 B2 B1 B2 

log10 0.54 1 0.57 1 0.71 1 

Generalized-log 0.33 1 0.62 1 0.50 1 

Improved Min-max  0.64 0.57 0.77 0.71 0.79 0.75 

 

 

Table 1 shows that in the tests performed with B1, the standardization technique that 

presented better performance was the improved min-max, since the values obtained from the 

Jaccard, Rand and Fowlkes-Mallows indices were, respectively, 0.64 , 0.77 and 0.79. The 

values obtained with log10 standardization were 0.54, 0.57, and 0.71 and finally the values 

corresponding to generalized-log standardization were 0.33, 0.62 and 0.50. 

 

In B2 database, the improved min-max standardization presented the worst performance, 

since the values of the validation indexes of Jaccard, Rand and Fowlkes-Mallows were 0.57, 

0.71 and 0.75. On the other hand, both log10 and generalized-log standardization presented all 

values of validation indices equal to 1. 

 

This tests indicates that, when there is overlap between the clusters, as in the case of base B1 

(Figure 1), the standardization technique with the best performance is improved min-max. On 

the other hand, if the clusters do not present overlap, as in database B2 (Figure 2), log10 and 

generalized-log techniques perform better. 
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4. CONCLUSION 

 

This work presented the study of three standardization methods in cluster analysis: log10, 

generalized-log and improved min-max. The study was made using two databases of 298 

(B1) and 146 (B2) samples, in which were determined mass fractions of As, Na, K, La, Yb, 

Lu, U, Sc, Cr, Fe, Cs, Eu, Tn, Hf and Th, by neutron activation analysis. After applying data 

standardization, they are submitted to a SOM neural network which aims to gather samples to 

create clusters. To evaluate the results we used the validation indices Jaccard, Rand and 

Fowlkes-Mallows. The preliminary study using the two datasets showed that when there is 

overlap between clusters (Figure 1), the standardization that presented better performance 

was the improved minimum maximum. on the other hand when the dataset has a well-defined 

clusters structure (Figure 2), the standardizations that presented the best performance were 

log10 and generalized-log. In the future to validate the previous hypothesis, an extensive 

comparative study with the standardization methods will be performed on artificial bases, 

varying the size of the data, the number of clusters and the distance between the clusters. 
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