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Abstract 
Among the several methods used to solve the Navier-Stokes equations Hie-
rarchical Expansion Method has demonstrated satisfactory results. This work 
aimed to apply the expansion of the variables in hierarchical functions for the 
solution of the Navier-Stokes equations for incompressible fluids in two di-
mensions in laminar flow. This method is based on the finite element method. 
The expansion functions in this study were based on Legendre polynomials, 
adjusted in the rectangular elements in such a way that corner, side and area 
functions were defined. The order of the expansion functions associated with 
the sides and with the area of the elements is adjusted to the necessary or de-
sired degree. This method is denominated by Hierarchical Expansion Method. 
In order to validate the proposed numeric method three well-known problems 
of the literature in two dimensions were analyzed; however, for this paper on-
ly one problem was presented. The results demonstrated that method was able 
to provide precise results. From the results obtained in this paper it is possible 
to conclude that the hierarchical expansion method can be effective for the 
solution of fluid dynamic problems that involve incompressible fluids. 
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1. Introduction 

Among the several methods used to solve the Navier-Stokes equations Hierar-
chical Expansion Method has demonstrated satisfactory results. This work 
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aimed to develop and apply the method of hierarchical expansion proposed by 
Zienkiewicz and Morgan [1] for the solution of the two-dimensional Navi-
er-Stokes equations, for incompressible fluids in laminar flow. This method is 
based on the finite element method using the Petrov-Galerkin formulation [2]. 
All variables describing the fluid flow are expanded in hierarchical functions 
based on Legendre polynomials. This method has some advantages over other 
numerical methods as described in the following sections. 

A recent literature review has demonstrated the efficiency of the method pro-
posed in this study. Williams [3] reports that a particular space-time, hybridiza-
ble discontinuous Galerkin method is entropy stable for the compressible Navi-
er-Stokes equations. In order to facilitate the proof, “entropy variables” are used 
to rewrite the compressible Navier-Stokes equations in a symmetric form. The 
resulting form of the equations is discretized with a hybridizable discontinuous 
finite element approach in space and a classical discontinuous finite element ap-
proach in time.  

Chen et al. [4] demonstrates that a unit operator (first level) and an orthogon-
al project operator (second level) are constructed to act as the stability terms for 
Meshless Local Petrov-Galerkin (MLPG) method, which is called a two-level 
variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method 
is applied to eliminate oscillation, overshoots and undershoots of MLPG method 
at large Pe. The results showed that the present VMS-MLPG method could 
guarantee the stable and reasonable solutions of convection-diffusion problems 
with large Pecle. 

2. Conservation Equations (2D) 

The equations governing the fluid dynamics are continuity, momentum and 
energy equations. In this work, the method proposed by Chorin [5] is used for 
the treatment of the coupling between pressure and velocity. In this case, a ma-
thematical artifice is used to solve the equations of the momentum for each di-
rection, which is divided into two equations. The first equation relates the fluid 
velocity components u and w, in terms of the components of a pseudo-velocity, 
called u* and w*. The second equation calculates the pressure gradient as a func-
tion of the pseudo-velocity components, u* and w*. 

The following equations were used with this method: 
2 2

2 2 0
t tu u u u u uu w

t x z x z
ρ ρ ρ µ

∗ −∆ ∗ ∗ ∗ ∗   − ∂ ∂ ∂ ∂
+ + − + =   ∆ ∂ ∂ ∂ ∂   

           (1) 

;pu u t
x

ρ ρ ∗ ∂
= − ∆

∂
                          (2) 

2 2

2 2 0
t tw w w w w wu w

t x z x z
ρ ρ ρ µ

∗ −∆ ∗ ∗ ∗ ∗   − ∂ ∂ ∂ ∂
+ + − + =   ∆ ∂ ∂ ∂ ∂   

;       (3) 

;pw w t
z

ρ ρ ∗ ∂
= − ∆

∂
                          (4) 

https://doi.org/10.4236/epe.2018.101001


G. Sabundjian et al. 
 

 

DOI: 10.4236/epe.2018.101001 3 Energy and Power Engineering 
 

2 u wp
t x z
ρ ∗ ∗ ∂ ∂

∇ = + ∆ ∂ ∂ 
;                         (5) 

where ρ is the fluid specific mass, t is the time, ∆t is the time step, u and w are 
the velocity components in the x and z directions respectively, u* and w* are the 
intermediate values of the velocity components in the x and z directions respec-
tively, p is the fluid pressure, μ is the fluid dynamic viscosity, and the superscript 
t t− ∆  refers to the variables calculated at the previous time step. To make the 
nomenclature easier no superscript is used to denote the variables at the present 
time. 

Assuming constant fluid properties, the energy equation written in terms of 
the temperature for Cartesian coordinates in two dimensionis the following: 

2 2 2
2 2

p p p

T T T k u w u wu w T
t x z c c z x c x z

µ µ
ρ ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂     + + = ∇ + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂       
, (6) 

where T is the temperature, k is the thermal conductivity and cp is the specific 
heat at constant pressure. 

3. Mathematical Development of the Conservation  
Equations for a Single Element 

A rectangular structure mesh was used to divide the flow domain into nodes. 
Although this is the simplest form of grid, it is enough to show the capabilities of 
the proposed method. 

For each node, Equations (1)-(5), and Equation (6) are multiplied by a 
weighting function and integrated. The Green’s Theorem was used to simplify 
the diffusive terms in Equations (1)-(5), and Equation (6). 

The weighting function, Pm, is based on the Petrov-Galerkin formulation and 
it is given, according to Brooks and Hughes [2], by: 

, ,  
2 2

m m
m m i j i j

N Nt tP N u w
x z

∂ ∂∆ ∆
= + +

∂ ∂
,                  (7) 

where ,i ju  and ,i jw  are respectively the average velocity in the x and z direc-
tions in node ,i j  and Nm is the mth expansion function for node ,i j . 

For each node the variables u*, w*, u, w, p and T are expanded in a series as 
follows: 

1 1 1

1 1 1

;  ;  ;  

;  ;  ;

M M M
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m m m
M M M

m m m m m m
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= = =

= = =

∑ ∑ ∑

∑ ∑ ∑
               (8) 

where the parameters mu∗ , mw∗ , um, wm, pm and Tm are the coefficients of the va-
riables associated with the mth expansion function for that node. 

For example, this process applied to the pressure equation, Equation (5), re-
sults in the following expression for node ,i j : 
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where ∆xi,j and ∆zi,j are the length of node ,i j  in the x and z direction respec-
tively, ξ and η are the node locally space variables in the x and z directions re-
spectively. This expression represents a system of M equations, where M is the 
total number of expansion functions used. 

In matricial form this system of equations is written as follows: 
i, j i, j
p p=A p b ,                             (10) 

where i, j
pA  is the pressure equation matrix for node ,i j , which contains all the 

right hand side terms of Equation (9), p is the vector of the pressure expansion 
coefficients, and i, j

pb  is a vector for node ,i j , which contains the left hand side 
terms of Equation (9). For Equation (1), Equation (3), and Equation (6) the 
coefficient matrices and the left hand side vectors are functions of the velocity 
expansion coefficients. 

After applying this process for all equations at every node of the mesh, a sys-
tem of equations, which must be solved interactively at each time step to calcu-
late the expansion coefficients, was obtained. 

4. Classic Expansion Functions 

In the classical finite element method the coefficients of expansion of the va-
riables are identified in specific points of the mesh. Figure 1 shows a typical 
one-dimensional element of dimension ∆x with linear, quadratic and cubic ex-
pansion functions. 

5. Hierarchical Functions 

In the classic finite element method the expansion coefficients are identified 
with the variables at specified locations. This identification has been widely fol-
lowed in the finite element literature and has the merit of assigning a “physical” 
meaning to these coefficients. There is, however, a great disadvantage in this 
practice. If it is desired to change the order of the expansion it is necessary to 
restart the problem due to the complete change of all expansion functions in-
volved (Zienkiewicz and Morgan [1]). 

In the case of the hierarchical expansion functions the expansion coefficients 
are not identified with the physical variables at specific points of the mesh. In 
this case, the coefficients are associated with the expansion functions, which are 
adjusted in the rectangular nodes, defining corner, side and area functions. This  
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Figure 1. One-dimensional elements and expansion 
functions (a) linear (b) quadratic e (c) cubic, according to 
Zinkiewics and Morgan (1983). 

 
association allows starting the solution of a problem with a linear expansion and, 
if necessary, during the solution process, adding new shape functions to increase 
the order of expansion, and obtaining a more accurate solution. In this case, the 
expansion functions do not change by adding or deleting new expansion func-
tions to change the order of the expansion. Thus, it is not necessary to recalcu-
late the matrices. Changing the order of expansion without the need to restarting 
the problem turns out to be the great advantage of this method. 

The hierarchical expansion functions are based on Legendre polynomials, 
which form a set of functions with orthogonality properties. Due to the associa-
tion of two functions in each direction to form the two-dimensional expansion 
functions, complete orthogonality is impossible to achieve, but the main diagon-
al terms in the matrices are dominant. 

Figure 2 shows four nodes and the parameters associated with their corners, 
sides, and areas. In this Figure ,

c
i jϕ  are the corner parameters associated with the 

corner (linear) expansion functions, , ,
x
i j gϕ  and , ,

z
i j gϕ  are the side parameters 

associated with the side expansion functions, and , ,
A
i j gϕ  are the area parameters 

associated with the area expansion functions. The order of the approximation 
for the side and area expansion functions is up to desired or necessary degree. 

Each corner parameter is connected to four elements through four different 
expansion functions and each side parameters is connected to two elements by 
two different functions. The area parameters belong to a single element only. 
The association of the corners and side expansion coefficients with adjacent 
elements guarantees the singularity and the continuity of the solution at all 
nodes boundaries. 

It should be observed that it is very easy to increase the order of expansion lo-
cally to achieve a refinement in the region where the parameters vary most ra-
pidly and where the approximation is therefore prone to the largest errors. 
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Figure 2. Four rectangular grid nodes and its associated parameters. 
 

 
Figure 3. Backward-facing step geometry. 

6. Results 

In order to validate the numerical method proposed in this work, some 
well-known problems of the literature were simulated. This paper presents the 
results of a backward-facing step problem, and additional results can be found in 
Sabundjian [6]. 

For the accomplishment of this analysis the experimental results obtained by 
Denham and Patrick [7] were used. Figure 3 shows the geometry of the prob-
lem. A course mesh with 25 × 12 elements and expansion orders 1, 2 and 3 were 
used. 
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Figure 4. Profile of velocity along a flow through a step (“backward-facing 
step”) third order expansion (degree = 3). 

 

 
Figure 5. Calculated results (third order expansion) and experimental re-
sults from Denhan and Patrick experiment with Reynolds = 73 [7]. 
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Table 1. Mean error between the calculated and experimental results for the velocity. 

Position x (m) 
Mean error 
degree 1 (%) 

Mean error 
degree 2 (%) 

Mean error 
degree 3 (%) 

0.012 8.70 4.42 3.01 

0.030 10.3 8.3 4.19 

0.060 13.47 11.95 7.09 

0.090 13.653 12.51 8.17 

0.12 15.92 13.21 10.29 

 
Figure 4 and Figure 5 present: The profile of velocity along a flow through a 

step and the graphical results for the velocity for the case of third order expan-
sion, respectively. 

Table 1 presents the mean errors between the calculated and the experimental 
results. As the expansion order increases, the calculated results are closer to the 
experimental results. However, the differences between the numerical and expe-
rimental results increase with the distance from the inlet. 

7. Conclusion 

Based on the results obtained in the solution of the proposed problems, it is 
possible to conclude that the method of hierarchical expansion is suitable for 
solution of incompressible fluid problems in two dimensions. The calculated re-
sults are in good agreement with the experimental results. The great advantage 
of the hierarchical expansion method is the capacity to adapt the expansion or-
der to the necessary or desired value during the flow calculation, without the 
necessity to restart the problem, as it happens in the conventional finite element 
method, or in the method of mesh refinement. 
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