Desenvolvimento de vidros porosos para o recobrimento de adsorvedores utilizados como substrato artificial para bioindicadores de rios urbanos

Ana Paula Curcio, José Roberto Martinelli e Nilce Ortiz Instituto de Pesquisas Energéticas e Nucleares - IPEN

INTRODUÇÃO

Esferas de diatomito são utilizadas como indicador da qualidade da água de rios, pois adsorvem metais pesados. Porém, são desgastadas superficialmente pela correnteza. Para minimizar este desgaste propôs-se recobri-las com uma camada vítrea porosa. O processo Vycor será investigado para este propósito.

Os vidros classificados como Vycor tem como composição básica 96,5SiO₂ 3B₂O₃ 0,5Na₂O (% em mol), com características muito próximas dos vidros de sílica pura. Estes vidros são obtidos a partir da separação de fases ricas em boro solubilizadas inicialmente em uma fase de sílica [1,2].

OBJETIVO

Obter o recobrimento de esferas de diatomito com vidros porosos e caracterizar as propriedades microestruturais deste material.

METODOLOGIA

Vidros borossilicatos foram produzidos por meio da fusão de compostos inorgânicos e vertidos em moldes de aço a temperatura ambiente. Os vidros foram cominuídos e a distribuição granulométrica determinada por espalhamento a laser. Monólitos e pós do vidro foram submetidos a ataque ácido para obter a formação de poros. A microestrutura foi analisada por MEV e por BET. As características térmicas dos vidros foram determinadas por DSC, a composição química por EDX, a densidade por

picnometria a gás He e foram feitos testes de durabilidade química.

Monólitos, partículas e pastilhas do vidro foram submetidos ao processo de ataque em HCl, sob diferentes concentrações e períodos de exposição, para avaliar a criação de poros por meio da solubilização de fases vítreas em [3].

Foram preparadas pastilhas a partir da compactação uniaxial de pós para estimar a sinterização da camada vítrea que recobrirá as esferas de diatomito. As pastilhas foram aquecidas na faixa de 600 - 1000°C durante 2h.

RESULTADOS

Na TABELA 1 encontram-se as quatro composições dos vidros estudados.

TABELA 3. Composições dos vidros a partir de análises EDX

Vidros (% em massa)	V1	V2	V3	V4
SiO ₂	63,5	64,6	63,5	69,1
B ₂ O ₃ *	22,4	22,4	30,4	22,4
Na₂O	4,4	9,1	2,1	3,0

^{*} Teor estimado a partir do teor nominal dos vidros.

Foram realizadas duas moagens do vidro V2, com distribuições granulométricas denominadas A e B, conforme dados apresentados na TABELA 2. A densidade igual a (2,625 ± 0,009) g.cm⁻³ foi determinada por picnometria a gás He.

TABELA 4. Distribuição do tamanho das partículas

	Α (μm)	B (µm)
D10%	3,8	1,2
D50%	27,4	5,0
D90%	59,4	19,1
D médio	29,9	7,9

A partir dos pós obtidos foram feitas pastilhas posteriormente tratadas termicamente, figura 1.

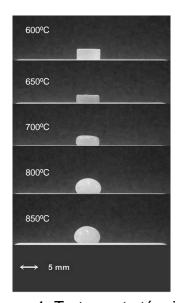


Figura 1. Tratamento térmico

A pastilha submetida ao tratamento térmico a 600°C apresenta superfície lisa e opaca, resistência mecânica para manuseio, e passagem luz. permite de а temperatura será utilizada para sinterizar os pós que deverão recobrir as esferas de diatomito. As pastilhas tratadas a partir de 700°C apresentam deformações nas bordas indicando o amolecimento do vidro. Por meio da análise de DSC determinou-se a tg do (~655°C). Os dados de DRX mostraram que o material é amorfo.

A pastilha proveniente do tratamento térmico de 600°C e o monólito foram submetidos ao processo de lixiviação ácida com HCl 0,5M/5h. Não se observou formação de poros, apenas fissuras superficiais, figura 2. O pó de vidro também passou pelo processo

de lixiviação ácida e foi analisado por BET. A área superficial do pó era de $2,18 \pm 0,02 \text{ m}^2/\text{g}$ e após o ataque passou a $326,10 \pm 6,99 \text{ m}^2/\text{g}$.

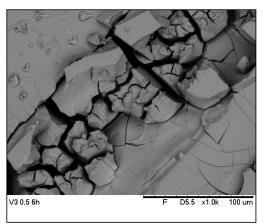


Figura 2. Micrografia da amostra de vidro após ataque com HCI 0,5M/5h

CONCLUSÕES

Dentre as composições testadas apenas o vidro V2 possuí características promissoras para prosseguimento do trabalho. No entanto, possui baixa durabilidade química. O trabalho terá prosseguimento com as caracterizações da amostra V4 e aplicação da camada vítrea sobre as esferas de diatomito.

REFERÊNCIAS BIBLIOGRÁFICAS

[79] R.H Doremus, Glass Science Wiley, 1973.

[80] Thomas H. Elmer, Porous and Recoonstructed Glasses Corning, ENGINEERING.

[81]G. Toquer, et al., Effect of leaching concentration and time on the morphology of pores in porous glasses, *J. Non-Crystalline Solids* (2011).

APOIO FINANCEIRO AO PROJETO FAPESP, Capes.