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ABSTRACT 

 
 

 

 

The development of fault detection algorithms is well-suited for remote deployment of small 

and medium reactors, such as the IRIS, and the development of new small modular reactors 

(SMR).  However, an extensive number of tests are still to be performed for new engineering 

aspects and components that are not yet proven technology in the current PWRs, and present 

some technological challenges for its deployment since many of its features cannot be proven 

until a prototype plant is built. 

 

In this work, an IRIS plant simulation platform was developed using a Simulink
®
 model. The 

dynamic simulation was utilized in obtaining inferential models that were used to detect 

faults artificially added to the secondary system simulations.  The implementation of data-

driven models and the results are discussed. 

 

 

1. INTRODUCTION 

 

 

This research focuses on the use of IRIS which is an Integral Primary System Reactor (IPSR) 

that houses the reactor core, steam generators, circulation pumps, and the pressurizer inside 

one common vessel.  With power output of about 330 MWe (design can be changed to 100 

MWe), IRIS (International Reactor Innovative and Secure) was designed to fulfill the 

advantages of the integrated primary system reactor.  It improves safety, reduces the site civil 

works, and improves plant availability for developed as well as developing countries with 

large or small electrical grids that can greatly benefit from such design. 
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Simulations based on such reactor design are used in this work as a platform for developing 

inferential models, interchangeably known as data-based models, which are in turn used to 

detect faults artificially added in new simulations.  Significant variables are chosen to 

contribute with the inferential models.  From secondary loop: feed water flow rate, feed water 

temperature, steam temperature and steam flow rate. From primary: reactor power and 

average core temperature. 

 

The method of choice for detecting faults is the Sequential Probability Ratio Test (SPRT), 

and is based on the assumption that the residuals of a model are normally distributed and 

uncorrelated. 

 

 

2. IRIS SYSTEM DESCRIPTION 

 

The IRIS reactor is an IPSR with all main primary circuit components (core, control rods and 

drive mechanisms, steam generators, primary coolant pumps, and pressurizer) integrated into 

a single reactor vessel [1].  The upper head acts as the pressurizer to maintain constant 

primary pressure.  Eight spool-type reactor coolant pumps, eight steam generators, and 

control rod drives are also housed in the reactor pressure vessel.  Major components of the 

primary system are shown in Fig. 1, resulting in a pressure vessel diameter of 6.2 m, larger 

than a regular Pressurized Water Reactor (PWR), despite its lower power rating, but largely 

reducing the size and eliminating dozens of penetrations, virtually eliminating large Loss of 

Coolant Accidents (LOCA) and the number of possible small LOCAs [2].  The feed water 

flow to a pair of helical coil steam generators has a common feed line, with the primary water 

being pumped up through the core and the riser, the circulation then reverses in a downward 

direction and the water is forced down by the immersed pumps through the region 

surrounding the helical steam generator tubes.  The primary flow through the downcomer 

flows into the lower vessel plenum and then flows up through the core. 
 

IRIS is being designed to fulfill the advantages of the IPSR.  It improves safety, reduces the 

site civil works, and improves plant availability for developed as well as developing countries 

with large or small electrical grids that can greatly benefit from such design.  The 

development of autonomous and fault-tolerant control strategy is well-suited for remote 

deployment of small and medium reactors, such as the IRIS. 

 

Such novel, integral design includes several advantages over other designs [3]-[6]. Major 

IRIS parameters can be found in the open literature [3]. 

 

IRIS plant is one of the next generation nuclear reactor designs, that uses mostly established 

LWR technology (due to its maturity), allowing an accelerated deployment, and is a design 

that houses the steam generators, circulation pumps, and the pressurizer inside one common 

vessel.  However, an extensive number of tests are still to be performed for new engineering 

aspects and components that incorporate not yet proven technology in the current PWRs [7].  

Certain parameters are not directly measurable, such as the level of water in the steam 

generator tubing where the superheated steam is generated. 
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3. HELICAL COIL STEAM GENERATOR (HCSG) 

 

 

The steam generator is a helical coil, once-through steam generator producing superheated 

steam.  The reactor control requirements specify constant average coolant temperature across 

the core at constant steam pressure.  In the HCSG system the primary water is on the shell 

side flowing from the top to the bottom of the vessel.  The primary side heat transfer is sub-

cooled, forced convection along the entire steam generator height, while the secondary fluid 

flows upward inside the 656 coiled tubes from bottom to top.  The feed water flows into the 

sub-cooled region of the steam generator, and in this region the heat transfer is mainly due to 

single phase turbulent and molecular momentum transfer and the pressure loss is mainly due 

to wall friction.  The saturated region begins when the bulk temperature becomes saturated.  

The heat transfer in the saturated boiling region is dominated by nucleate boiling, which is 

much more efficient than single-phase liquid or steam heat transfer.  In the saturated boiling 

region, the generated bubbles do not disappear in the liquid core and the pressure loss is not 

only due to the wall friction but also due to the interfacial drag between the bubbles and the 

liquid.  The saturated boiling region ends when critical heat flux is reached.  When the steam 

quality reaches unity, the liquid evaporation ceases and the steam becomes superheated.  The 

use of helical tubing reduces the size of the steam generator, and results in an efficient heat 

transfer with a larger heat transfer area per unit volume than straight tube steam generators.  

The HCSG system is regulated to supply adequate amount of steam to meet the turbine 

demand.  A programmed feed-forward controller is used to maintain the outlet steam 

pressure, while preventing the carryover of water to the turbine system or dry-out of the 

steam generator tubes, minimizing the mismatch between the steam outlet flow rate and the 

feed water inlet flow rate. 

 

Figure 1: IRIS primary system layout [3] 
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4. IRIS SIMULINK MODEL 

 

4.1. IRIS Model 

 

A single-unit Simulink model of the IRIS plant developed by Xu [8] is used in this research 

and includes reactor core and HCSG models.  Originally, the main core model input was 

coolant inlet temperature (in degrees Fahrenheit), but was modified to accept power demand 

(in % power) by using a look up table that relates both input variables, based on North 

Carolina State University (NCSU) FORTRAN code [9]–[10]. 

 

The helical coil steam generator is one of the critical components and a major contributor to 

the cost of IRIS design.  Typical once-through steam generator equations can be found in 

[11].  The model was developed based on a previous dynamic model [12] and a Simulink 

model [13] for a traditional PWR plant.  The reactor core fuel-to-coolant heat transfer model 

was developed by using the Mann’s nodal model [14], and the classic point kinetics reactor 

model equations with six delayed neutron groups. 

 

The feed water flow rate is determined based on NCSU’s code, and is set according to the 

power demand - feed water flow relationship program.  In the simulations there is no feed-

forward controller to quickly move the control rods based on changes on power load 

demands.  The pressurizer model and the balance-of-plant (BOP) are not included in the 

simulation, and are assumed to be functioning well. Temperature of feed water is assumed to 

be fixed at 224 °C, which corresponds to 100% power.  The main program is shown in Fig. 2 

and the main outputs are: 

 

 Moderator core inlet temperature (Tcold), referred to in the program as Tpout. 

 Steam outlet pressure, Psout in PSI. 

 Steam flow rate, Wsout in lbm/s per tube, per steam generator. 

 Steam outlet temperature, Tsout in °F. 

 Steam generator boiling length, Lb in ft. 

 Sub-cooled length, Lsc, in ft. 

 Feed water flow rate, Wfw, in lbm/s per tube per steam generator. 

 Power profile (P/P0). 

 Fuel temperature (°C). 

 Coolant core outlet temperature, Thot (°C). 

 Average moderator temperature, which is defined as the average between moderator inlet 

and outlet temperatures, Tave (°C). 

 Core outlet moderator temperature, Thot (°C). 
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5. TOOLS FOR DEVELOPING EMPIRICAL MODELS 

 

 

Various techniques are well established for on-line monitoring of equipment, systems and 

measurements in nuclear power plants.  Since the early 1970s numerous efforts have been 

made to detect and identify anomalies and to provide alternative ways to measure critical and 

non-critical operating parameters in power plants, particularly reactor noise analysis which 

uses existing sensor signals to detect incipient faults, measure sensor response time, identify 

blockages in sensor lines, vibration of reactor internals, imbalance in rotating machinery, etc.  

Such techniques evolved into on-line monitoring to track the vibration of reactor internals, 

measure reactor stability, verify overall plant thermal performance, leak detection, estimation 

of remaining useful life of equipment, and others.  Early detection of the onset of equipment 

and instrument channel degradation and failure can prevent loss of operational capability, 

reduce radiation exposure of plant personnel, enhance plant control, and minimize repair time 

[15]. 

 

The approach for detecting faults in measurements and/or equipment used in this research 

uses a data-based method for characterizing the relationship among a set of measurements 

and the Sequential Probability Ratio Test (SPRT). 

  

Figure 2: IRIS complete SIMULINK model main screen. 
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5.1. Principal Components Analysis 

 

Principal Component Analysis (PCA) is a multivariate method used to capture the 

relationships in the data while reducing the dimensionality of an input space without losing a 

significant amount of information (variability).  The method also makes the transformed 

vectors orthogonal and uncorrelated and is particularly useful for analysis of ill-conditioned 

data; hence such transformed vectors can be used by regression techniques without having 

the problems of collinearity.  A lower dimensional input space will also usually reduce the 

time necessary to train a data-based model and the reduced noise will improve the mapping.  

The objective of PCA is to reduce the dimensionality and preserve as much of the relevant 

information as possible.  PCA can also be thought of as a method of preprocessing data to 

extract uncorrelated features from the data. 

 

Consider m samples of n random variables in a matrix X where the n columns are the 

variables and the m rows are the observations.  PCA decomposes X into a product of scores T 

and orthogonal loadings P as: 

 

 X = TP
T
 +E (1) 

 

where E contains the residuals. 

 

The principal components (PCs) in the successive columns of P are obtained such that 

maximum variance in X is explained.  Thus, in case the data is highly collinear, the first few 

PCs explain most of the variability in the data and are retained.  The residuals in E constitute 

the unexplained variation in the data and contain the higher PCs that are rejected.  PCA is 

thus a very efficient method for data compression.  The scores so obtained are uncorrelated, 

meaning T
T
T is a diagonal matrix.  The PCs can be easily obtained as the right singular 

vectors of X using Single Value Decomposition (SVD), described below. 

 

The Singular Value Decomposition (SVD) algorithm decomposes a matrix X of dimension (n 

x p) into a diagonal matrix S of the same dimension as X containing the singular values, and 

unitary matrix U of principle components, and an orthonormal matrix of right singular values 

V.  It is important to use the mean centered data (X) to give all variables the same 

importance, resulting in: 

 

 X=ALU
T
 (2) 

 

Where:  

X is an arbitrary (n x p) matrix. 

A is a (n x r) matrix of standardized PC scores with variance=1/(n-1). 

L is a (r x r) diagonal matrix, where r is the rank of X. 

U is a (p x r) matrix of eigenvectors. 

Both A and U have orthonormal columns resulting in: 

 

A'A = I, and U'U = I 
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5.2. Auto-Associative Kernel Regression (AAKR) 

 

AAKR is a non-parametric, empirical modeling technique that uses historical, fault-free 

observations and can be used to correct any errors present in current observations.  Further 

details can be found in Hines & Garvey [16].  The exemplar or memory vectors used to 

develop the empirical model are stored in a matrix X, where Xi,j is the i
th

 observation of the j
th

 

variable. For nm observations of p process variables, this matrix can be written as: 

 

 X
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 (3) 

 

Using this format, a query vector is represented by a 1×p vector of process variable 

measurements: x. 

 

 x=[ 1x    2x    …   px ] (4) 

 

The corrected version of the input is calculated as a weighted average of historical, error-free 

observations termed memory vectors (Xi).  The mathematical framework of this modeling 

technique is composed of three basic steps.  First, the distance between a query vector and 

each of the memory vectors is computed.  There are several distance functions that may be 

used, but the most commonly used function is the Euclidean distance, whose equation for the 

i
th

 memory vector is as follows: 

 

 id (Xi,x)=      2,

2

22,

2

11, ppiii xXxXxX    (5) 

 

For a single query vector, this calculation is repeated for each of the nm memory vectors, 

resulting in an nm × 1 matrix of distances: d. 

 

Next, these distances are transformed to similarity measures used to determine weights by 

evaluating the Gaussian kernel, expressed by: 

 

 w = hK (d) = 
2

2d

22

1
he

h




 (6) 

 

Where h is the kernel bandwidth, w are the weights for the nm memory vectors. 

 

Finally, these weights are combined with the memory vectors to make the predictions 

according to: 
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If the scalar a is defined as the sum of the weights, i.e. 

 

 



mn

i

iwa
1

, (8) 

 

then equation 6.7 can be represented in a more compact matrix notation: 

 

 
a

Xw
x

T^

  

 

The parameters to be optimized in an AAKR model are the memory matrix (X) and 

the kernel bandwidth (h).  The researcher must decide how many vectors to include in the 

memory matrix and how large to make the bandwidth which indirectly controls how many 

memory vectors are weighted heavily during prediction. 

 

5.3. Sequential Probability Ratio Test (SPRT) 

 

The method chosen to detect faults in the data is the Sequential Probability Ratio Test 

(SPRT), and is based on the assumption that the residuals of your model are normally 

distributed and uncorrelated.  This method, which was originally developed by Wald [17] and 

applied by many investigators [18], detects changes in signal properties, such as mean and 

standard deviation of a signal, and is used to identify drifts and changes in noise levels, while 

minimizing the probability of false alarms. 

 

Depicted in Fig. 3, rather than computing a new mean and variance at every new sample, the 

SPRT monitors the performance by processing the residuals in a sequential fashion.  The 

residual signals, which are the differences between the data and the estimates from the model, 

are used to generate a likelihood ratio (ratio of joint probability density of residuals) based on 

the statistical properties of the incoming data compared with the statistics in the model.  In 

other words, based on the statistics of the new data coming in, the method is capable of 

detecting differences in such statistical properties and inform if the new data comes from a 

similar statistical distribution or not.  This process of comparing the model predictions with 

new data is depicted in Fig. 4, where the likelihood ratio is evaluated by the SPRT threshold 

for the specified component to make a logical decision concerning its status. 

 

 

6. PROCESS FOR OBTAINING THE MODELS 

 

 

As depicted in the flowchart in Fig. 5, the dataset was acquired in such a way to cover all 

power demands ranging from 100% down to 70% over a period of 60 hours, as seen in Fig. 6.  

The raw data acquired was then visually inspected for outliers and spurious values.  It was 

then mean-centered, unit variance scaled to give all variables the same importance and a 

chance to contribute to the models.  The scaled dataset was then divided up in to three 

different blocks using venetian blind method. 
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The training block included the most significant data points, and both lowest and highest 

values from each variable to make sure the resulting training set included all the variance 

present in the dataset.  The test set was used to test the models, and the validation set was 

used as new queries to gauge how well the obtained models performed using unseen or new 

data. 

 

Next, a PCA test was performed using the covariance matrix to obtain the principal 

component coefficients, also known as loadings.  Fig. 7 shows a graphical representation of 

how each variable is correlated with each other using the absolute values of the correlation 

coefficient matrix for all candidate variables, with dark blue meaning the variables are either 

weakly or not correlated at all, and dark brown meaning they are highly correlated with each 

other. 

 

6.1. Models Obtained 

 

A few variables used to simulate the secondary side of the plant were selected as candidates 

to obtain the inferential models, and are: feed water flow rate (Wfw), feed water temperature 

(Tfw), steam temperature (Tsout), steam flow rate (Wsout), reactor power (P/P0) and average 

core temperature (Tavg).  All variables but one are highly correlated with each other, with the 

exception of reactor power, therefore being removed from the models. 

 

Figure 3: SPRT is based on comparing statistical differences. 

Figure 4: SPRT analysis diagram. 
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Figure 5: Model development flowchart. 

Figure 6: Power Profile. 

Sensor/Actuator

Signals

Development

Variable

Grouping
Optimization

Predictions

Predictions

Data

Dataset Conditioning

Uncertainty

Estimation

Fault

Detection

0 12 18 24 36 39 45 48 60
65

70

75

80

85

90

95

100

105

110

Power Profile

Time [h]

%



INAC 2013, Recife, PE, Brazil. 

 

 

Three different models were investigated for each of the 5 variables: AAKR, kernel 

regression and linear regression, respectively. The final models were compared and chosen 

based upon their Mean Absolute Percent Error (MAPE), defined as: 

 

 





n

i i

ii

n
MAPE

1 )(Actual

)(Predicted)(Actual1
 (9) 

Where: 

n is the number of fitted points. 

i corresponds to the i-th value 

 

For the purpose of this paper, only results from steam flow rate and steam temperature are 

analyzed, since they are the ones investigated for fault detection in this research. Also, only 

half of the 60-hour power demand profile is shown. 

 

In Figs. 8 and 9 the model predictions obtained show good agreement with the data, and the 

difference between predictions and the query data are relatively small. 

 

 

7. FAULT DETECTION AND RESULTS 

 

 

Two variables were chosen to show how inferential models along with SPRT can be used to 

detect faults.  The artificial fault added to the feed water flow rate is a 1% step of the current 

value at a given time for 60 seconds during transient, i.e., as power demand transitioned from 

100% to 70%.  Same applies to the feed water temperature, but a 0.4% step is applied in this 

case instead.  Fig. 10 shows the artificial fault introduced in the feed water flow rate. 

The data containing the faults for each of the variables was passed to each related SPRT to 

see if it would screen out such faults.  The SPRT function implemented in the Process and 

Figure 7: Correlation coefficient matrix (absolute values). 
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Equipment Monitoring (PEM) Matlab
®
 toolbox [19,20] uses a multivariate normal 

distribution based on the training data provided to detect anomalies and has a logic 

implemented in which the user can choose to set the logic to trigger the alarm and tag that 

data as having a high likelihood of being faulty. The results are shown in Figs. 11 and 12. In 

the upper part of each figure it shows the original distribution mean (in red) and how the new 

data mean deviates from that mean.  In the lower part the SPRT logic triggers whenever the 

new data deviates from the original distribution with “True” meaning the new data does 

belong to the original distribution,  and “False” otherwise. The logic in both cases is 3 out of 

4, i.e., it is needed 3 consecutive flags to trigger the false alarm and signal the new data as not 

belonging to the original distribution. 
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Figure 9: Feed water temperature model results. 
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Figure 10: Fault introduced in feed water flow. 

Figure 11: SPRT feed water flow fault detection. 
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8. CONCLUSIONS  

 

In this research an IRIS plant Simulink model used to supply the necessary data to obtain five 

different data-based models.  Such models showed good agreement with the data they 

originate from and, along with SPRT, were used to detect anomalies artificially added to feed 

water flow and feed water temperature data.  Results demonstrate data-based models can be 

successfully applied in detecting anomalies in data, with feasibility to be used in real-world 

systems to identify faulty readings from sensors and equipment. 
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