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Abstract

Cascade summing corrections for application in HPGe gamma ray spectrometry have been calculated numerically by
the Monte Carlo method. An algorithm has been developed which follows the path in the decay scheme from the
starting state at the precursor radionuclide decay level, down to the ground state of the daughter radionuclide. With this

procedure, it was possible to calculate the cascade summing correction for all gamma ray transitions present in the
decay scheme. Since the cascade correction requires the values of peak and total detection efficiencies, another code has
been developed in order to estimate these parameters for point and cylindrical sources. The radionuclides 60Co, 133Ba

and 131I were used for testing the procedure. The results were in good agreement with values in the literature. r 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gamma spectrometry using HPGe detectors is widely
used due to the excellent energy resolution of this kind
of detectors. In particular, it can be used for the activity
determination of gamma-emitting radioactive sources

whenever the full-peak efficiency calibration curve is
known, from which the efficiency value for each single
gamma ray energy is obtained by interpolation.

However, in this application, the total efficiency is also
needed (Knoll, 1988). The measured peak efficiency
curves must be corrected for cascade summing which

occurs whenever two or more gamma rays from the
same decay event are detected simultaneously inside the
detector crystal (L!epy et al., 1986; Debertin and
Sch .otzig, 1979; Schima and Hoppes, 1983; Morel et al.,

1983). This effect increases with the detection efficiency,
therefore, it becomes important for large crystals and

short source-to-detector distances. Since this effect is not
related to the source strength, it can be significant even

for very small source activities reaching values up to
40% depending on the radionuclide and detection
conditions (Debertin and Sch .otzig, 1979).
In the present work the peak and total efficiencies

have been numerically calculated by the Monte Carlo
method and compared with experimental results. This
Monte Carlo code can be used for both point and

cylindrical sources.
The cascade summing correction involves the decay

scheme characteristics and detection efficiencies which

can be incorporated into an analytical expression
(Schima and Hoppes, 1983). In the present work, a
second Monte Carlo algorithm has been developed
which follows each path in the decay scheme from the

beginning state at the precursor radionuclide decay level,
down to the ground state of the daughter radionuclide.
With this procedure it was possible to calculate the

cascade summing correction for all of the gamma-ray
transitions present in the decay scheme.
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2. Calculation method

2.1. Cascade summing algorithm

Each step in the decay scheme is selected by random

numbers taking into account the transition probabilities
and internal conversion coefficients. The selected transi-
tions are flagged according to the type of interaction
that has occurred, giving rise to total or partial energy

absorption events inside the detector crystal. Once the
final state has been reached, the selected transitions were
accounted for verifying each pair of transitions which

occurred simultaneously.
A code named COINCIG calculates the cascade

summing correction using total and peak efficiencies

calculated by the Monte Carlo method or obtained
experimentally. A flow diagram of this code is shown in
Fig. 1.

Two arrays are used as input data: the first one for
each excited state, the energies of the depopulating

gamma rays, their total transition probabilities and their
conversion coefficients. The beta or electron-capture

transition probabilities are also included. The second
matrix corresponds to the total and peak efficiencies for
all gamma ray energies involved, previously calculated

by the Monte Carlo method or obtained experimentally.
The first step selects a beta (or electron-capture)

transition by means of a random number which
determines the daughter excited state. Then a second

random number is selected to determine which gamma
transition will occur.
The condition for gamma detection is verified by

means of the following equation:

rofop
eT

ð1þ aÞ
; ð1Þ

where r is a random number in the interval ]0,1[, fop is an
optimization factor (greater than one) to speed up
processing (Cashwell and Everett, 1959; S !obol, 1976); eT

Fig. 1. Flow diagram of code COINCIG.
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is the total efficiency; a is the internal conversion
coefficient of the transition.

The factor fop is introduced because the efficiencies are
usually much smaller than one. Therefore, without this
factor, many events would be lost from detection. The

upper limit for fop is such that Eq. (1) is never greater
than one. After all transitions are considered, this factor
is incorporated in the final correction as described later
(Cashwell and Everett, 1959; S !obol, 1976).

If the gamma ray is detected, the total-efficiency event
counter is increased and the corresponding event is
flagged. The same procedure is followed with the peak

efficiency. In this case, the detection condition is given
by

ro
eP
eT
; ð2Þ

where eP is the peak efficiency.
This procedure is repeated until the daughter radio-

nuclide ground state is reached. Once all gamma rays

from a given disintegration are emitted, the flags are
verified and the cascade summing events are taken into
account.

The equations for counting the events are:

sij ¼ �
X

i;j

bijgml ; ð3Þ

sml ¼ �
X

m;l

bmlgij ; ð4Þ

sil ¼
X

i;l

bijbml ; ð5Þ

where b is the peak efficiency detection flag for a given
transition (0 or 1), g is the partial absorption flag for a
given transition (0 or 1), i; j are the initial and final states
of first gamma ray emitted, m; l are the initial and final
states of second gamma ray emitted.

Eqs. (3) and (4) correspond to cascade summing
events where one gamma ray is totally absorbed while
the other one is partially absorbed, thus subtracting a

count from the total absorption peak. In Eq. (5), there
are events where both gamma rays are totally absorbed,
adding up a count to the (i; l) transition or sum peak.
Once the ground state is reached, the cascade sum

correction is calculated by

cij ¼ 1þ
sij

fopNij
; ð6Þ

where cij is the cascade sum correction for transition i; j;
Nij is the number of total absorption events for
transition i; j:

2.2. Monte Carlo efficiency calculation

Since the cascade summing correction requires total

and peak efficiencies, an additional Monte Carlo code,
MCEFFIC, has been developed in the present work for

estimating these parameters. This code includes Comp-
ton multiple scattering and the scattered photon energy

is calculated applying the Klein–Nishina differential
cross section (Cashwell and Everett, 1959) with the
scattering angle, y; given by

cos y ¼ 1þ
1

E
�
1

E0; ð7Þ

where E and E0 are the incident and scattered photon
energies, respectively (in m0c

2 units).

The value of E0 is given by (Cashwell and Everett,
1959)

E0 ¼
E

1þ srþ ð2E � sÞr3
; ð8Þ

where

s ¼
E

1þ 0:5625E
ð9Þ

and r is a random number in the interval ]0,1[.

Eq. (8) is valid in the Ep4m0c2 energy range
(p2MeV). For the 4oEp10 energy interval, an
additional component was included in E0

E0
c ¼ E0 þ 1

2 ðE � 4Þr2ð1� rÞ2: ð10Þ

Secondary electrons were assumed to have zero range
and annihilation gamma ray emission was considered

isotropic. Escape of annihilation photons has also been
considered.
This preliminary version of COINCIG does not take

into account coincidences with X-rays. Therefore, it can

be used when X-ray detection efficiency is low.
Improvements in the code are planned to include this
feature.

3. Results and discussion

Measurements have been performed for a HPGe
detector 2.60 cm in diameter and 5.02 cm high using a
calibrated 60Co source. Table 1 shows a comparison

between the measured and calculated total efficiency.
The agreement was around 10%.
Another comparison has been made between the code

COINCIG and an analytical expression given by Schima
(Schima and Hoppes, 1983). The results obtained for

Table 1

Experimental and calculated total efficiencies for 60Coa

Energy

(keV)

Total efficiency Cascade

summing

Experimental Monte Carlo correction

1173 0.05289 (53) 0.0559 0.9450 (32)

1332 0.04934 (50) 0.0537 0.9425 (32)

aFigures in parentheses are the uncertainty in the last digits.
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133Ba and 131I, in the same geometry as above, are
shown in Table 2. The agreement between the results

is excellent and is limited by the Monte Carlo
statistics (typically from 0.1 to 1%, depending on the
transition).

General tables based on radionuclide decay scheme
are used without the need of detailed consideration of
the path for each transition with respect to the others in
the scheme, as usually required by standard methods.

Therefore, once the decay scheme table is ready, the
cascade summing correction can be easily calculated for
all transitions by code COINCIG.

The simple Monte Carlo approach yielded total
efficiencies with 10% accuracy. This value is usually
satisfactory and may be considered as the main source of

error in the cascade summing correction. The calculated
peak detection efficiency was higher than the experi-
mental efficiency by 10% at 50 keV and 40% at

3000 keV. However, the probability of simultaneous
total absorption of two gamma rays at high energies is
very low. Therefore, the contribution of the peak

efficiency error to the cascade summing uncertainty is
usually small.

Further refinements in the code are planned in order
to reduce the uncertainty in the calculated efficiencies.
Nevertheless, experimental peak efficiencies can be easily

obtained for the code COINCIG to yield accurate
cascade summing corrections.
The uncertainties in the summing correction shown in

Tables 1–3 do not include the uncertainty in the

efficiency because the same value of efficiency was
applied in the analytical method (Schima and Hoppes,
1983). Therefore, the comparisons are only relative.

Non-correlated errors in the efficiency can be taken into
account by changing the input efficiencies randomly
according to a Normal distribution having the same

standard deviation estimated for the efficiency and
observing the variation in the calculated cascade
summing correction. A complete description of total

uncertainties must take into account the covariance
analysis which is planned for future versions of code
COINCIG.

Table 2

Calculated total and peak efficiencies for 133Bab

Energy (keV) Total efficiency Peak efficiency Cascade summing correction

Present work Schima and Hoppes (1983)

53.151 0.1607 0.1484 0.8639 (29)

79.615 0.1543 0.1294 0.8425 (28)

80.998 0.1523 0.1268 0.89580 (63) 0.8961

160.613 0.1261 0.0705 1.2889 (73)

223.239 0.1124 0.0411 0.8727 (70)

276.39 0.1059 0.0284 0.8902 (33) 0.8861

302.854 0.1013 0.0233 0.93196 (86) 0.9307

356.005 0.0987 0.0176 0.95437 (91) 0.9404

383.852 0.0951 0.0146 1.1457 (17) 1.1474

bFigures in parentheses are the statistical uncertainty in the last digits.

Table 3

Calculated total and peak efficiencies for 131Ic

Energy (keV) Total efficiency Peak efficiency Cascade summing correction

Present work Schima and Hoppes (1983)

80.193 0.1545 0.1299 0.9018 (24)

177.21 0.1220 0.0615 0.9223 (98)

284.287 0.1042 0.0271 0.9398 (27) 0.9399

318.093 0.0998 0.0207 0.918 (29)

325.78 0.1004 0.0205 0.900 (20)

364.48 0.0969 0.0153 1.00642 (32) 1.0067

502.99 0.0882 0.0090 1.074 (21)

636.973 0.0833 0.0061 1.00065 (55) 1.0005

722.893 0.0817 0.0051 1.0085 (43)

cFigures in parentheses are the statistical uncertainty in the last digits.
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