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ABSTRACT 

 
The Expectation-Maximization (E-M) algorithm is an iterative computational method for 

maximum likelihood (M-L) estimates, useful in a variety of incomplete-data problems. Due to its 

stochastic nature, one of the most relevant applications of E-M algorithm is the reconstruction of 

emission tomography images. In this paper, the statistical formulation of the E-M algorithm      

was applied to the in vivo spectrographic imaging of stable isotopes called Neutron Stimulated 

Emission Computed Tomography (NSECT). In the process of E-M algorithm iteration, the 

conditional probability distribution plays a very important role to achieve high quality image.  

This present work proposes an alternative methodology for the generation of the conditional 

probability distribution associated to the E-M reconstruction algorithm, using the Monte Carlo 

code MCNP5 and with the application of the reciprocity theorem.  

 

Key Words: E-M algorithm, emission computed tomography, MCNP5, Monte Carlo code, NSECT. 

 

 

1. INTRODUCTION 

 

The Expectation-Maximization (E-M) algorithm is a generally used approach to the iterative 

computation of maximum likelihood (M-L) estimates in a variety of incomplete-data problems. 

The major idea of the E-M algorithm is to associate an incomplete-data problem with a 

complete-data problem in which M-L estimation is easier to solve. In this way, the methodology 

of the E-M algorithm consists in rewrite the problem based on the incomplete-data set in terms   

of the complete-data problem, establishing a relationship between the likelihoods of these two 

problems and evaluates the maximum likelihood estimate (MLE) of the complete-data problem 

[1]. 

 

One of the most relevant applications of E-M algorithm is the reconstruction of tomography 

images. The results are considered more reliable with respect to the object reconstructed than 

that obtained with other analytical methods of reconstruction due to the stochastic nature 

associated with the formulation of the E-M algorithm, represented by maximum likelihood. In 

this paper, the statistical formulation of the E-M algorithm was applied to the emission computed 

tomography considering an object containing an isotropic radiation source. 

 

                                                 
∗ Corresponding author 



Viana R. S., Yoriyaz H. and Santos A. 
 

2011 International Conference on Mathematics and Computational Methods Applied to  

Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011 

2/14 

 

In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was 

presented as Neutron Stimulated Emission Computed Tomography (NSECT) [2,3]. In this 

technique, using multiple projections, a fast neutron beam interacts with the stable isotopes of the 

irradiated tissue, through inelastic scatterings, making them jump into an excited state. When 

they return to their ground state, they emit photons which energies are intrinsic to the emitting 

nuclei. The emitted gamma energy spectra can be used for two purposes: (a) reconstruction of 

the target tissue image and; (b) determination of the tissue elemental composition. Considering a 

clinical application, the spatial distribution of the several stable isotopes that compose the body 

can be used in the study of the tissues metabolism [4,5].  

  

In this present work the details of the E-M reconstruction algorithm for NSECT is described.   

An emphasis was given to an analysis of the intrinsic aspects on the acquisition of conditional 

probability distribution associated to the E-M reconstruction related to geometric shapes, as well 

as to the differentiation among compositions according to the emission of photons generated in 

the reaction of inelastic scattering. 

 

 

2. METHODS 

2.1.  The E-M algorithm 

 

Let Y be the random vector corresponding to the incomplete-data y (observed data), having a 

probability density function (p.d.f.) given by g(y;ψψψψ), where ψψψψ = (ψ1, …, ψd)
T
 is the transpose 

vector of unknown parameters in space ΩΩΩΩ. The function gc(x;ψψψψ) denotes the p.d.f. of the random 

vector X corresponding to the complete-data vector x. If x were fully observable, the logarithm 

of the complete-data likelihood function, Lc (ψψψψ), that could be formed by ψψψψ, is given by: 

 

log Lc (ψψψψ) = ∏∏
ψ x

ψx ),(glog c .                                                (1) 

 

Formally, there are two samples spaces χ andγ , respectively, referring to the complete-data x 

and incomplete-data y and these two samples spaces have a univocal relationship, i.e., for           

x ∈ χ there is a y=y(x) ∈γ . In this way, instead of observing the complete-data vector x in χ , 

it’s possible to observe the incomplete-data vector y = y(x) inγ , according to: 

 

g(y;ψψψψ)  = ,),(g
)(

c xψx
y

d∫
χ

                                                      (2) 

 

where, χ (y) is the subset of χ determined by the equation y = y(x). 

 

The E-M algorithm approaches the problem of solving the incomplete-data likelihood indirectly 

by proceeding iteratively in terms of the complete-data log likelihood function, log Lc (ψψψψ). As it 

is unobservable, it is replaced by its conditional expectation given y, using the current ψψψψ. 
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The E-M iteration algorithm is composed by two steps: the expectation step (E-step) and the 

maximization step (M-step). Let )0(ψ  be the initial value for ψψψψ. In the first iteration, the E-step 

requires the calculation of the complete-data log likelihood function expectation log Lc (ψψψψ) with 

respect to the observed data y: 

 

( ){ }.|log);( )0(

)0( yψψψ
ψ cLEQ =                                               (3) 

 

Then, the M-step performs the maximization of );( )0(ψψQ  with respect to ψψψψ  over the space ΩΩΩΩ. 

That is, it does choose )1(ψ  such that: 

 

),;();( )0()0()1( ψψψψ QQ ≥                                                     (4) 

  

for all ψψψψ ∈ΩΩΩΩ.  

 

On the (k+1)
th

 iteration the E- and M-steps are defined as follows: 

 

E-step. Calculate :);( )(kQ ψψ  

 

( ){ }.|log);( )(

)( yψψψ
ψ c

k LEQ k=                                                 (5) 

 

M-step. Choose )1( +kψ to be any value of ψψψψ ∈ΩΩΩΩ that maximizes :);( )(kQ ψψ  

    

).;();( )()()1( kkk QQ ψψψψ ≥+                                                     (6) 

 

The E- and M-steps are alternated repeatedly until the difference )()1( kk ψψ −+  becomes smaller 

than a predetermined value or until another convergence criterion be satisfied [6].  

 

2.2.  E-M reconstruction algorithm for emission computed tomography 

  

The E-M algorithm has been employed in M-L estimation of parameters in computerized image 

reconstruction process such as SPECT (Single-photon Emission Computed Tomography) or PET 

(Positron Emission Tomography). On emission computed tomography the goal is to estimate the 

local intensities of photon emission in the object of interest. The used statistical modeling 

assumes that emissions occur according to a Poisson process in the region under study with an 

unknown intensity function, usually referred to as the emission density. The algorithm is defined 

following the notation described in [1].    

 

The space over which the reconstruction is required is divided into a number n rectangular 

pixels, and it is assumed that the unknown emission density in the i
th

 pixel (i=1, …,n) is λi. Let yj 

denote the number of counts recorded in the j
th

 projection (j=1, …, d), where d denotes the 

number of projections. At this point it is necessary to emphasize that the counts recorded on d 
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projections are obtained with a proper positioning of the detection system and under the same 

uncertainty σj. Wrong detector's setup can influence the quality of reconstruction, because photon 

countings that are not produced by the irradiated object may cause additional noise in the true 

counts, which is related to the photons produced by the interaction of neutrons scattered in the 

detectors, photons scattered between the detectors and secondary photons produced by the 

interaction of high energy photons scattered in the detectors through pair production. The 

assumption that the obtained counts yj made by detectors under the same uncertainty σj is 

necessary for the stochastic uncertainty propagation does not interfere with image reconstruction. 

 

The reconstruction aims to infer the transpose vector of emission densities λλλλ = (λ1, …, λn)
T
 using 

the vector of the observable counts y = (y1,…, yd)
T
. Given the vector λλλλ of stable isotope densities, 

the counts y1,…, yd  are conditionally independent according to a Poisson distribution, namely: 

 

Yj ~ P(µj),   
                                        

                                    (7) 

 

where, the mean µj of Yj  is given by:  

 

∑
=

=
n

i

ijij p
1

λµ       (j = 1, …, d),                                                  (8) 

 

and, pij is the conditional probability distribution that a photon is counted at the j
th

 projection 

given that it was emitted from within the i
th

 pixel.  

 

The conditional probability distribution plays a very important role in the algorithm iteration 

process and its correct determination implies the consideration of the physical characteristics of 

the tomography system and of the object to be reconstructed itself, since it depends basically on 

the geometry and positioning of the detectors and on the location and concentration of stable 

isotopes. 

 

The complete-data vector in this example is x = (y
T
,z

T
)
T
, where the vector z consists of the 

unobservable data, which in this formulation are the missing counts. The vector z is composed by 

zij defined to be the number of photons emitted within pixel i and recorded at the j
th

 projection     

(i = 1, …, n; j = 1, …, d). It is assumed that, given λλλλ, the Zij are conditionally independent, with 

each Zij having a Poisson distribution specified as: 

 

Zij ~ P(λipij)     (i = 1, …, n; j = 1, …, d).                                         (9) 

 

The complete-data log likelihood is given by: 

 

log Lc (λλλλ) = ( ){ }∑∑
= =

−+−
n

i

d

j

ijijiijiji zpzp
1 1

.!loglog λλ                                (10) 

 

The Poisson distribution belongs to the linear exponential family, so that, the equation (10) is 

linear in the unobservable data Zij. In this way, the E-step on the (k + 1)
th

 iteration requires the 

calculation of the conditional expectation of Zij given the observed data y, using the current )(kλ  
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for λλλλ. The conditional distribution of Zij given y and )(k
λ is a binomial distribution with sample 

size parameter yj and probability parameter given by: 

 

P(Zij|y, )(kλ ) = 

∑
=

n

h

hjh

iji

p

p

1

λ

λ        (i = 1, …,n; j = 1, …,d).                              (11) 

  

The expected value for a parameter that has a binomial distribution is given by the product of its 

sample size and its occurrence probability, so, using the equation 11 follows that: 

.)|( )(

1

)(

)(

)(

k

ijn

h

hj

k

h

ij

k

ij

ij z

p

py
ZE k ==

∑
=

λ

λ
y

λ
                                             (12) 

 

With zij replaced by )(k

ijz in equation 10, the application of the M-step on the (k + 1)
th

 iteration 

gives: 

                                                         )1( +k

iλ = qi
-1∑

=

d

j

ijZE k

1

)|()( y
λ

   
 

)1( +k

iλ = ∑
∑=

=

−
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j
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h

hj

k
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ijj

i

k

i

p

py
q

1

1

)(

1)(

λ

λ     (i = 1, …, n),  where  ∑
=

=
d

j

iji pq
1

.                (13) 

 

Note that the vector of emission densities λλλλ is estimated from the vector of the observable counts 

y considering that they are conditionally independent according to a Poisson distribution and that 

the conditional distribution of the vector of unobservable data z assumes a binomial distribution. 

Based on properties of these two distributions, they are equivalent in a particular case where the 

Poisson distribution parameter is equal to the expected value for the binomial probability 

parameter. This equality can be verified using equations 8 and 12. Since ∑
=

=
n

h

hjhj py
1

λ  follows 

that:  

 

∑
=

=
n

h

hjh

ijij

iji

p

py
p

1

λ

λ
λ .                                                              (15) 

 

This fact implies that estimates of the new complete-data vector and the emission densities 

vector λλλλ are simultaneously performed in accordance with the conditional probability 

distribution pij. Assuming that all the physical features of the tomography system are related with 

pij, the next section will be dedicated to its formulation and to the description of the simulated 

tomography system using the Monte Carlo code MCNP5. 
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2.3.  Monte Carlo method 

 

The Monte Carlo method (MCM) can be described as a statistical method, which uses a sequence 

of random numbers to perform a simulation. In terms of radiation transport, the stochastic 

process can be seen as a family of particles moving randomly in each individual collision as they 

travel through matter. The average behavior of these particles is described in terms of 

macroscopic quantities such as flux or particle density. The expected value of these quantities 

corresponds to the deterministic solution of the Boltzman equation. Specific quantities such as 

deposited energy or dose are derived from these quantities. 

 

In practical applications of the MCM, the physical process is simulated directly, without solving 

the mathematical equations representing the system behavior. The only requirement needed is 

that the physical process can be described by a probability density function, which models the 

physical process of the observed phenomenon. Thus, the essence of MCM applied to radiation 

transport is to estimate quantities, observing the behavior of a large number of individual events 

[7]. 

 

The MCNP code is a well-known and widely used Monte Carlo code for neutron, photon, and 

electron transport simulations [8]. The first MCNP version was released in the mid-1970s for 

neutron and photon transport, and was enhanced over the years to include generalized sources 

and tallies, electron physics and coupled electron-photon calculations, macrobody geometry, 

statistical convergence tests and other features. The present work utilized the last MCNP released 

version which is the version 5. The MCNP5 particle transport simulation requires an input file 

(inp), which allows the user to specify all the information about geometry modeling, source 

specifications, material compositions, and the specific quantities to be estimated (tallies). 

 
2.3.1. MCNP5 setup simulations 

 

A geometric phantom was proposed to be able to evaluate the performance of the reconstruction 

algorithm to solve edges and corners, as well as the differentiation between different 

compositions. Simultaneously to the image reconstruction, using the spectrum of emitted 

photons, it is possible to infer the isotopic composition of the irradiated medium by the 

correspondence between the prominent peaks of energy and the energy differences between the 

excited states of stable isotopes. The proposed geometric phantom is shown in Figure 1. 

 

 

 
 

Figure 1. Geometric phantom composed by iron and copper cubes with edges 1 and 6 cm 

respectively. 
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The tomographic system was simulated considering the structure of a first generation 

tomography. An important detail of the NSECT, in contrast to conventional computed 

tomography, is that the detectors are positioned in such a way to avoid neutron detection, but 

only scattered photons. The configuration adopted in the simulations of the detectors is shown in 

Figure 2. 

 

 
 

Figure 2. NSECT configuration setup for Monte Carlo simulation. 

 

 

Two hyper-pure germanium (HPGe) detectors were modeled as cylinders of 5.32 g/cm
3
 density 

with 12 cm diameter and 15 cm height. The detectors were separated 90° from each other and 

both forms 135° with the neutron beam axis, as shown in Figure 2. The neutron source was 

modeled in MCNP5 as a monoenergetic energy beam of 7.5 MeV and with a rectangular section 

of 1.0 x 0.1 cm
2
. This neutron source can typically be obtained through the fusion reactions d + T 

and d + D [9]. 

 

Natural abundance occurrence has been considered for the iron and copper compositions. The 

phantom is is kept fixed while detectors and the neutron source are rotated in intervals of 5° 

performing 72 angular positions. In each evaluated angular position the neutron source is 

translated 15 steps. All tomographic system is immersed in air. For each source motion, 2x10
8 

histories have been simulated and photons whose emission was stimulated by inelastic scattering 

of fast neutron beam were recorded on the surface of the detectors.  

 
2.3.2. Conditional probability distribution pij and stimulated photon emission 

 

NSECT uses a thin beam of fast neutrons to stimulate stable nuclei in a sample, which emit 

characteristic gamma radiation. The photon energy is unique and is used to identify the emitting 

nuclei. The results are tomographic images and spectroscopy of elements distribution in the body 

acquired through a non-invasive in vivo scan [10]. 

 

When a neutron collides with an atomic nucleus, several nuclear reactions may occur. Among 

them, one of the most probable interactions is the inelastic scattering. When the neutron scatters 
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inelastically, part of the neutron energy is transferred to the nucleus leaving it in an excited state. 

After several picoseconds, the excited state decays to a lower state, until the ground state, usually 

emitting photons. The probability of a photon to be emitted from the ith voxel and to be detected 

in the jth projection is associated with the geometry and composition of the irradiated object, the 

energy of the neutron beam and the geometry and configuration of the detectors. These factors 

affect production, attenuation and scattering of produced photons in the reaction of inelastic 

scattering. 

 

The Monte Carlo solution of each voxel-projection pair configuration problem will give the 

voxel importance factor for that configuration which can be associated to the conditional 

probability. However, the number of configuration problems to be solved is dictated by the 

number of voxels which usually is very large, requiring excessively high computational time. To 

circumvent this problem it was assumed that the reciprocity theorem is valid [11]. In other 

words, it was assumed that the probability associated to a photon to be emitted from the i
th

 voxel 

and to be detected in the j
th

 projection is equivalent to a photon to be emitted from the j
th

 

projection and to be detected in the i
th

 voxel. Using the reciprocity theorem, the neutron source 

has a well-defined line of response with the voxels that lie in the neutron beam path into a virtual 

mesh. In other words, in each evaluated projection, the neutron beam is collimated so that each 

projection there is a given probability distribution associated with the set of pixels that are in the 

neutron beam path. Therefore, the E-M reconstruction algorithm uses the probability distribution 

pij to associate the obtained counts from the jth projection with the pixels set under the same 

orientation of the neutron beam. This procedure reduced significantly the Monte Carlo 

simulations since the number of projections is much smaller than the number of voxels. 

 
2.3.3. Counts and photon flux 

 

The tomographic system modeling requires the calculation of the number of photons produced 

by inelastic scattering reaction that reaches the detectors in each projection, as well as of the 

neutron flux inside the tomographic field of vision (FOV).  For this purpose we used, 

respectively, the F1 and F4 tallies available on MCNP5. The F1 tally counts the number of 

particles crossing a specified surface, which in this case are detector’s surfaces. The number of 

particles at time t in a volume element dr, with directions within solid angle dΩΩΩΩ, and energies 

within dE is n(r, ΩΩΩΩ, E, t)drdΩΩΩΩdE. Let the volume element dr contain the surface element dA 

(with surface normal n) and along Ω for a distance vdt. The differential volume element is         

dr = vdt n⋅Ω dA. All the particles within this volume element with directions within dΩΩΩΩ and 

energies within dE will cross surface dA in time dt. So, the number of particles crossing surface 

A in energy bin i, time bin j, and angle bin k is: 

 

( )tEvnndAddtdEF

kji tE

,,,1 ΩrΩΩ

Ω

∫∫∫∫ ⋅= .                                      (16) 

 

The scalar flux is defined by φ(r,E, t) = ∫dΩΩΩΩψ(r,ΩΩΩΩ,E,t), so that, φ(r,E, t)drdE is the total scalar 

flux in volume element dr about r and energy element dE about E. The F4 tally estimates the 

flux in a defined volume V, in an energy bin i, and in a time bin j, such that: 
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∫ ∫∫=

ji tE

tEdVdtdE
V

F ),,(
1

4 rφ .                                              (17) 

 

Associated with the F4 tally, the neutron flux was estimated using the FMESH option available 

in MCNP5. This option allows the creation of a superimposed virtual mesh over any defined 

volume, considering the geometry, composition and location of internal structures. 

 

 

 

3. RESULTS AND DISCUSSION 
 

 

The E-M reconstruction algorithm was developed in MATLAB
® 

[12] environment using three 

limits on the number of iterations: 5, 10, 15 and 20. It is known from the literature that while the 

E-M algorithm moves toward convergence, after a certain number of iterations the resulting 

solution starts to degrade, becoming noisier than the previous one [13]. At this point, the 

algorithm should be stopped to avoid the image deterioration. Figures 3a, b c and d show the 

reconstructed images, respectively, with 5, 10, 15 and 20 iterations. As can be seen, the four 

reconstructions have characteristics from air-copper interface and the only factor that 

differentiates them is the number of iterations. Due to the previously discussed characteristic of 

the E-M algorithm, the number of iterations affects the image quality and it should be chosen 

according to the characteristics of the final image to be generated and also taking in account 

contrast and brightness levels. In the present simulations, there is a significant difference 

between the inelastic scattering cross sections of the metals that make up the phantom and the 

air, besides, the regions corresponding to metals are extensive and well defined.  

 

These features require a high-contrast image and the tomographic reconstruction that best meets 

that condition was obtained with 20 iterations (Figure 3d). Figure 3a shows a blurred effect 

between air-copper and iron-copper interfaces and Figures 3b and 3c have appropriate brightness 

and contrast but not show so well defined edges and corners as in Figure 3d. If we were 

interested in resolving internal structures within the metallic samples, Figure 3d would not be the 

best choice but Figure 3b or 3a, because these figures do not show as much noise as in Figure 3d, 

which is intrinsic to the stochastic reconstruction method. Figure 3 shows a magnification of 

some regions of interest as discussed in the four reconstructions. In these magnifications is 

possible notice the influence of the number of iterations in the image reconstruction quality. 
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Figure 3. Reconstructed images obtained in a 128 x 128 pixel grid: (a) 5, (b) 10, (c) 15 and 

(d) 20 iterations.  

 

 

As shown in the formulation of the E-M reconstruction algorithm, the counts obtained in each 

projection are distributed according to the conditional probability distribution pij. As already 

described, the conditional probability distribution relates the abundance of the emission of 

photons with the spatial distribution of the isotopes of interest. While the algorithm is running, 

the estimated emission density
iλ is iteratively updated according to the estimate of the new 

complete-data vector, which in addition is characterized by the observed and unobserved data 

(undetected photons). Thus, according to equation 14, each iteration provides an estimative of a 

new complete-data vector which updates the observed counts. Figure 4 shows the observed 

counts updating according to the neutron source translations perpendicular to phantom side. 

 

 



Conditional probability distribution associated to the E-M image reconstruction algorithm for neutron stimulated emission tomography 

 

 

 

2011 International Conference on Mathematics and Computational Methods Applied to  

Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011 

11/14 

 

      
 

Figure 4. Updated counts by the E-M algorithm. Labels a, b, c and d are corresponding to 

the reconstructed images shown in Figure 3.  

 

  

One of the main features of NSECT that make its study and development very interesting is 

related to the ability to obtain simultaneously the spatial distribution of stable isotopes and 

estimates of the isotopic composition of the irradiated medium. This is done matching the 

correspondence between the spectrum of emitted photons and energy differences between the 

excited states of the isotopes under investigation. Breast cancer detection and evaluation of iron 

overload in the liver are some of the applications successfully performed with the analysis of 

changes in the isotopic composition using the spectrum of the scattered photons stimulated by 

fast neutrons. In these applications, the equivalent dose was estimated to be 0.498 mSv for breast 

and 0.239 mSv for liver [14-16].     

 

To illustrate this application, in addition to the tomographic reconstruction of the image which is 

the spatial distribution of stable isotopes, the spectrum of photons emitted by the simulated 

phantom and recorded on the surface of the detectors was obtained with an energy bin width of  

± 2 keV. The characteristic photopeaks produced by different isotopes present in the phantom 

were compared to the data using a lookup table from the National Nuclear Database [17]. The 

spectrum obtained is shown in Figure 5 and the correspondence between the identified peaks and 

the evaluated isotopes are described in Table I. 
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Figure 5. Scattered photons spectrum recorded on the surface of the detectors. Labels are 

provided for those peaks that matched elements found in the modeled geometric phantom. 

 

 

Table I. Isotopes and their corresponding peaks in the simulated spectrum. 

 

Isotope Energy (keV) Peak Percentual relative error (%) 

846 3 0.65 
Fe

56
 

1238 4 0.80 

Fe
54

 1550 2 0.61 

Fe
57

 569 1 0.60 

669 5 0.36 

962 6 0.22 

1327 7 0.29 

1412 8 0.48 

Cu
63

 

1861 17 0.66 

770 9 0.50 

1481 10 0.49 Cu
65

 

1623 11 0.88 

Ge
74

 595 12 0.34 

1039 14 0.45 

1117 16 0.35 

834 13 0.41 
Ge

70
 

364 15 0.53 

Pair Production 511 18 0.16 
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As can be seen, the spectrum has energies whose maximum counts refer to the characteristics 

energies of emitted photons by the simulated phantom and detectors. Yet, due to the high energy 

of the emitted photons, we could detect the energy resulting from the pair production occurring 

in the detectors and at the phantom itself. 

 

 

4. CONCLUSIONS 

 

 

The simulated technique for in vivo spectrographic imaging of stable isotopes NSECT is        

well-founded and, given its potential, has a wide application in medical and biological research. 

In this imaging modality the spatial distribution of stable isotopes can be retrieved by image 

reconstruction and due to its stochastic nature the E-M algorithm has been used for this purpose. 

In the E-M formulation, the conditional probability distribution assumes an important role in the 

iteration process since it relates the abundance of the emission of photons with the spatial 

distribution of isotopes of interest.  

 

The present work proposed a methodology for the acquisition of the conditional probability 

distribution based on the reciprocity theorem. It requires the calculation of the number of 

photons whose emission was stimulated by inelastic scattering of fast neutron beam recorded on 

the surface of the detectors and the neutron flux inside the tomographic FOV. To achieve this 

purpose the F1 and F4 flux tallies available on MCNP5 were used.  

 

The F1 tally estimates the number of particles crossing the detector’s surfaces. The F4 estimates 

the neutron flux inside the object and it was used in association with the FMESH card, which has 

the property to create a superimposed virtual mesh over defined volumes. So each voxel created 

by FMESH card is associated with F4 tally and in this way, the neutron flux inside the 

tomographic FOV is estimated according to neutron source orientation, assuming that the 

neutron source has a well-defined line of response with the voxels that lie in the neutron beam 

path into a virtual mesh. The methodology demonstrated to be effective and presented good 

results with regard to the quality and reliability of the reconstructed images, given the physical 

characteristics of metals irradiated by fast neutron beam represented by the layout and cross 

section of inelastic scattering of metallic samples.  
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