> ,' Revista Brasileira de Computagao Aplicada, November, 2021
«

DOI: 10.5335/rbca.v13i3.12091
UPF |EDITORA Vol. 13, N2 3, pp. 42-53
UNIVERSIDADE Homepage: seer.upf.br/index.php/rbca/index

ISSN 2176-6649

ORIGINAL PAPER

Reinforcement learning control of robot manipulator

Lucas Pereira Cotrim “»1, Marcos Menon José 2, Eduardo Lobo Lustosa Cabral3

L2Escola Politécnica da Universidade de Sdo Paulo (POLI-USP), 3Instituto de Pesquisas Nucleares (IPEN)
*lucas.cotrim@usp.br; 'marcos.jose@usp.br; felcabral@ipen.br

Received: 2020-12-12. Revised: 2021-09-14. Accepted: 2021-10-31.

Abstract

Since the establishment of robotics in industrial applications, industrial robot programming involves the repetitive and
time-consuming process of manually specifying a fixed trajectory, resulting in machine idle time in production and the
necessity of completely reprogramming the robot for different tasks. The increasing number of robotics applications
in unstructured environments requires not only intelligent but also reactive controllers due to the unpredictability
of the environment and safety measures, respectively. This paper presents a comparative analysis of two classes of
Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to
the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous
knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence
are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom
(DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle
placement. The DQN algorithm presented significantly better performance and reduced training time across all test
projects, and the third reward function generated better agents for both algorithms.

Keywords: Artificial Intelligence; Deep Neural Networks; Reinforcement Learning; Robotics.

Resumo

Desde o estabelecimento da robdtica em aplicagdes industriais, a programagao de robds manipuladores envolve o
processo repetitivo e demorado de especificacdo manual de uma trajetéria fixa, o que resulta em tempo ocioso de
producdo e na necessidade de reprogramacao completa para diferentes tarefas a serem executadas pelo robo. A tendéncia
de aumento das aplicagdes da robética em ambientes ndo estruturados requer controladores inteligentes e reativos,
devido respectivamente a imprevisibilidade do ambiente e a medidas de seguranca. Este artigo apresenta uma analise
comparativa de duas classes de algoritmos de Aprendizagem por Reforco, iteracao de valor (Q-Learning / DQN) e
iteracdo de politica (REINFORCE), aplicada a tarefa discretizada de posicionar um manipulador robdtico em um ambiente
simulado repleto de obstaculos, sem conhecimento prévio das posi¢des dos obstaculos ou da dindmica do brago do rob6. O
desempenho do agente e a convergéncia do algoritmo sdo analisados sob diferentes funcoes de recompensa e em quatro
projetos de teste cada vez mais complexos: robo 1-DOF, robo 2-DOF, rob6 industrial Kuka KR16, rob6 industrial Kuka
KR16 com setpoint em posicdo aleatdria. O algoritmo DQN apresentou desempenho significativamente melhor e tempo
de treinamento reduzido em todos os projetos de teste e a terceira funcdo de recompensa gerou melhores agentes para
ambos os algoritmos.

Palavras-Chave: Aprendizado por Reforco; Inteligéncia Artificial; Redes Neurais Profundas; Robética.

1 Introduction as welding, machining, assembly and cargo handling. The
development of more sophisticated sensors, along with

The diversity of modern industrial robotics applications ~ the increasing computational capacity of controllers and
requires the emergence of robots with different degrees of ~ advances in the fields of computational vision and artificial
autonomy, appropriate for executing different tasks, such intelligence has shifted the field of robotic manipulators:

http://dx.doi.org/10.5335/rbca.v13i3.12091
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0001-5288-1813
https://orcid.org/0000-0003-4663-4386

Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 43

Repetitive and fixed pre-programmed routines have given
way to flexible and more reactive controllers, capable of
dynamically identifying the orientation of workpieces
or learning optimal routines directly from data (Rosen,
1999).

This tendency is not limited to robotics. Recent
developments in Artificial Intelligence, namely
Reinforcement Learning, have been dedicated to
training robust models for a wide variety of applications,
from economics and finance (Charpentier et al., 2021) to
healthcare systems (Coronato et al., 2020). Reinforcement
Learning is an increasingly popular field in Al in which an
intelligent agent is trained to perform a specific task while
maximizing a reward signal (Sutton and Barto, 2018).

This work aims to obtain the optimal reward function
formulation and algorithm choice for the task of
positioning a simulated KUKA-KR16 industrial robot
while avoiding both known and unknown obstacles. The
agents are trained through two different reinforcement
learning algorithms over successive interactions with
an obstacle-filled simulated environment. For training,
it is only necessary to provide the initial specification
of a reward function, which represents the quality of
actions taken by the agent and guides its exploration.
After training, the agent is capable of positioning the
robot’s end effector in generic positions while avoiding
obstacle collision-based solely on sensor data from its
current pose.

The main contributions of this work are the
development of a Reinforcement Learning (RL) framework
for robotics applications in MATLAB, including training
and visualization modules, and a comparative analysis of
standard RL algorithms: episodic REINFORCE and DQN.
Different reward functions are tested and the agent’s
performance is evaluated. The entire project is open
source, and all codes can be found in Github Repository

2 State of the Art

The recent development of Reinforcement Learning
means that its practical applications are currently mostly
restricted to simulation environments for testing and
performance validation, such as OpenAlI gym (Brockman
et al., 2016). There are several Robotic related tasks in
OpenAl gym which utilize a physics engine for simulation
and collision detection known as MuJoCo (Todorov et al.,
2012). The concept of state and action space exploring
inherently requires large amounts of data to be processed
and training directly in the real world may lead to
accidents. Simulation-based training solves both issues
by providing a risk-free environment in which the control
agent can acquire faster experience.

Several authors have tried to train RL agents in
simulated environments and transfer the resulting model
directly to real-world applications. James and Johns (2016)
were partially successful in the simulation-based training
and subsequent model transferring of a DQN agent for
controlling a seven DOF robot in a cube locating and
lifting task. The work environment was structured in a
way that maximizes the similarity with the simulation
environment in order to enable model transfer. The

resulting RL agent was able to correctly locate the cube
when applied directly to the real-world robot, but subtle
differences in the environment prevented it from grabbing
and lifting it.

One of the biggest challenges associated with
implementing Reinforcement Learning in industrial
robotics is Low Sampling Efficiency. Most RL algorithms
typically require a large volume of training data before
optimal policies can be learned, and the generation
of data in real-world settings is often impractical,
as it requires a long idle time. To work around this
problem, hand-crafted specific initial policies that
capture the desired behavior are often used. However,
this approach conflicts with the main advantage of RL,
i.e., the autonomous learning of various behaviors with
minimal human intervention. Gu et al. (2017) present an
innovative architecture of the DDPG (Deep Deterministic
Policy Gradient) and NAF (Normalized Advantage Function)
algorithms in which multiple robots interact with the
environment, gain experience according to its current
action politics and send data asynchronously to a server
that samples transitions and trains a DQN network. This
architecture allows the robot to continue interacting with
the environment and collecting state transitions while
the DQN parameters are updated, promoting scalability
for the inclusion of new robots. The authors validated
the proposed architecture in learning the task of opening
a door by manipulating robots with seven degrees of
freedom, and the action policy was obtained without
previous demonstrations.

Chen et al. (2019) used a combination of the Distributed
Proximal Policy Optimization (DPPO) and DQN algorithms
to solve the similar task of positioning a simulated 2-
dimensional robot manipulator while avoiding multiple
obstacles. The authors showed that the two-step solution
of using DPPO to perform obstacle avoidance while a DQN
agent performs navigation resulted in better performance
than either algorithm individually.

A major issue in path planning tasks for robotic
manipulators in unstructured obstacle-filled
environments is the blindness of exploration. Common
sparse functions that reward an agent’s action only
when the proposed task is successfully completed, and
provide zero information otherwise, can lead to a highly
inefficient learning process. In order to solve this, Xie
et al. (2019) have developed an azimuth dense reward
function that provides feedback to the agent regularly,
reducing the number of training epochs and improving
learning efficiency.

3 Problem Definition

A typical Reinforcement Learning framework consists of
three interacting modules: environment, interpreter and
agent. The environment’s current condition is captured by
an interpreter, which encodes it at time t as a state s; and
assigns a reward value r;. The agent, based on the state
and reward received by the interpreter, takes an action ay,
which leads to a state transition according to the system
dynamics.

The application of this framework to the control of a

https://github.com/MMenonJ/Controle_Robo_Manipulador

Lt Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53

System

Environment

—§

Workspace Robot Eletric Drivers

Action a,

Interpreter
State s,

N
Reward r,

Observer Processor

Figure 1: Simplified diagram of a real system
environment trained by reinforcement learning.

Test Projects REINFORCE | Q-Learning
1 Degree of Freedom) i ' e
(R)
2 Degrees of Freedom
(RR) \ i

6 Degrees of Freedom
(6R), fixed configuration

6 Degrees of Freedom
(6R), generic
configurations

Figure 2: Test projects developed for comparative
analysis of algorithms.

robot manipulator is exemplified in the diagram of Fig. 1.

In order to determine the best algorithm, reward
function and hyperparameters, simplified versions of
the problem were studied under two main classes of
algorithms: Iteration over policy function =, and iteration
over value function Qy. Fig. 2 shows the four test projects
considered and the two algorithms implemented for each:
Episodic REINFORCE and Q-Learning/DQN.

In the first two simplified projects (1 and 2 DOF robots),
the reduced dimension of the state S and action .4 spaces
allowed the use of a Q-Learning algorithm known as Q-
Tables, in which every possible state-action combination
is directly mapped to Q(s, a), which is a function of state
s and action a, given by a table. However, due to the
increased dimensions of the last two projects, the more

sophisticated algorithm DQN was implemented, in which
a Feedforward Neural Network approximates the state-
action value function Q(s, a).

The software chosen was MATLAB because of the
support libraries and functions for robotics simulations.
This saves time programming both the visualization
and the dynamics computation, besides having all the
necessary tools of reinforcement learning and neural
network implementations. While other programming
languages such as Python offer significantly more
support for machine learning applications in libraries like
Tensorflow and Keras, the available Python libraries for
robot kinematics present limited functionality compared
to MATLAB.

4 Implemented Algorithms

Reinforcement Learning algorithms can be divided in
two major classes: Policy-based and Value-based. The
former represents the agent’s policy directly and performs
updates on it according to the reward obtained by taking
different actions in different states. The latter learns a
state-action value function Q(s,a) instead from which
the agent’s actions are derived.

In this work, a baseline Deep Reinforcement Learning
algorithm of each class was implemented: The Policy-
based REINFORCE and the Value-based DQN. However,
the developed framework allows for other RL algorithms
compatible with discrete action spaces to be implemented,
such as A2C (Mnih et al., 2016) and PPO (Schulman et al.,
2017).

4.1 First Algorithm: Episodic REINFORCE

The first implemented algorithm is the classic action
policy iteration algorithm, episodic REINFORCE proposed
by Williams (1992), adapted to the manipulation robot
positioning problem according to the pseudocode below.
REINFORCE consists in the parameterization of the
action policy function (s) as my(s) using any function
approximation method, such as neural networks or high-
degree polynomials, and training by successive updates of
the parameters 6 in order to maximize the Performance
function (=), which represents the quality of policy 7.
Let 7 = {so,ao, 11, 51, 01,72,

., ST_1,ar_1, I'7} e a trajectory generated by a generic
policy 7y, the performance function J(ry) can be defined
as the expected value of discounted rewards over the
trajectory (Eq. (1)).

J(0) = ETNTF(T)["(T)] (1)

wherer(r) = Z,_T:l ~1re = Vi (so) is equivalent to the value
of the initial state V.(so) according to policy 7y. Since
knowledge of the environment and reward is gathered
through environmental interaction, the gradient of the
performance function VJ(¢) must be approximated by a

Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 45

sufficient number of trajectories N (Eq. (2)).

T-1

N
1 Vg(St, at)
VI(0) =~ = G
J(6) N;t:o o (seyar) (2)

where v is known as the discount factor and the returns
Gt = S Mk = T #3Teea * o #7T My are defined

as the sum of discounted rewards from instant t onward.

Historically used to bound the sum of expected rewards
of infinite horizon models, the discount factor v can be
interpreted as an interest rate which prioritizes actions
with higher immediate rewards while also taking into
account future rewards (Kaelbling et al., 1996).

Algorithm 1: Episodic REINFORCE

- Initialize Robot, setpoint, obstacle, initial state s¢
and action space A;

- Initialize Hyperparameters (bonus and penalties,
network size, number of timesteps, trajectories
and epochs, discount factor v and learning rate «);

- Initialize data structure to store epochs;

- Initialize parameterized action policy my,
randomly;

Generate N trajectories {mn})\-, from action policy
760, Where m = S{V, Al RV, s A R,

Determine returns {G¢};!, where G; = S} 7*r1.43

Store {7}, in EpochBuffer(1);

for ep + 2 to MaxEpoch do

Apply Gradient Ascent Method on J() to get mep:

T— 1 VTrg(Styat) .
Hep<—9ep 1+aNanz m,

Generate N trajectories {m})-, from action
policy mg,,, where
™ = So,A0,Ro, ..., ST 1,AT v Rr;
Determine returns {Gt}t , Where
Gl = Ek:o’Y Fivks
Store {r}\, in EpochBuffer(ep);
end

4.2 Second Algorithm: DQN

DQN (Deep Q Network) can be seen as a generalization

of the simple Q-Learning algorithm known as Q-tables.

Rather than directly mapping each state-action pair to a
value Q(s, a) and performing successive iterations on the
resulting table, DQN performs the parameterization of the
state-action value function Qy(s, a) as a weighted neural
network (Mnih et al., 2013). The network is initialized
arbitrarily with random weights ¢, which are updated
successively as state transitions (s, a, r,s’) are observed
by the agent. The DQN network is trained to satisfy the
Bellman Equation (Eq. (3) — (Bellman, 1967)):

Qo(st,ar) = r(sg,a;) + v max Qp(Sg+q,a’) (3)
a'cA

Algorithm 2: DQN

- Initialize the robot, setpoint, obstacle, initial state
so and action space A;

- Initialize Hyperparameters (bonuses and penalties,
network, number of timesteps, epochs and
transitions at Buffer, discount factor ~, learning
ratea) and ¢;

- Initialize epoch storage structure;

- Initialize parameterized DQN network Q,,
randomly;

for ep < 1to MaxEpoch do

Initialize state: s + so;

Fill Experience Buffer with N transitions given
current network Qj,, and e-Greedy method ;
Sample random mini-batch of size Ny, from

Experience Buffer;

fori < 1to Ny, do

Read i-th transition: (s, a,r,s’, boolierm) ;

if boolierm, == true then

| y=n
else

|y =r+ymaxaeaQp,,(s,a’);
end

store expected output q = Q(s,a) and target y

)

end
Applies Gradient Descent to minimize cost
function given by £(6) = 2(Qu(s,a) — y)?, that

is:
9ep+1 <~ 98p - aNbitch Zl\ibmh (QG(S a) Y)Z

Clear Experience Buffer;

end

which associates the value of a state-action pair to the
maximum value of subsequent state-action pairs. DQN
can be seen as a Supervised Learning Algorithm in which
the target is non-stationary, as it depends on the Qy(s, a)
function itself, except for terminal states, in which the
target is simply the reward r(s¢, a¢). This is one of the
major difficulties associated with this method and causes
its convergence to depend on sufficient exploration of
different actions across the entire state space. However,
given sufficient exploration, the algorithm is proved
to converge to the optimal state-action value function

Q*(s,a).

In order to improve numerical conditioning and allow
for faster convergence, a technique known as Prioritized
Experience Replay (Schaul et al., 2016) is implemented,
where state transitions are stored in a experience buffer
and sampled randomly, while terminal transitions are
always sampled. State transition tuples are defined as
(s,a,r,s’, boolrm) where s is the system’s current state, a
is the action taken by the agent, r the reward obtained and
s’ is the subsequent state, in addition, a Boolean variable
bool;erm indicates if the state is terminal.

46 Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53

5 Reward Functions

Reward function engineering is critical in reinforcement
learning applications. The reward function determines
the quality of actions taken by the agent and influences
not only the policies it is capable of learning but also
the algorithm’s convergence. As a result, there is an
increasing effort in recent research to optimize reward
functions for different tasks.

Over the test projects, three different reward functions
are implemented. In the first two test projects, agents
trained with one reward function showed significantly
better performance than the others. As a result, the Kuka
projects focused on the implementation of this reward
function. The following sections detail their mathematical
implementations, key insights and intuition.

5.1 First Reward Function: Absolute Distances

The first reward function (Eq. (4)) considered is inspired
in the potential field method for path planning of mobile
robots. The reward function depends on the euclidean
distances between the end effector, the obstacle and the
goal, similarly to the reward function used in Sangiovanni
et al. (2018), which also applies a distance based reward
function to the task of training a robotic manipulator for
positioning while avoiding obstacles.

ri(s,a) = k(rSEtpOint(S) a) + I'ypgracie(S, @) + C)
+ Bgoal(s, a)
* Pjoint boundary (S, @)
+ Pcollision(sr a)

(4)

where

Fsetpoint = —ke HpSP - p:efHZ
Fobstacle = K2 |[Pobs — plef)

péf is the end effector’s future position after action a

is taken and psp and pp, are the setpoint and obstacle
positions respectively. The remaining terms represent
bonuses or penalties given to the agent based on the
desired behavior: By, is a bonus given when the desired
object is reached, P, jision 1S @ penalty given when either
the table or the red obstacle is hit and Pjyin poundary iS

a penalty given when one of the robot’s joint’s limit is
reached.

5.2 Second Reward Function: Discrete under
Approximation or Distancing

In order to correct problems observed in the first function,
such as high magnitude and non-zero average value over
all the possible actions at a given state, a second function is
tested. The second reward function (Eq. (5)) is dependent
on the relative approximation or distancing between the
end effector, the obstacle and the goal.

rZ(s,a) = (kSrsetpoint(s;a) + korobstacle(s!a))
+Bgoai(s,a)
+ Pjointboundary(s) a)
+ Pcollision(s) a)

(5)

where
-1, if‘psp—p;f 2>‘PSP_Pef 5
Fsetpoint = | O» if ‘ Psp — péf‘ 2 ‘ Psp = Pef 2
1, if HPSP - PlefH2 < HPSP - pesz
0, if |[Pobs ~ Py, > Fing
. ~ =1, if ||Pops — péf‘ 5 < ||Pobs ~ Pef ‘z
obstacle ~

O, if ||Pobs — Pig|| = ||Pobs — Pef]|,
1, lf Pobs — p/ef‘ 5 > ||Pobs — pef 2

The discrete penalties and rewards given in case of
collision are the same as defined in r4(s, a), givenin Eq. (4).
Fig. 3 illustrates the normalized average reward obtained
by REINFORCE and Q-Learning agents for a 1-DOF robot
(Test Project 1).

5.3 Third Reward Function:
Displacement Vector

Projection of

Finally, the third reward function (Eq. (6)) is similar to
the second, but the terms regoine and 1 g1l are no longer

limited to —1, 0 and 1, but are given by the projection of the
displacement vector n, .0 in the directions that point to

the goal Nyt gepoine aNd to the obstacle g opgracle-

r3(s, a) = (ksrsetpoint(s’ a) + korobstacle(s’ a))
+ Byoql(s, @)
+ Pjointboundary(s) a)
+ Pcollision(sr a)

(6)

where

rsetpoint(sy a)= (nef->ef’ b nef—>setpoint)

i /
0, if ’pobstacle - pesz > Tinfl
B (nef ->ef’ ® nef—>obstacle)r otherwise

Fobstacle(S) @) =

and Bgoal(s’a)’ Pjointboundary(s:a) and Pcollision(s: a) are
defined the same way as in previous reward functions.
Fig. 4 illustrates a diagram of the third reward function
for two different actions taken in the initial state so. sj
and sg are the system’s states after the agent has taken
actions a, and ag respectively. The dotted lines represent
the vectors that point to the desired position and to the

Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 47

PGRobotArmR: Average Rewards

e
o WQﬁDm(

Average Reward

0 5 10 15 20 25 30 35 40 45 50
Episode

(a) Reward function comparison for

REINFORCE agent.
QL i 'mR: Average
12 T T T T T T
1h
08
E e f
g 06
g
[
L 04
o
2
< 02
' -// J—
02 :1
2
0 5 10 15 20 25 30 35 40 45 50

Episode

(b) Reward function comparison for
Q-Learning agent.

Figure 3: Normalized average reward per epoch obtained
by (a) REINFORCE and (b) Q-Learning agents for reward
functions r; (red) and r, (blue) on test project 1.

Sa |

.v-"h

r(s,ay) <0

Figure 4: Diagram of the third reward function.

obstacle. Finally, the reward is given by the corresponding
projections.

Overall, agents trained with the reward function
r3 showed better performance in comparison to those

PGRobotArmRR: Average Reward per Epoch

Average Reward
o ° o o
s s > > -

o

=]
[

0 5 10 15 20 25 30 35 40 45 50
Epoch

(a) Reward function comparison for
REINFORCE agent.

QLeamingRobotArmRR: Average Reward per Epoch

Average Reward

"2

"3

o 10 20 30 40 50 60 70 80 90 100
Epoch
(b) Reward function comparison for
Q-Learning agent.

Figure 5: Normalized average reward per epoch obtained
by REINFORCE (a) and Q-Learning (b) agents for reward
functions r,, (red) and r3 (blue) on test project 2.

trained with r,. Fig. 5 shows the average reward
per epoch obtained during training of a 2-DOF robot.
The REINFORCE agent trained with reward function r3
presented a significantly better performance in terms
of convergence time and stability (Fig. 5a) while the Q-
Learning agent showed more frequent drops in its learning
curve during epochs in which a collision with the obstacle
occurred (Fig. 5b), which is possibly due to r3’s priority
to direct paths to the goal combined with a goal-obstacle
configuration in which a direct path is obstructed.

6 Results

From the partial results obtained during training of a 1
and 2-DOF robot, agents trained with the third reward
function presented significantly better performance. As
aresult, only r3 is implemented in the last two projects,
which focus on a comparative analysis between both
classes of algorithms. In this section, the training
frameworks and detailed results obtained from applying
both classes of algorithms to the Kuka test projects are
presented. The results are followed by a brief comparative
analysis and summarized at the end of the section.

A side-by-side comparison of both algorithms in
increasingly more sophisticated applications is valuable

48 Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53

Table 1: Kuka KR16’s joint limits and implemented
angular limits.

Joint Angular Limits (6, 11O »l
A1 [—185°,185°] [—30°,40°]
A2 [-65°,125°] [—20°, 40°]
A3 [-220%64°] [-30°,50°]
A4 [—350°,350°] [—40°, 40°]
As [—130°,130°] [—40°, 40°]
A6 [=350°,350°] not controlled

as it allows us to focus on the algorithms’ foundations,
eliminating sources of instability or non-convergence and
comparing both in identical settings. Another advantage
is the possibility to exploit modular, object-oriented
program design, since most functions are shared by the
various test projects and can be easily adapted to other
applications. As shown in Fig. 2, the test projects are
characterized by the simplifications considered: The first
two implement 1 and 2 DOF robots, while the last two
implement the 6-DOF KUKA KR16 robot, but with initially
fixed and then generic configurations of goal and obstacle.

6.1 Test Project 3: KUKA KR16 - Fixed

Configuration

After comparing both the reward function and the
algorithm on robots with a reduced number of degrees
of freedom, a 3-dimensional simulation and visualization
environment for the KUKA-KR16 robot was implemented
on Matlab by loading RigidBodyTree object representation
of the robot based on its urdf file and stl meshes.

In this project, the agent’s task is to control the robot’s
first five degrees of freedom to position its end effector on
the fixed goal position (green) while avoiding collision
with a known obstacle (red) and the table, which is
unknown and is only detectable through interaction.
Due to overall better performance observed on agents
trained with the third reward function (Eq. (6)) on both
algorithms, the following projects implement only r5 as
the reward function and focus on a comparative analysis
between algorithms as well as on techniques to overcome
the dimensionality issue on real robotics applications.

The State Space is now given by Eq. (7):

5
S= (Hs,-) XR3 X R3,

i=1 (7)
gisup}
“AG

where S; = {6;, _+ ingli=1,.

Similarly to previous test projects, the State Space
is the combination of possible angular positions for
each controllable rotating joint S; and all possible
Cartesian positions for the goal and the obstacle in three-
dimensional space R3. Table 1 indicates Kuka KR16’s
joint limits and the implemented limits give the table
workspace.

The Action Space is: A = H?:l Aj,where A; = {-1,0,1},

Figure 6: Simulation Environment developed for test
projects 3 and 4. Goal and obstacle are represented by
green and red cubes and a random trajectory is shown in
blue.

which corresponds to all possible positive, neutral and
negative increments for all joint actuators. As a result, the
number of possible actions is 3° = 243 (Eq. (8)). Fig. 6
illustrates the simulation environment.

1 (8)

o e e e e e

I = N O N = S Sy

e e e e e e

LLloocorrer
o

-1 -1 -1 -1 1
-1 -1 -1 -1 O
-1 -1 -1 -1 -1

6.1.1 Episodic REINFORCE

The algorithm’s generic formulation allowed for relatively
simple adaptation to the new project. The policy function
my(S,a) neural network complexity was increased in order
to allow for the abstraction of more complex policies. A
three-layer feedforward network with 104000 trainable
parameters was implemented. Table 2 summarizes the
project’s hyperparameters.

Similarly to previous test projects, the direct
approximation and training of the policy function
my(als) yielded a smooth, monotonically increasing
average reward curve (Fig. 7). As opposed to value
iteration algorithms, which search for the optimal
state-action value function Qy(s, a) and derive the optimal
policy by taking the action of most value at each state.

In order to study the agent’s increasing preference
for optimal actions during training, the probability

Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 49

Table 2: Variables and Hyperparameters of Episodic REINFORCE implementation of Test Project 3

Parameter Description Value
Dsetpoint Goal Position (m) (1.05,0.45,0.75)
Pobstacle Obstacle Position (m) (1.05,-0.55,0.75)

A6 Minimum Joint Angle Step 1°
«a Learning Rate 0.0005
Byoal Goal Bonus 400
collision Collision Penalty -400
Pjoint boundary Joint Limit Penalty -400
Tinfl Obstacle Influence Radius (m) 0.50
MaxEpoch Maximum Number of Training Epochs 50
N Number of Trajectories per Epoch 30
T Maximum Number of Actions per Trajectory 70
v Discount Factor 0.3
dim(s) State s Dimension 11
dim(a) Action a Dimension 5
size(.A) Action Space A Size 243
(Niny Npgy Nz, Nowe) mo(als) Network Neurons per Layer (11,100, 300, 243)
ks Goal Multiplicative Factor 100
ko Obstacle Multiplicative Factor 70

PGKuka: Average Rewards per Epoch

Averge Reward

0 5 10 15 20 25 30 35 a0 a5
Epoch

Figure 7: Normalized average reward per epoch obtained
by REINFORCE agent trained with reward function r5.

distribution of actions in A given the initial state was
plotted for epochs 1, 4, 8 and 12 (Fig. 8).

6.1.2 DQN

Due to exponentially increasing state-action space
dimension as the number of degrees of freedom increases,
a Q-table algorithm is impracticable as a result of
memory and computation limitations. In order to
overcome the dimensionality issue, the state-action
value function Qy(s, a) was represented as a Multi-layer
Perceptron (MLP). The algorithm’s formulation, detailed
in Section 4.2, consists in applying gradient descent in
order to minimize the mean squared error between the
network’s current output Qy(s, a) and the target r(s,a) +
v maxa ¢ 4 Qo (8,@’), Where s’ denotes the state reached

after action a is executed in state s. Table 3 summarizes
the algorithm-specific hyperparameters implemented.

Fig. 9 illustrates the trajectory taken by the DQN agent
after convergence and the average reward performance
curve during training.

In order to analyze the agent’s behavior in cases where

PGKuka: Probabilidades de agdes em estado inicial (als)
0018 003

PGKuka: Probabilidades de ages em estado inicial (als,)

0016

0014

> 0012

\} M { \ I“ .
ul |

Probabildade (a ls,)

§

M h

“M H"H“ vM /(‘W

o 250 0 100 250
Aggoa

(b) my(al so) in epoch 4

PGKuka: Probabilidades de agées em estado inicial m(as)

(a) wa(also) inepoch 1

PGKuka: Probabilidades de agées em estado inicial m(as,)
006 015

o \\H‘ | ‘

|
A v,

. .“‘"-“ﬁL AV §m1\ i1 MM\A/H\ i \WH‘ el il ‘.‘A*M Al
o

005

Probabilidade = (a,ls,)
Probabilidade = (a,ls,)

]
-

Ll ‘
[Al
Iy
PR 20 o © w w0 om0
Agtos, Agtos,

(c) my(alsp) in epoch 8 (d) my(alsp) in epoch 12
Figure 8: Probability Distribution 74(alse) over action
space A for initial state s¢ during training in epochs 1, 4,
8 and 12.

a direct path to the goal is blocked by an unknown
object, a wall was placed between the effector’s initial
position and the goal. Similarly to table collision, wall
collision is incorporated into the state transition function
and terminates a trajectory if the robot’s end effector is
sufficiently close to the wall. A negative reward of P_jision
is given during collision and the wall’s position can only
be learned through environmental interaction. Fig. 10
illustrates the optimal trajectory found by the agent and
the corresponding learning curve during training. As
expected, an increased number of epochs was necessary
for the abstraction of more complex behavior, but the
DQN agent was able to dodge the wall correctly with no
algorithmic changes.

50 Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53

Table 3: Variables and Hyperparameters of DQN implementation on Test Project 2

Parameter Description Value
a Learning Rate 0.002
MaxEpoch Maximum Number o Training Epochs 250
Ntrajs Number of Trajectories per Epoch 10
MiniBatchSize Number of Sampled Transitions for Training 200
T Maximum Number of Actions per Trajectory 70
5 Discount Factor 03
dim(s) State s Dimension 11
dim(a) Action a Dimension 5
size(.A) Action Space A Size 243

(Miny N1y M2y Nout)

wp(als) Network Neurons per Layer

(11,100,300, 243)

(a) Trajectory taken by DQN agent
after training

DQNKuka: Average Rewards

[
25 . ’j ﬁi‘\\"l‘i'ih‘wv"“‘l)
| 1.1"!{‘\’@ L

il
2 fwl

|

Average Reward

T e o A
1 e
0.5 P

Y
M

L

05
o 50 100 150 200 250
Epoch

(b) DQN agent performance curve

Figure 9: Optimal trajectory taken by agent (a) and
average rewards obtained per epoch during training (b) in
DQN implementation on Test Project 3.

6.2 Test Project 4: KUKA KR16 - Generic
Configurations

The main advantage of adaptive learning applied to the
control of industrial robots is the flexibility in unexpected
scenarios, the scalability provided by training over time
and the abstraction of complex and often nonintuitive
policies with minimal human intervention. In order
to investigate both agents’ capability of learning an
efficient positioning task for objects randomly located on
the workspace, both the goal’s (green) and the known
obstacle’s (red) positions were changed randomly during
training. A subspace W c R3 of the robot’s work volume,
definedas W = {(x,y,z) € R310.80 < x < 1.4,—0.90 < y <
0.90, 0.80 < z < 1.00}, was chosen for the possible goal and

X

(a) Optimal Trajectory found by DQN
agent in environment with unknown
blocking obstacle

DQNKuka: Average Rewards

S

i~

l
| mwﬁ il 1 J\WL l

50 100 150 200 250 300 350 400
Epoch

o o
° @ =

Average Reward
s o o
N o B &

&
>

&
@

o

(b) Average rewards per epoch obtained
during training

Figure 10: Optimal Trajectory (a) and learning curve
during training (b) obtained by DQN agent
implementation on variation of Test Project 3 with
unknown obstacle.

obstacle positions. During testing, planar goal-obstacle
configurations often did not require the agent to avoid
the obstacle, as a direct path to the goal was frequently
present. In order to test the RL agent on more challenging
scenarios, a three-dimensional volume of possible goal
obstacle configurations was chosen, giving the impression
that some objects are floating.

6.2.1 Episodic REINFORCE

A REINFORCE agent with my(als) policy network
architecture equal to Test Project 3 was implemented
and trained. However, there was no noticeable increase
in performance or convergence to the optimal policy, as

Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 51

(a) Correct positioning
trajectory performed by the
agent.

(b) Table collision trajectory
performed by the agent.

PGKuka_RandomPositions: Average Rewards
12

1

0.8 I

o
>

Average Reward
1)
=

o
o
<_
S
_
=
_
[——
—_
—_
—
—
i

Epoch

(c) Average rewards per epoch during
training

Figure 11: Trajectories generated by the REINFORCE
agent after training for different goal-obstacle
configurations (a),(b) and learning curve (c) during
training.

shown in Fig. 11c. The agent’s performance presented an

undesired high sensitivity to goal-obstacle configuration,

performing the positioning task correctly on specific
configurations (Fig. 11a) and incorrectly on others
(Fig. 11b). Moreover, proximity between the goal and
obstacle resulted in poor performance and an increased
chance of table collision.

6.22 DQN
6.3 Comparative Analysis of Algorithms

In order to compare both classes of algorithms, three main
criteria were analyzed: convergence rate over the test
projects, execution time and smooth increase of average
reward. The policy-iteration algorithm REINFORCE
outperformed DQN in the latter, while the value-iteration
algorithm showed better execution time and convergence
results. Table 4 illustrates the execution time until

convergence for both algorithms on the four test projects.

DQN showed better scalability with increasing application
complexity, while REINFORCE agents presented longer
training times.

(a) Trajectory performed by
DQN agent in epoch 132 of
training.

(b) Trajectory performed by
trained agent on random
goal-obstacle configuration.

DQNKuka_RandomPositions: Average Rewards

15

liﬂ i

| A“ h H' .1 “‘n LI" ll‘l‘
[
| \'I

'|‘ |

‘\\H“\‘

o
< o

Average Reward

Mo '\”“
e "" !‘\“f!'u

I

‘ | ‘
‘i
w “ || \‘L‘

0 20 40 60

80 100 120

Epoch

140

(c) Average rewards per epoch during

training

Figure 12: Trajectories performed by DQN agent during
(a) and after training (b) and associated learning curve (c)
during training.

Table 4: Average training times associated with both
agents on each test project.

Project REINFORCE Q-
Learning

1 Degrees of Freedom (R) 6,8min 6,9 min

2 Degrees of Freedom (RR) 11.7min 7.4min

6 Degrees of Freedom (6R), | 30h 16h

fixed configuration

6 Degrees of Freedom (6R), | No 25h

random configuration convergence

7 Conclusion

The application of newly developed methods, especially
in consolidated industries where sensitive operations
require that safety conditions must be met, is subject to
an extensive research in simulated settings and controlled
environments. Reinforcement Learning is a relatively new
field with promising results in control and game theory.
The main contributions of this work are the evaluation
of two classes of RL algorithms applied to a typical
industrial robotics task and the development of a modular
simulation architecture that allows for simplicity in
further investigation of similar problems. We also present
anew reward function formulation based on the projection
of the end effector’s displacement, which significantly
improved the agent’s performance on both algorithms.
A comparative analysis of both classes of algorithms
on increasingly complex environments also highlighted

52 Cotrim, José & Cabral |

Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53

their main limitations and points to improve future
research: sensitivity to reward function, state-action
space exponential increase in dimensions, low sample
efficiency and consequently high training time. Reward
function engineering is where human expert analysis
is fundamental, and the dimensionality issue is
often overcome by algorithmic changes, such as the
replacement of Q-tables with DQN or by modeling the
action space A as continuous and having the policy
network m,(als) output allow for the mapping onto
continuous actions, commonly done in algorithms such
as REINFORCE, DDPG and Actor-Critic (Sutton and Barto,
2018).

The non-convergent behavior obtained by the
REINFORCE agent on the last project can be explained
by common limitations associated with policy iteration
algorithms in general, such as high sensitivity to learning
rate and exploratory variance (Kormushev et al., 2013).
DQN'’s overall better performance in shorter training
periods is possibly due to higher frequency network
updates and the implementation of an experience replay
from which state transitions are randomly sampled (Lin,
1993).

Acknowledgments

This project was developed in the Mechatronics
Department of Escola Politécnica da USP (PMR Poli-USP),
which provided access to the Kuka-KR16 robot.

The first author has the support of TPN-Poli (Tanque
de Provas Numérico da Escola Politécnica da USP).

The second author is supported by Itati Unibanco S.A
through the scholarship program of Programa de Bolsas
Itad (PBI), linked to the Centro de Ciéncia de Dados (C2D),
Escola Politécnica da Universidade de Sdo Paulo.

References

Bellman, R. (1967). Introduction to the
Mathematical Theory of Control Processes,
Mathematics in science and engineering, .
40-1, Academic Press, New York. Available

at https://www.sciencedirect.com/bookseries/
mathematics-in-science-and-engineering/vol/40/
part/P1.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J. and Zaremba, W. (2016). Openai
gym. Available at https://arxiv.org/abs/1606.01540.

Charpentier, A., Elie, R. and Remlinger, C. (2021).
Reinforcement Learning in Economics and Finance, Vol. 4.
https://doi.org/10.1007/s10614-021-10119-4.

Chen, S., Yan, D, Zhang, Y., Tan, Y. and Wang, W. (2019).
Live working manipulator control model based on
dppo-dqn combined algorithm, 2019 IEEE 4th Advanced
Information Technology, Electronic and Automation
Control Conference (IAEAC), Vol. 1, pp. 2620—2624.
https://doi.org/10.1109/IAEACA7372.2019.8997839.

Coronato, A., Naeem, M., De Pietro, G. and Paragliola,
G. (2020). Reinforcement learning for intelligent

healthcare applications: A survey, Artificial Intelligence
in Medicine 109: 101964. https://doi.org/10.1016/j.
artmed.2020.101964.

Gu, S., Holly, E., Lillicrap, T. and Levine, S. (2017).
Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates, 2017 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 3389—3396. https://doi.org/10.1109/ICRA.
2017.7989385.

James, S. and Johns, E. (2016). 3d simulation for robot
arm control with deep g-learning. Available at https:
//arxiv.org/abs/1609.03759.

Kaelbling, L. P., Littman, M. L. and Moore, A. W. (1996).
Reinforcement learning: A survey, J. Artif. Int. Res.
4(1): 237—285. https://doi.org/10.1613/jair.301.

Kormushev, P., Calinon, S. and Caldwell, D. (2013).
Reinforcement learning in robotics: Applications and
real-world challenges, Robotics 2: 122—148. https://
doi.org/10.3390/robotics2030122.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using
Neural Networks, PhD thesis, USA. Available at https:
//isl.anthropomatik.kit.edu/pdf/Lin1993.pdf.

Mnih, V., Badia, A. P,, Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D. and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement
learning, in M. F. Balcan and K. Q. Weinberger (eds),
Proceedings of The 33rd International Conference
on Machine Learning, Vol. 48 of Proceedings of
Machine Learning Research, PMLR, New York,
New York, USA, pp. 1928-1937. Available at
https://proceedings.mlr.press/v48/mnihal6.html.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013).
Playing atari with deep reinforcement learning.
Available at https://arxiv.org/abs/1312.5602.

Rosen, C. A. (1999). Chapter 3 - robots and machine
intelligence, Handbook of Industrial Robotics, John Wiley
& Sons, New York,United States of America, pp. 19—30.
https://doi.org/10.1002/9780470172506. ch3.

Sangiovanni, B., Rendiniello, A., Incremona, G. P, Ferrara,
A.and Piastra, M. (2018). Deep reinforcement learning
for collision avoidance of robotic manipulators, 2018
European Control Conference (ECC), pp. 2063—2068.
https://doi.org/10.23919/ECC.2018.8550363.

Schaul, T., Quan, J., Antonoglou, I. and Silver, D. (2016).
Prioritized experience replay. Available at https://
arxiv.org/abs/1511.05952.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and
Klimov, O. (2017). Proximal policy optimization
algorithms. Available at https://arxiv.org/abs/1707.
06347.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
Learning: An Introduction, A Bradford Book, Cambridge,
MA, USA. Available at http://incompleteideas.net/
book/the-book.html.

https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/40/part/P1
https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/40/part/P1
https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/40/part/P1
https://arxiv.org/abs/1606.01540
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.1109/IAEAC47372.2019.8997839
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA.2017.7989385
https://arxiv.org/abs/1609.03759
https://arxiv.org/abs/1609.03759
https://doi.org/10.1613/jair.301
https://doi.org/10.3390/robotics2030122
https://doi.org/10.3390/robotics2030122
https://isl.anthropomatik.kit.edu/pdf/Lin1993.pdf
https://isl.anthropomatik.kit.edu/pdf/Lin1993.pdf
https://proceedings.mlr.press/v48/mniha16.html
https://arxiv.org/abs/1312.5602
https://doi.org/10.1002/9780470172506.ch3
https://doi.org/10.23919/ECC.2018.8550363
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html

Cotrim, José & Cabral | Revista Brasileira de Computagdo Aplicada (2021), v.13, n.3, pp.42—53 53

Todorov, E., Erez, T. and Tassa, Y. (2012). Mujoco: A
physics engine for model-based control, 2012 IEEE/RS]
International Conference on Intelligent Robots and Systems,
pp. 5026—5033. https://doi.org/10.1109/IR0S.2012.
6386109.

Xie, J., Shao, Z., Li, Y., Guan, Y. and Tan, J. (2019).
Deep reinforcement learning with optimized reward
functions for robotic trajectory planning, IEEE Access
7: 105669—105679. https://doi.org/10.1109/ACCESS.
2019.2932257.

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/ACCESS.2019.2932257
https://doi.org/10.1109/ACCESS.2019.2932257

	1 Introduction
	2 State of the Art
	3 Problem Definition
	4 Implemented Algorithms
	4.1 First Algorithm: Episodic REINFORCE
	4.2 Second Algorithm: DQN

	5 Reward Functions
	5.1 First Reward Function: Absolute Distances
	5.2 Second Reward Function: Discrete under Approximation or Distancing
	5.3 Third Reward Function: Projection of Displacement Vector

	6 Results
	6.1 Test Project 3: KUKA KR16 - Fixed Configuration
	6.1.1 Episodic REINFORCE
	6.1.2 DQN

	6.2 Test Project 4: KUKA KR16 - Generic Configurations
	6.2.1 Episodic REINFORCE
	6.2.2 DQN

	6.3 Comparative Analysis of Algorithms

	7 Conclusion

