Dispersion Comparison Between Ring-Bar Helix and a New Sloped-Ring Helix

Daniel T. Lopes Nuclear & Energetic Research Institute, São Paulo, Brazil danteixe@yahoo.com.br

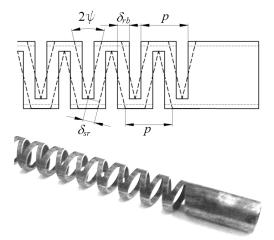
Cláudio C. Motta Brazilian Navy Technology Center in São Paulo, São Paulo, Brazil ccmotta@usp.br

Abstract: In this paper we present recent progress on the investigation of a new slow-wave structure named sloped-ring helix which, like the ring-bar helix, is a spatial distortion of the cross-wound twin helix. A preliminary measure of the dispersion characteristic is present.

Keywords: ring-bar helix; slow-wave structure; dispersion measurement.

Introduction

Since its introduction by Birdsall & Everhart [1], the ring-bar helix has been broadly applied in high-power traveling-wave tubes (TWT) slow-wave structures (SWS) due to its interesting properties in the backward-wave mode attenuation. Even though looking different, ring-bar helix is a practical form for the contra-wound helix introduced by Chodorow & Chu [2] and its mathematical model are the same. In fact, the ring-bar helix preserve the backward mode attenuation characteristic from the contra-wound helix, but its dispersion characteristics may differ appreciably due to its greater dispersivity.


Looking for construct a helix SWS closer to the contra-wound helix, we propose a new practical form for it, named, the sloped-ring helix, showed in Fig. 1 as well its conception.

With this new helix we expect to obtain a less dispersive slow-wave structure.

Measurement Setup

For the realization of the dispersion and impedance measures we are finishing a set-up [4] which able to test practically any slow-wave structure in *cold* conditions. The SWS used in the initial measures is shown in Fig. 2 below, where we can see the two kind of helices.

The measurement of the dispersion characteristic is based in to obtain the half guided-wavelength $\lambda_g/2$ for a given frequency.

Figure 1. Conception and picture of the slopedring helix made by electromachining.

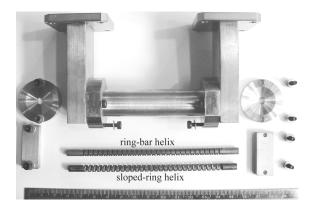


Figure 2. Picture of the SWS used in the initial measurement.

The relation between the axial phase propagation constant β and λ_{g} is given by the well known formula

$$\beta = 2\pi / \lambda_g = \pi / (\lambda_g / 2) . \tag{1}$$

The quantity $\lambda_g/2$ is found measuring the displacement of a short along the SWS axis between two consecutive points of same phase.

A picture of the current set-up stage is shown in Fig. 3.

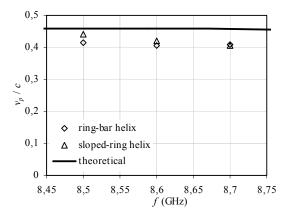


Figure 3. Picture of our home-made setup for measuring dispersion and interaction impedance characteristics of SWS.

Results

We present in Fig. 4 the results for the phase velocity characteristics for the theoretical model, the ring-bar and the sloped-ring helices. Due to some matching problems, this measure (for while) ranges about 8.4 - 8.8 GHz operation frequency. However, there are some

indications that the new helix behaviour can be closer to the theoretical model.

Figure 4. Results of the dispersion measures of a sloped-helix and its equivalent ring-bar helix used in radar application.

Conclusion

We presented our recent progress on the development of the dispersion and the impedance measurement setup and a new practical form for the counter-wound helix which appear to be closer to the theoretical model.

References

- C. K. Birdsall and T. E. Everhart, "Modified contra-wound helix circuits for high-power traveling-wave tubes," *IRE Trans. Electron Devices*, Vol. ED-3, no. 4, pp. 190-204, Oct. 1956.
- M. Chodorow, E. L. Chu, "Cross-wound twin helices for traveling-wave tubes," *J. Appl. Phy*, vol. 26, N° 1, pp. 33-43, Jan. 1955.
- W. N. Cain and R. W. Grow, "The effect of dielectric and metal loading on the dispersion characteristics for contrawound helix circuits used in high-power travelling-wave tubes," *IEEE Trans. Electron Devices*, vol. ED-32, pp. 1566-1578, Jun. 1990.
- D. T. Lopes and C. C. Motta, "Interaction impedance measurements in slow-wave structures via nonresonant perturbation method" *Proc. IVEC2006*, *Apr* 2006.