Luminescent study of SnO2: Eu³⁺ nanopowders prepared by Pechini method

Cláudia A. Kodaira¹, Maria Cláudia F.C. Felinto¹, Hermi F. Brito²,

Pilar Hidalgo³, Henrique Peres³.

¹Centro de Química e Meio Ambiente – Instituto de Pesquisas Energéticas e Nucleares – Av. Prof.

Lineu Prestes, 2242 CEP 05508-970, São Paulo, SP, Brazil

²Instituto de Química – Universidade de São Paulo – Av. Prof. Lineu Prestes, 748 CEP 05508-900, São Paulo, SP, Brazil

³Dep. Engenharia de Sistemas Eletrônicos - Escola Politécnica - Universidade de São Paulo.

Abstract – Nanopowders of SnO₂:Eu³⁺ are prepared by Pechini method. X-ray diffraction and infrared spectroscopy are used to characterize the material. The results show that Eu^{3+} ions induce lower crystallite sizes and promote basicity of the surface. Photoluminescent properties are studied based on 4f⁶-intraconfigurational transitions, showing the existence of two types of local environments around Eu^{3+} ion.

There is an advantage of using rare earth ions as additives on semiconductors due to the combination of optical properties of rare earth ions and electrical properties of semiconductors. SnO₂ is a very important n-type semiconductor and is widely used as sensor, catalytic ceramic and conductive film.

In this work, nanopowders of SnO_2 doped with Eu³⁺ ion, in concentrations of 1, 5 and 10% are prepared by Pechini method^[1] with heating at low temperature (500 °C). In sequence, these luminescent materials are characterized by X-ray diffraction and infrared spectroscopy. XRD patterns of SnO₂:Eu³⁺ show broadening of the FWHM as increasing of Eu³⁺ concentration, indicating lower crystallites sizes. IR spectra show a slight increasing of the intensity band at 3700 cm⁻¹, corresponding to the basic hydroxyls groups on the surface $^{[1]}$, with increasing of Eu³⁺ concentration. Thus, rare earth ion doped into SnO_2 matrix promotes higher basicity of the surface.

Excitation spectrum of SnO_2 :Eu³⁺ 5% system (Fig. 1) recorded at 77 K shows a broad band around 310 nm, assigned to matrix host band ($\lambda_{em} = 615$ nm) and narrow lines assigned to the ${}^{7}F_{0} \rightarrow {}^{5}L_{J}$ transitions (J=0-6) of Eu³⁺ ion, with maximum on ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transition (464 nm). On the other hand, the broad band is not observed in the spectrum obtained at room temperature, which indicates that the energy transfer from the host to Eu^{3+} ion is higher and more efficient when the spectrum is obtained at 77 K. Fig. 2 presents the emission spectra of the europium-doped system with excitation monitored at 310 nm of SnO_2 and 394 nm of Eu³⁺ ion. These spectra present different behaviors, depending on the excitation wavelength. When the excitation is monitored at Eu^{3+} ion, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (J=0-4) transitions are observed, with ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition dominating the intensity (peak around 615 nm). However, when the excitation is monitored at SnO₂ band, the peaks attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions shows lowering of intensities compared to the intensity of magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, indicating that Eu³⁺ ions occupy two different symmetry where one of them has center of inversion. Therefore, it is possible to conclude the existence of two types of local environments around Eu^{3+} ion, probably located into lattice of tin oxide and segregated on the surface of SnO₂. This phenomenon is also observed in luminescence decay curves which present a bi-exponential behavior. The $\text{SnO}_2^{-1}:\text{Eu}^{3+}$ 5% presents emission quantum efficiency around $\eta = 15\%$, demonstrating that energy transfer from the matrix host (SnO_2) to Eu³⁺ ions is not efficient.

The segregation of Eu^{3+} ions on SnO₂ surface lead these materials to be used as potential gas sensors once they can give in formation about some adsorbed gases on the SnO₂ surface.

Fig. 2. Emission spectra of SnO2:Eu3+ material at 77 K, with excitation monitored at 310 and 394 m.

References [1] G. Pereira, R. Castro, P. Hidalgo, D. Gouvêa, Appl. Surf. Sci. 277-283, 195 (2002). [2] C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, J. Lun in. 11-21, 101 (2003).